Preparation of Al-3Ga-3In-3Sn Alloy Powder by Coupling Alloying and Ball Milling and Its Application on High-Rate Hydrogen Generation at Room Temperature
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. Alloying and Crushing
2.2.2. Mechanical Ball Milling
2.2.3. Characterization
2.2.4. Hydrolysis Reactions
3. Results
3.1. Characterization
3.1.1. XRD Analysis
3.1.2. SEM and EDX Analysis
3.2. Hydrolysis Reactions of the Activated Al-LMP Alloy
3.2.1. Effect of NiCl2 Content
3.2.2. Effect of Ball Milling Time
3.2.3. The Product of Al-Water Reaction
4. Discussions
4.1. Hydrolysis Reaction Process
4.2. The Effect of Ball-Milling on the Transition of NiCl2
4.3. The Reaction Mechanism of Al-LMP Alloys
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, T.H.; Pham-Tran, N.-N.; Kawazoe, Y.; Le, H.M. Ab Initio Investigation of O–H Dissociation from the Al–OH2 Complex Using Molecular Dynamics and Neural Network Fitting. J. Phys. Chem. A 2016, 120, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-W.; Chung, H.-W.; Teng, H.-T.; Cao, G. Generation of hydrogen from aluminum and water–Effect of metal oxide nanocrystals and water quality. Int. J. Hydrogen Energy 2011, 36, 15136–15144. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Hao, M. Hydrogen generation by splitting water with Al–Ca alloy. Energy 2011, 36, 2782–2787. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, T.; Liu, J.; Wang, Z.; Zhou, J.; Cen, K. Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature. Energy 2015, 93, 451–457. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Z.; Hao, M.; Wang, D. Hydrogen generation by splitting water with Al–Li alloys. Int. J. Energy Res. 2013, 37, 1624–1634. [Google Scholar] [CrossRef]
- He, T.T.; Wang, W.; Chen, W.; Chen, D.M.; Yang, K. Influence of In and Sn compositions on the reactivity of Al–Ga–In–Sn alloys with water. Int. J. Hydrogen Energy 2017, 42, 5627–5637. [Google Scholar] [CrossRef]
- Xu, S.; Yang, X.-H.; Tang, S.-S.; Liu, J. Liquid metal activated hydrogen production from waste aluminum for power supply and its life cycle assessment. Int. J. Hydrogen Energy 2019, 44, 17505–17514. [Google Scholar] [CrossRef]
- Preez, S.P.d.; Bessarabov, D.G. The effects of bismuth and tin on the mechanochemical processing of aluminum-based composites for hydrogen generation purposes. Int. J. Hydrogen Energy 2019, 44, 21896–21912. [Google Scholar] [CrossRef]
- Ziebarth, J.T.; Woodall, J.M.; Kramer, R.A.; Choi, G. Liquid phase-enabled reaction of Al–Ga and Al–Ga–In–Sn alloys with water. Int. J. Hydrogen Energy 2011, 36, 5271–5279. [Google Scholar] [CrossRef]
- Du, B.; Wang, W.; Chen, W.; Chen, D.; Yang, K. Grain refinement and Al-water reactivity of Al–Ga–In–Sn alloys. Int. J. Hydrogen Energy 2017, 42, 21586–21596. [Google Scholar] [CrossRef]
- He, T.; Wang, W.; Chen, D.; Yang, K. Effect of Ti on the microstructure and Al–water reactivity of Al-rich alloy. Int. J. Hydrogen Energy 2014, 39, 684–691. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.M.; Chen, D.M.; Yang, K. Insight into the reactivity of Al–Ga–In–Sn alloy with water. Int. J. Hydrogen Energy 2012, 37, 2187–2194. [Google Scholar] [CrossRef]
- Qiao, D.; Lu, Y.; Tang, Z.; Fan, X.; Wang, T.; Li, T.; Liaw, P.K. The superior hydrogen-generation performance of multi-component Al alloys by the hydrolysis reaction. Int. J. Hydrogen Energy 2019, 44, 3527–3537. [Google Scholar] [CrossRef]
- Xie, Z.; Dong, S.; Luo, P.; Wang, H. Enhanced Hydrogen Generation Properties of Al-Ga-In-Sn Alloy in Reaction with Water by Trace Amount of AlTi5B Additives. Mater. Trans. 2017, 58, 724–727. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Yu, W.; Tan, S.; Wang, L.; Yang, X.; Liu, J. Controlled hydrogen generation using interaction of artificial seawater with aluminum plates activated by liquid Ga–In alloy. RSC Adv. 2017, 7, 30839–30844. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Gao, Q.; Liu, D.; Xu, S.; Guo, C.; Zou, J.; Wei, C. Preparation of Al-Ga-In-Sn-Bi quinary alloy and its hydrogen production via water splitting. Int. J. Hydrogen Energy 2015, 40, 2354–2362. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.M.; Yang, K. Investigation on microstructure and hydrogen generation performance of Al-rich alloys. Int. J. Hydrogen Energy 2010, 35, 12011–12019. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.; Zhao, X.M.; Chen, D.M.; Yang, K. Effect of composition on the reactivity of Al-rich alloys with water. Int. J. Hydrogen Energy 2012, 37, 18672–18678. [Google Scholar] [CrossRef]
- An, Q.; Hu, H.; Li, N.; Liu, D.; Xu, S.; Liu, Z.; Wei, C.; Luo, F.; Xia, M.; Gao, Q. Effects of Bi composition on microstructure and Al-water reactivity of Al-rich alloys with low-In. Int. J. Hydrogen Energy 2018, 43, 10887–10895. [Google Scholar] [CrossRef]
- He, T.; Wang, W.; Chen, W.; Chen, D.; Yang, K. Reactivity of Al-rich Alloys with Water Promoted by Liquid Al Grain Boundary Phases. J. Mater. Sci. Technol. 2017, 33, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, Y.; Liu, H.; Yang, T.; Chen, X.; Yang, S.; Liu, X. A Novel Self-Assembling Al-based Composite Powder with High Hydrogen Generation Efficiency. Sci. Rep. 2015, 5, 17428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, C.; Liu, Y.; Zou, H.; Lin, K.; Yang, S.; Lu, Y.; Han, J.; Shi, Z.; Liu, X. Portable water-using H2 production materials converted from waste aluminum. Energy Sources Part A 2018, 40, 1991–1997. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Chen, X.; Yang, S.; Wang, C. Hydrogen generation from hydrolysis of activated Al-Bi; Al-Sn powders prepared by gas atomization method. Int. J. Hydrogen Energy 2017, 42, 10943–10951. [Google Scholar] [CrossRef]
- Ilyukhina, A.V.; Kravchenko, O.V.; Bulychev, B.M. Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction. J. Alloy Compd. 2017, 690, 321–329. [Google Scholar] [CrossRef]
- Mahmoodi, K.; Alinejad, B. Enhancement of hydrogen generation rate in reaction of aluminum with water. Int. J. Hydrogen Energy 2010, 35, 5227–5232. [Google Scholar] [CrossRef]
- Czech, E.; Troczynski, T. Hydrogen generation through massive corrosion of deformed aluminum in water. Int. J. Hydrogen Energy 2010, 35, 1029–1037. [Google Scholar] [CrossRef]
- Fan, M.Q.; Xu, F.; Sun, L.-X.; Zhao, J.-N.; Jiang, T.; Li, W.-X. Hydrolysis of ball milling Al–Bi–hydride and Al–Bi–salt mixture for hydrogen generation. J. Alloy Compd. 2008, 460, 125–129. [Google Scholar] [CrossRef]
- Alinejad, B.; Mahmoodi, K. A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy 2009, 34, 7934–7938. [Google Scholar] [CrossRef]
- Eom, K.; Cho, E.; Kwon, H. Feasibility of on-board hydrogen production from hydrolysis of Al–Fe alloy for PEMFCs. Int. J. Hydrogen Energy 2011, 36, 12338–12342. [Google Scholar] [CrossRef]
- Liang, J.; Gao, L.J.; Miao, N.N.; Chai, Y.J.; Wang, N.; Song, X.Q. Hydrogen generation by reaction of Al–M (M= Fe, Co, Ni) with water. Energy 2016, 113, 282–287. [Google Scholar] [CrossRef]
- Eom, K.S.; Kwon, J.Y.; Kim, M.J.; Kwon, H.S. Design of Al–Fe alloys for fast on-board hydrogen production from hydrolysis. J. Mater. Chem. 2011, 21, 13047–13051. [Google Scholar] [CrossRef]
- Eom, K.; Kim, M.; Oh, S.; Cho, E.; Kwon, H. Design of ternary Al–Sn–Fe alloy for fast on-board hydrogen production, and its application to PEM fuel cell. Int. J. Hydrogen Energy 2011, 36, 11825–11831. [Google Scholar] [CrossRef]
- Fan, M.Q.; Liu, S.; Sun, L.X.; Xu, F.; Wang, S.; Zhang, J.; Mei, D.S.; Huang, F.L.; Zhang, Q.M. Synergistic hydrogen generation from AlLi alloy and solid-state NaBH4 activated by CoCl2 in water for portable fuel cell. Int. J. Hydrogen Energy 2012, 37, 4571–4579. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Tang, Y.B.; Zhu, L.L.; Sakka, Y.; Ye, J. Effect of different modification agents on hydrogen-generation by the reaction of Al with water. Int. J. Hydrogen Energy 2010, 35, 9561–9568. [Google Scholar] [CrossRef]
- Yang, Y.; Gai, W.Z.; Deng, Z.Y.; Zhou, G.J. Hydrogen generation by the reaction of Al with water promoted by an ultrasonically prepared Al(OH)3 suspension. Int. J. Hydrogen Energy 2014, 39, 18734–18742. [Google Scholar] [CrossRef]
- Chen, J.; Xu, F.; Sun, L.; Zhang, K.; Xia, Y.; Guo, X.; Zhang, H.; Yu, F.; Yan, E.; Peng, H.; et al. Effect of doped Ni-Bi-B alloy on hydrogen generation performance of Al-InCl3. J. Energy Chem. 2019, 39, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, X.; Liu, H.; Dong, Z.; Li, S.; Ge, H.; Yan, M. Improved hydrogen generation from the hydrolysis of aluminum ball milled with hydride. Energy 2014, 72, 421–426. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, Y.; Li, J.; Yang, R. Hydrogen generation from hydrolysis of activated aluminum composites in tap water. Energy 2018, 157, 608–614. [Google Scholar] [CrossRef]
- Wang, H.; Chang, Y.; Dong, S.; Lei, Z.; Zhu, Q.; Luo, P.; Xie, Z. Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism. Int. J. Hydrogen Energy 2013, 38, 1236–1243. [Google Scholar] [CrossRef]
- Fan, M.; Xu, F.; Sun, L. Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int. J. Hydrogen Energy 2007, 32, 2809. [Google Scholar]
Sample | Content | Al-Alloy/g | NiCl2/g | Milling Time/h |
---|---|---|---|---|
1 | Al-3Ga-3In-3Sn-0NiCl2 | 20 | 0.0 | 1 |
2 | Al-3Ga-3In-3Sn-2NiCl2 | 20 | 0.4 | 1 |
3 | Al-3Ga-3In-3Sn-4NiCl2 | 20 | 0.8 | 1 |
4 | Al-3Ga-3In-3Sn-6NiCl2 | 20 | 1.2 | 1 |
5 | Al-3Ga-3In-3Sn-2NiCl2 | 20 | 0.4 | 2 |
6 | Al-3Ga-3In-3Sn-2NiCl2 | 20 | 0.4 | 3 |
Sample | Area | Elements | ||||||
---|---|---|---|---|---|---|---|---|
O | Al | Cl | Ni | Ga | In | Sn | ||
1 | 1 | 11.99 | 85.55 | 0.00 | 0.00 | 1.35 | 0.56 | 0.56 |
2 | 25.68 | 72.25 | 0.00 | 0.00 | 0.86 | 0.63 | 0.58 | |
2 | 3 | 57.65 | 39.46 | 1.31 | 0.26 | 0.75 | 0.32 | 0.26 |
4 | 67.72 | 19.68 | 11.86 | 0.16 | 0.07 | 0.30 | 0.22 | |
3 | 5 | 51.39 | 46.26 | 0.92 | 0.29 | 0.12 | 0.63 | 0.40 |
6 | 69.70 | 23.69 | 4.25 | 1.15 | 0.06 | 0.75 | 0.40 | |
4 | 7 | 59.13 | 39.67 | 0.62 | 0.12 | 0.22 | 0.17 | 0.07 |
8 | 68.38 | 24.47 | 2.78 | 2.55 | 1.11 | 0.17 | 0.54 | |
5 | 9 | 71.26 | 19.53 | 4.37 | 3.75 | 0.38 | 0.27 | 0.43 |
10 | 72.66 | 23.94 | 2.85 | 0.24 | 0.15 | 0.00 | 0.00 | |
6 | 11 | 62.52 | 28.19 | 5.53 | 3.02 | 0.00 | 0.74 | 0.01 |
12 | 78.13 | 17.67 | 2.75 | 1.28 | 0.00 | 0.13 | 0.04 |
Sample | Milling Time (h) | MHGR (mL·min−1) | HGY (mL) | Conversion Yield (%) |
---|---|---|---|---|
Plates | 0 | 0.480 | 1130 | 99.78 |
Powders | 0 | 0.520 | 1124 | 99.25 |
1 | 1 | 1.956 | 806 | 71.17 |
2 | 1 | 2.450 | 1046 | 94.21 |
3 | 1 | 2.562 | 866 | 79.53 |
4 | 1 | 3.750 | 926 | 88.31 |
5 | 2 | 11.020 | 1002 | 90.25 |
6 | 3 | 5.748 | 934 | 84.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhu, L.; Zhang, L.; Zhang, X.; Wang, X.; Ge, M.; Li, X.; Zou, M. Preparation of Al-3Ga-3In-3Sn Alloy Powder by Coupling Alloying and Ball Milling and Its Application on High-Rate Hydrogen Generation at Room Temperature. Metals 2021, 11, 1704. https://doi.org/10.3390/met11111704
Wang S, Zhu L, Zhang L, Zhang X, Wang X, Ge M, Li X, Zou M. Preparation of Al-3Ga-3In-3Sn Alloy Powder by Coupling Alloying and Ball Milling and Its Application on High-Rate Hydrogen Generation at Room Temperature. Metals. 2021; 11(11):1704. https://doi.org/10.3390/met11111704
Chicago/Turabian StyleWang, Shuo, Lixiang Zhu, Lichen Zhang, Xiaodong Zhang, Xiaoxuan Wang, Mengchen Ge, Xiaodong Li, and Meishuai Zou. 2021. "Preparation of Al-3Ga-3In-3Sn Alloy Powder by Coupling Alloying and Ball Milling and Its Application on High-Rate Hydrogen Generation at Room Temperature" Metals 11, no. 11: 1704. https://doi.org/10.3390/met11111704
APA StyleWang, S., Zhu, L., Zhang, L., Zhang, X., Wang, X., Ge, M., Li, X., & Zou, M. (2021). Preparation of Al-3Ga-3In-3Sn Alloy Powder by Coupling Alloying and Ball Milling and Its Application on High-Rate Hydrogen Generation at Room Temperature. Metals, 11(11), 1704. https://doi.org/10.3390/met11111704