Laser Oscillating Welding of TC31 High-Temperature Titanium Alloy
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Weld Appearance and Internal Quality
3.2. Microstructure Characterization
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leyens, C.; Peters, M. Titanium and Titanium Alloys; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Boyer, R.R.; Briggs, R.D. The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 2005, 14, 681–685. [Google Scholar] [CrossRef]
- Qiao, Y.; Xu, D.; Wang, S.; Ma, Y.; Chen, J.; Wang, Y.; Zhou, H. Corrosion and tensile behaviors of Ti-4Al-2V-1Mo-1Fe and Ti-6Al-4V titanium alloys. Metals 2019, 9, 1213. [Google Scholar] [CrossRef]
- Singh, P.; Pungotra, H.; Kalsi, N.S. On the characteristics of titanium alloys for the aircraft applications. Mater. Today Proc. 2017, 4, 8971–8982. [Google Scholar] [CrossRef]
- Gogia, A.K. High-temperature titanium alloys. Def. Sci. J. 2005, 55, 149–173. [Google Scholar] [CrossRef]
- Evans, R.W.; Hull, R.J.; Wilshire, B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834. J. Mater. Process. Technol. 1996, 56, 492–501. [Google Scholar] [CrossRef]
- Narayana, P.L.; Kim, S.W.; Hong, J.K.; Reddy, N.S.; Yeom, J.T. Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650 °C. Mat. Sci. Eng. A 2018, 718, 287–291. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Li, H.; Fu, M.W.; Guo, H.Z.; Yao, Z.K. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing. J. Alloy Compd. 2014, 617, 525–533. [Google Scholar] [CrossRef]
- Su, Y.; Kong, F.T.; You, F.H.; Wang, X.P.; Chen, Y.Y. The high-temperature deformation behavior of a novel near-α titanium alloy and hot-forging based on the processing map. Vacuum 2019, 173, 109135. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhang, W.J.; Ma, T.; Ye, W.J.; Hui, S.X. Effect of heat treatment on the microstructure evolution of Ti-6Al-3Sn-3Zr-3Mo-3Nb-1W-0.2Si titanium alloy. Mater. Sci. Forum 2016, 879, 1828–1833. [Google Scholar] [CrossRef]
- Zhang, W.J.; Song, X.Y.; Hui, S.X.; Ye, W.J.; Wang, Y.L.; Wang, W.Q. Tensile behavior at 700 °C in Ti–Al–Sn–Zr–Mo–Nb–W–Si alloy with a bi-modal microstructure. Mat. Sci. Eng. A 2014, 595, 159–164. [Google Scholar] [CrossRef]
- Wu, D.; Wu, Y.; Chen, M.; Xie, L.; Wang, B. High Temperature Flow Behavior and Microstructure Evolution of TC31 Titanium Alloy Sheets. Rare Met. Mater. Eng. 2019, 48, 3901–3910. [Google Scholar]
- Hong, K.M.; Shin, Y.C. Prospects of laser welding technology in the automotive industry: A review. J. Mater. Process. Technol. 2017, 245, 46–69. [Google Scholar] [CrossRef]
- Lopes, J.G.; Oliveira, J.P. A short review on welding and joining of high entropy alloys. Metals 2020, 10, 212. [Google Scholar] [CrossRef]
- Meijer, J. Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 2004, 149, 2–17. [Google Scholar] [CrossRef]
- Mehrpouya, M.; Gisario, A.; Elahinia, M. Laser welding of NiTi shape memory alloy: A review. J. Mater. Process. Technol. 2018, 31, 162–186. [Google Scholar] [CrossRef]
- Cao, X.; Jahazi, M.; Immarigeon, J.P.; Wallace, W. A review of laser welding techniques for magnesium alloys. J. Mater. Process. Technol. 2006, 171, 188–204. [Google Scholar] [CrossRef]
- Grbović, A.; Sedmak, A.; Kastratović, G.; Petrašinović, D.; Vidanović, N.; Sghayer, A. Effect of laser beam welded reinforcement on integral skin panel fatigue life. Eng. Fail. Anal. 2019, 101, 383–393. [Google Scholar] [CrossRef]
- Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F. Laser welding of large scale stainless steel aircraft structures. Phys. Procedia 2013, 41, 106–111. [Google Scholar] [CrossRef]
- Nakai, M.; Niinomi, M.; Akahori, T.; Hayashi, K.; Itsumi, Y.; Murakami, S.; Oyama, H. Microstructural factors determining mechanical properties of laser-welded Ti–4.5Al–2.5Cr–1.2Fe–0.1C alloy for use in next-generation aircraft. Mat. Sci. Eng. A 2012, 550, 55–65. [Google Scholar] [CrossRef]
- Gursel, A. Crack risk in Nd: YAG laser welding of Ti-6Al-4V alloy. Mater. Lett. 2017, 197, 233–235. [Google Scholar] [CrossRef]
- Quazi, M.M.; Ishak, M.; Fazal, M.A.; Arslan, A.; Rubaiee, S.; Qaban, A.; Manladan, S.M. Current research and development status of dissimilar materials laser welding of titanium and its alloys. Opt. Laser Technol. 2020, 126, 106090. [Google Scholar] [CrossRef]
- Casalino, G.; Losacco, A.M.; Arnesano, A.; Facchini, F.; Pierangeli, M.; Bonserio, C. Statistical analysis and modelling of an Yb: KGW femtosecond laser micro-drilling process. Procedia CIRP 2017, 62, 275–280. [Google Scholar] [CrossRef]
- Su, X.; Tao, W.; Chen, Y.B.; Fu, J.Y. Microstructure and tensile property of the joint of laser-MIG hybrid welded thick-section TC4 alloy. Metals 2018, 8, 1002. [Google Scholar] [CrossRef]
- Casalino, G.; Facchini, F.; Mortello, M.; Mummolo, G. ANN modelling to optimize manufacturing processes: The case of laser welding. IFAC-PapersOnLine 2016, 49, 378–383. [Google Scholar] [CrossRef]
- Wang, L.; Gao, M.; Zhang, C.; Zeng, X.Y. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 2016, 108, 707–717. [Google Scholar] [CrossRef]
- Li, X.; Xie, J.; Zhou, Y. Effects of oxygen contamination in the argon shielding gas in laser welding of commercially pure titanium thin sheet. J. Mater. Sci. 2005, 40, 3437–3443. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, S.S.; Shen, J.Q.; Li, D.L.; Bu, X.Z. Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys. Opt. Laser Technol. 2015, 74, 158–166. [Google Scholar] [CrossRef]
- Zeng, Z.; Oliveira, J.P.; Bu, X.; Yang, M.; Li, R.; Wang, Z. Laser Welding of BTi-6431S High Temperature Titanium Alloy. Metals 2017, 7, 504. [Google Scholar] [CrossRef]
- Junaid, M.; Baig, M.N.; Shamir, M.; Khan, F.N.; Rehman, K.; Haider, J. A comparative study of pulsed laser and pulsed TIG welding of Ti-5Al-2.5Sn titanium alloy sheet. Mater. Process. Technol. 2016, 242, 24–38. [Google Scholar] [CrossRef]
- Martínez, C.; Guerra, C.; Silva, D.; Cubillos, M.; Briones, F.; Muñoz, L.; Sancy, M. Effect of porosity on mechanical and electrochemical properties of Ti–6Al–4V alloy. Electrochim. Acta 2020, 338, 135858. [Google Scholar] [CrossRef]
- Zhang, W.F.; Liu, X.P.; Wang, H.X.; Dai, W.; Fu, G.C. Quantitative analysis of weld-pore size and depth and effect on fatigue life of Ti-6Al-2Zr-1Mo-1V alloy weldments. Metals 2017, 7, 417. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.D.; Chen, W.Z.; Bao, G. Repression of porosity with beam weaving laser welding. Trans. China Weld. Inst. 2004, 251, 29–32. [Google Scholar]
- Panwisawas, C.; Perumal, B.; Mark Ward, R.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126, 251–263. [Google Scholar] [CrossRef]
- Assuncao, E.; Williams, S. Comparison of continuous wave and pulsed wave laser welding effects. Opt. Laser Eng. 2013, 51, 674–680. [Google Scholar] [CrossRef]
Element | Ti | Al | Sn | Zr | Mo | Nb | W | Si |
---|---|---|---|---|---|---|---|---|
Composition | Balance | 6.0–7.2 | 2.5–3.5 | 2.5–3.5 | 1.0–3.2 | 1.0–3.2 | 0.3–1.2 | 0.1–0.5 |
Temperature | UTS/MPa | YS/MPa | Elongation/% |
---|---|---|---|
RM | 1205 | 1091 | 15.2 |
650 °C | 648 | - | 17.3 |
Sample | Weaving Frequency of Laser Beam (Hz) | Weaving Amplitude of Laser Beam (mm) | Laser Power (W) | Welding Speed (mm/min) |
---|---|---|---|---|
W1 | 200 | 0.1 | 1900 | 1200 |
W2 | 200 | 0.3 | 2000 | 1500 |
W3 | 200 | 0.5 | 2100 | 1800 |
W4 | 300 | 0.1 | 2000 | 1800 |
W5 | 300 | 0.3 | 2100 | 1200 |
W6 | 300 | 0.5 | 1900 | 1500 |
W7 | 400 | 0.1 | 2100 | 1500 |
W8 | 400 | 0.3 | 1900 | 1800 |
W9 | 400 | 0.5 | 2000 | 1200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sun, L.; Ke, W.; Zeng, Z.; Yao, W.; Wang, C. Laser Oscillating Welding of TC31 High-Temperature Titanium Alloy. Metals 2020, 10, 1185. https://doi.org/10.3390/met10091185
Wang Z, Sun L, Ke W, Zeng Z, Yao W, Wang C. Laser Oscillating Welding of TC31 High-Temperature Titanium Alloy. Metals. 2020; 10(9):1185. https://doi.org/10.3390/met10091185
Chicago/Turabian StyleWang, Zhimin, Lulu Sun, Wenchao Ke, Zhi Zeng, Wei Yao, and Chunming Wang. 2020. "Laser Oscillating Welding of TC31 High-Temperature Titanium Alloy" Metals 10, no. 9: 1185. https://doi.org/10.3390/met10091185
APA StyleWang, Z., Sun, L., Ke, W., Zeng, Z., Yao, W., & Wang, C. (2020). Laser Oscillating Welding of TC31 High-Temperature Titanium Alloy. Metals, 10(9), 1185. https://doi.org/10.3390/met10091185