A Novel Alloy Development Approach: Biomedical Equiatomic Ta-Nb-Ti Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production, Preparation and Analysis of the Substrate Materials
2.2. Osteoblast (SaOs Cells) Attachment Assay
2.3. Monocyte Inflammatory Reaction Test
2.4. RNA Extraction, cDNA Synthesis, Real-Time RT-PCR
2.5. Cleaning and Sterilization of the Samples
2.6. Statistical Analysis of the Biocompatibility Experiments
3. Results & Discussion
3.1. Alloy Design
3.2. X-ray Diffraction and EDS Analysis of the Ta-Nb-Ti Alloy
3.3. Surface Preparation and Validation of the Samples
3.3.1. Microhardness Analysis in Comparison to Competitive Implant Materials
3.3.2. Contact Angle and Surface Roughness Analysis
3.3.3. Biocompatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Shen, J.; Zeng, Z.; Park, J.M.; Choi, Y.T.; Schell, N.; Maawad, E.; Zhou, N.; Kim, H.S. Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel. Scr. Mater. 2022, 206, 114219. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Zhang, M.; Liu, F.; Wang, X.; Gong, P.; Tang, X. Influence of plastic deformation on the corrosion behavior of CrCoFeMnNi high entropy alloy. J. Alloys Compd. 2022, 891, 161822. [Google Scholar] [CrossRef]
- Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Gao, M.C.; Liaw, P.K.; Yeh, J.W.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Ching, W.Y.; San, S.; Brechtl, J.; Sakidja, R.; Zhang, M.; Liaw, P.K. Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys. npj Comput. Mater. 2020, 6, 45. [Google Scholar] [CrossRef]
- Castro, D.; Jaeger, P.; Baptista, A.C.; Oliveira, J.P. An overview of high-entropy alloys as biomaterials. Metals 2021, 11, 648. [Google Scholar] [CrossRef]
- Yan, X.H.; Ma, J.; Zhang, Y. High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering. Sci. China Phys. Mech. Astron. 2019, 62, 996111. [Google Scholar] [CrossRef]
- Andersen, P.J. Metals for Use in Medicine. In Comprehensive Biomaterials II; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 1–18. [Google Scholar]
- Kuhn, L.T. Biomaterials. In Introduction to Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2012; pp. 219–271. [Google Scholar]
- Siswomihardjo, W. Advanced Structured Materials. In Biomaterials and Medical Devices; Mahyudin, F., Hermawan, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 58. [Google Scholar]
- Wilson, J. Metallic biomaterials. In Fundamental Biomaterials: Metals; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–33. [Google Scholar]
- Wintermantel, E.; Ha, S.-W. (Eds.) Medizintechnik; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Regenberg, M.; Hasemann, G.; Wilke, M.; Halle, T.; Krüger, M. Microstructure Evolution and Mechanical Properties of Refractory Mo-Nb-V-W-Ti High-Entropy Alloys. Metals 2020, 10, 1530. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Liaw, P.K. Corrosion-resistant high-entropy alloys: A review. Metals 2017, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Shittu, J.; Pole, M.; Cockerill, I.; Sadeghilaridjani, M.; Reddy, L.V.K.; Manivasagam, G.; Singh, H.; Grewal, H.S.; Arora, H.S.; Mukherjee, S. Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment. ACS Appl. Bio Mater. 2020, 3, 8890–8900. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties. Scr. Mater. 2020, 178, 329–333. [Google Scholar] [CrossRef]
- Todai, M.; Nagase, T.; Hori, T.; Matsugaki, A.; Sekita, A.; Nakano, T. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017, 129, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Iijima, Y.; Nagase, T.; Matsugaki, A.; Wang, P.; Ameyama, K.; Nakano, T. Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys for metallic biomaterials. Mater. Des. 2021, 202, 109548. [Google Scholar] [CrossRef]
- Motallebzadeh, A.; Peighambardoust, N.S.; Sheikh, S.; Murakami, H.; Guo, S.; Canadinc, D. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics 2019, 113, 106572. [Google Scholar] [CrossRef]
- Habashi, F. Historical introduction to refractory metals. Miner. Procesing Extr. Metall. Rev. 2001, 22, 25–53. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Yang, Z.; Liang, X.; Lei, Z.; Huang, H.; Wang, H.; Liu, X.; An, K.; Wu, W.; et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019, 7, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Geanta, V.; Voiculescu, I.; Vizureanu, P.; Victor Sandu, A. High Entropy Alloys for Medical Applications. In Engineering Steels and High Entropy-Alloys; IntechOpen: London, UK, 2020; pp. 4–12. [Google Scholar]
- Hasegawa, M. Thermodynamic Basis for Phase Diagrams. In Treatise on Process Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 527–556. [Google Scholar]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 274, 299–303. [Google Scholar] [CrossRef]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Fang, S.; Xiao, X.; Xia, L.; Li, W.; Dong, Y. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 2003, 321, 120–125. [Google Scholar] [CrossRef]
- Guo, S.; Hu, Q.; Ng, C.; Liu, C.T. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 2013, 41, 96–103. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Liu, C.T. Phase Selection in High-Entropy Alloys: From Nonequilibrium to Equilibrium. Jom 2014, 66, 1966–1972. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Nagase, T.; Todai, M.; Hori, T.; Nakano, T. Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. J. Alloys Compd. 2018, 753, 412–421. [Google Scholar] [CrossRef]
- Xu, X.; Ward, R.M.; Jacobs, M.H.; Lee, P.D.; McLean, M. Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation. Metall. Mater. Trans. A 2002, 33, 1795–1804. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Lee, P.D. Tree-ring formation during vacuum Arc remelting of INCONEL 718: Part II. Mathematical modeling. Metall. Mater. Trans. A 2002, 33, 1805–1815. [Google Scholar] [CrossRef]
- Pešáková, V.; Kubies, D.; Hulejová, H.; Himmlová, L. The influence of implant surface properties on cell adhesion and proliferation. J. Mater. Sci. Mater. Med. 2007, 18, 465–473. [Google Scholar] [CrossRef]
- Zareidoost, A.; Yousefpour, M.; Ghasemi, B.; Amanzadeh, A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J. Mater. Sci. Mater. Med. 2012, 23, 1479–1488. [Google Scholar] [CrossRef]
- Crackau, M.; Harnisch, K.; Baierl, T.; Rosemann, P.; Lohmann, C.H.; Bertrand, J.; Halle, T. Microstructure and surface investigations of TiAl6V4 and CoCr28Mo6 orthopaedic femoral stems. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 882. [Google Scholar]
- Jayaraman, M.; Meyer, U.; Bühner, M.; Joos, U.; Wiesmann, H.P. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials 2004, 25, 625–631. [Google Scholar] [CrossRef]
- Dolgov, N.A.; Dikova, T.; Dzhendov, D.; Pavlova, D.; Simov, M. Mechanical Properties of Dental Co-Cr Alloys Fabricated via Casting and Selective Laser Melting. Mater. Sci. Non-Equilib. Phase Transform. 2016, 2, 3–7. [Google Scholar]
- Barreda, J.L.; Santamaría, F.; Azpiroz, X.; Irisarri, A.M.; Varona, J.M. Electron beam welded high thickness Ti6Al4V plates using filler metal of similar and different composition to the base plate. Vacuum 2001, 62, 143–150. [Google Scholar] [CrossRef]
- Boyer, R.; Welsch, G.; Collings, E.W. Materials Properties Handbook: Titanium Alloys; ASM International: Almere, The Netherlands, 1994; ISBN 9780871704818. [Google Scholar]
- DIN DIN EN ISO 19403-2:2020-04 Beschichtungsstoffe-Benetzbarkeit-Teil 2: Bestimmung der Freien Oberflächenenergie Fester Oberflächen durch Messung des Kontaktwinkels; Beuth Verlag GmbH: Berlin, Germany, 2020; p. 21.
- Law, K.Y.; Zhao, H. Surface Wetting: Characterization, Contact Angle, and Fundamentals; Springer International Publishing: Basel, Switzerland, 2015. [Google Scholar]
- DIN DIN EN ISO 25178-1:2016-12 Geometrische Produktspezifikation (GPS)-Oberflächenbeschaffenheit: Flächenhaft-Teil 1: Angabe von Oberflächenbeschaffenheit (ISO 25178-1:2016); Beuth Verlag GmbH: Berlin, Germany, 2016; p. 36.
- Boyan, B.D.; Lohmann, C.H.; Dean, D.D.; Sylvia, V.L.; Cochran, D.L.; Schwartz, Z. Mechanisms Involved in Osteoblast Response to Implant Surface Morphology. Annu. Rev. Mater. Res. 2001, 31, 357–371. [Google Scholar] [CrossRef]
- Chopplet, M.; Theirry, J.P. Biomedical Materials; Springer: Berlin/Heidelberg, Germany, 1990; Volume 5, ISBN 9783030492052. [Google Scholar]
- Carnicer-Lombarte, A.; Chen, S.T.; Malliaras, G.G.; Barone, D.G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 2021, 9, 622524. [Google Scholar] [CrossRef] [PubMed]
Alloy | ΔSmix, J·K−1·mol−1 | ΔHmix, kJ·mol−1 | δ, % | Ω | References |
---|---|---|---|---|---|
Ta-Nb-Ti | 9.13 | 1.3 | 1.5 | 18.2 | this work |
MoNbTaTiZr | 13.38 | −1.8 | 5.9 | 19.7 | [16,18] |
TiZrHfNbTa | 13.38 | 2.7 | 5.5 | 12.4 | [18,22] |
TiNbTaZrW | 13.38 | −3.2 | 5.8 | 11.5 | [18] |
Ti2.6NbTaZrMo | 12.57 | −1.2 | 5.2 | 26.4 | [32] |
TiNbTa0.2ZrMo | 12.57 | −2.3 | 6.4 | 13.4 | [32] |
TiNbTaZr2.6Mo | 12.57 | −0.9 | 6.8 | 36.1 | [32] |
TiNbTaZrMo0.2 | 12.57 | 1.3 | 5.5 | 24.2 | [32] |
Sample | Mean Contact Angle Θ, ° | Sa, µm | Sz, µm | Sv, µm |
---|---|---|---|---|
Ta-Nb-Ti | 37 ± 2.1 | 0.172 | 2.48 | 1.41 |
Ta | 48 ± 3.3 | 0.108 | 1.99 | 1.20 |
Nb | 33 ± 1.3 | 0.148 | 3.16 | 1.75 |
Ti | 58 ± 3.7 | 0.079 | 1.20 | 0.52 |
Ti-6Al-4V | 58 ± 3.7 | 0.067 | 1.50 | 0.65 |
Co-28Cr-6Mo | 64 ± 4.8 | 0.033 | 0.32 | 0.18 |
Mean | 50 ± 11.4 | 0.101 ± 0.4 | 1.77 ± 0.9 | 0.95 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regenberg, M.; Schmelzer, J.; Hasemann, G.; Bertrand, J.; Krüger, M. A Novel Alloy Development Approach: Biomedical Equiatomic Ta-Nb-Ti Alloy. Metals 2021, 11, 1778. https://doi.org/10.3390/met11111778
Regenberg M, Schmelzer J, Hasemann G, Bertrand J, Krüger M. A Novel Alloy Development Approach: Biomedical Equiatomic Ta-Nb-Ti Alloy. Metals. 2021; 11(11):1778. https://doi.org/10.3390/met11111778
Chicago/Turabian StyleRegenberg, Maximilian, Janett Schmelzer, Georg Hasemann, Jessica Bertrand, and Manja Krüger. 2021. "A Novel Alloy Development Approach: Biomedical Equiatomic Ta-Nb-Ti Alloy" Metals 11, no. 11: 1778. https://doi.org/10.3390/met11111778
APA StyleRegenberg, M., Schmelzer, J., Hasemann, G., Bertrand, J., & Krüger, M. (2021). A Novel Alloy Development Approach: Biomedical Equiatomic Ta-Nb-Ti Alloy. Metals, 11(11), 1778. https://doi.org/10.3390/met11111778