A Sustainable Approach for Cadmium Recovery from Oxide Using Molten Salt Slag
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Chlorides and Preparation of Slag Cover
2.2. Preparation of Specimens for Experiments
2.3. Preparation of Samples for Studies
2.4. X-ray Powder Diffraction and Microscopic Studies
3. Results and Discussion
Morphology, Microscopy Investigation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dasoyan, M.; Novoderezhkin, V.V.; Tomashevsky, B.E. Production of Electric Batteries; Vysshya Shkola: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Hrustalev, D.A. Accomulators; Izumrud: Moscow, Russia, 2003. (In Russian) [Google Scholar]
- Rudnik, E.; Nikiel, M. Hydrometallurgical recovery of cadmium and nickel from spent Ni–Cd batteries. Hydrometallurgy 2007, 89, 61–71. [Google Scholar] [CrossRef]
- Rydh, C.J.; Karlström, M. Life cycle inventory of recycling portable nickel–cadmium batteries. Resour. Conserv. Recycl. 2002, 34, 289–309. [Google Scholar] [CrossRef]
- Bernardes, A.M.; Espinosa, D.C.R.; Tenório, J.A.S. Recycling of batteries: A review of current processes and technologies. J. Power Sources 2004, 130, 291–298. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, D.; Zhang, H.; Kong, W.; Zhang, Y. Bioremoval and recovery of Cd(II) by Pseudoalteromonas sp. SCSE709-6: Comparative study on growing and grown cells. Bioresour. Technol. 2014, 165, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Shakya, A.K.; Ghosh, P.K. Bacterially-assisted recovery of cadmium and nickel as their metal sulfide nanoparticles from spent Ni–Cd battery via hydrometallurgical route. J. Environ. Manag. 2020, 261, 110113. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Song, X.; Liu, J.; Shao, Y.; He, W.; Feng, Y. In-situ enrichment and removal of Cu(II) and Cd(II) from low-strength wastewater by a novel microbial metals enrichment and recovery cell (MMERC). J. Power Sources 2020, 451, 227627. [Google Scholar] [CrossRef]
- Oghabi, H.; Haghshenas, D.F.; Firoozi, S. Selective separation of Cd from spent Ni-Cd battery using glycine as an eco-friendly leachant and its recovery as CdS nanoparticles. Sep. Purif. Technol. 2020, 242, 116832. [Google Scholar] [CrossRef]
- Espinosa, D.C.R.; Mansur, M.B. Recycling batteries. In Waste Electrical and Electronic Equipment (WEEE) Handbook; Elsevier: Amsterdam, The Netherlands, 2019; pp. 371–391. [Google Scholar]
- Espinosa, D.C.R.; Tenório, J.A.S. Fundamental aspects of recycling of nickel–cadmium batteries through vacuum distillation. J. Power Sources 2004, 135, 320–326. [Google Scholar] [CrossRef]
- Espinosa, D.C.R.; Tenório, J.A.S. Recycling of nickel–cadmium batteries using coal as reducing agent. J. Power Sources 2006, 157, 600–604. [Google Scholar] [CrossRef]
- Huang, K.; Li, J.; Xu, Z. Characterization and recycling of cadmium from waste nickel–cadmium batteries. Waste Manag. 2010, 30, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.; Fray, D.J. Recycling of cadmium from domestic, sealed NiCd battery waste by use of chlorination. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 1999, 108, C153–C158. [Google Scholar]
- Assefi, M.; Maroufi, S.; Yamauchi, Y.; Sahajwalla, V. Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Curr. Opin. Green Sustain. Chem. 2020, 24, 26–31. [Google Scholar] [CrossRef]
- Liotta, J.J.; Onuska, J.C.; Hanewald, R.H. Nickel-Cadmium Battery Recycling through the INMETCO High Temperature Metals Recovery Process; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 1995. [Google Scholar]
- Espinosa, D.C.R.; Bernardes, A.M.; Tenório, J.A.S. An overview on the current processes for the recycling of batteries. J. Power Sources 2004, 135, 311–319. [Google Scholar] [CrossRef]
- Varipajev, V.N.; Daosan, M.A.; Nikolskij, V.A. The Chemical Sources of the Current; Vysshya Shkola: Moscow, Russia, 1990. [Google Scholar]
- Hung, Y.Y.; Yin, L.T.; Wang, J.W.; Wang, C.T.; Tsai, C.H.; Kuo, Y.M. Recycling of spent nickel–cadmium battery using a thermal separation process. Environ. Prog. Sustain. Energy 2018, 37, 645–654. [Google Scholar] [CrossRef]
- Müller, T.; Friedrich, B. Development of a recycling process for nickel-metal hydride batteries. J. Power Sources 2006, 158, 1498–1509. [Google Scholar] [CrossRef]
- Jiang, Y.; Deng, Y.; Bu, W. Pyrometallurgical extraction of valuable elements in ni-metal hydride battery electrode materials. Metall. Mater. Trans. B 2015, 46, 2153–2157. [Google Scholar] [CrossRef]
- Hoyle, G. Electroslag Processes: Principles and Practice; Applied Science Publishers: London, UK, 1983; ISBN -85334-164-8. [Google Scholar]
- Platacis, E.; Kaldre, I.; Blumbergs, E.; Goldšteins, L.; Serga, V. Titanium production by magnesium thermal reduction in the electroslag process. Sci. Rep. 2019, 9, 17566. [Google Scholar] [CrossRef] [PubMed]
- Volinskij, V.V. Methods for processing electrodes of nickel-cadmium batteries. Bull. Saratov State Tech. Univ. 2006, 3, 104–112. (In Russian) [Google Scholar]
- Lyon, R.N.; Katz, D.L. V Liquid-Metals Handbook; NAVEXOS P; U.S. Government Printing Office: Washington, DC, USA, 1954.
- FactStage CaCl2-KCl-NaCl Liquidus Projection. Available online: http://www.crct.polymtl.ca/fact/documentation/ftsalt/CaCl2-KCl-NaCl_liquidus_projection.jpg (accessed on 27 May 2020).
Thermal Treatment | Specimen Part | Fraction Size, mm | Designation | Description |
---|---|---|---|---|
3 h | Upper (loose) part of specimen | <0.071 | CD3-1 | Black-brownish powder, sample weight 4.9–5.5 g |
0.071–0.1 | CD3-2 | Black-brownish powder, sample weight 0.8–1.0 g | ||
>0.1 | CD3-3 | Not detected | ||
Lower (dense) part of specimen | <0.071 | CD3-4 | Not detected | |
0.071–0.1 | CD3-5 | Light-grey powder, sample weight 0.6–0.8 g | ||
>0.1 | CD3-6 | Metal-like spherical particles and light-grey powder, sample weight 0.5–0.6 g | ||
6 h | Upper (loose) part of specimen | <0.071 | CD6-1 | Black-brownish powder, sample weight 5.0–5.3 g |
0.071–0.1 | CD6-2 | Black-brownish powder, sample weight 0.5–0.8 g | ||
>0.1 | CD6-3 | Not detected | ||
Lower (dense) part of specimen | <0.071 | CD6-4 | Beige powder, sample weight 0.8–1.0 g | |
0.071–0.1 | CD6-5 | Beige powder and metal-like particles, sample weight 0.3–0.5 g | ||
>0.1 | CD6-6 | Metal-like spherical particles, sample weight 0.2–0.5 g |
Element | O | Al | Si | Cl | K | Ca | Cd |
---|---|---|---|---|---|---|---|
Element Content in wt.% | |||||||
Spectrum 1 | 19.47 | 1.61 | - | 14.35 | 1.77 | 3.23 | 59.57 |
Spectrum 2 | 8.10 | - | 0.49 | 1.58 | - | 1.12 | 88.70 |
Spectrum 3 | 21.33 | 0.41 | 0.61 | 6.48 | - | 2.58 | 68.58 |
Spectrum 4 | 5.77 | - | 0.44 | 0.53 | - | 0.66 | 92.61 |
Element | C | O | Cl | K | Ca | Cd |
---|---|---|---|---|---|---|
Element Content in wt.% | ||||||
Spectrum 1 | - | 17.40 | 12.50 | - | 2.60 | 67.50 |
Spectrum 2 | - | 20.38 | 13.53 | - | 2.22 | 63.87 |
Spectrum 3 | - | 39.82 | 5.22 | 0.83 | 29.80 | 24.33 |
Spectrum 4 | 16.12 | 46.13 | 0.93 | 0.38 | 26.88 | 9.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blumbergs, E.; Serga, V.; Platacis, E.; Maiorov, M.; Brekis, A.; Shishkin, A. A Sustainable Approach for Cadmium Recovery from Oxide Using Molten Salt Slag. Metals 2020, 10, 981. https://doi.org/10.3390/met10070981
Blumbergs E, Serga V, Platacis E, Maiorov M, Brekis A, Shishkin A. A Sustainable Approach for Cadmium Recovery from Oxide Using Molten Salt Slag. Metals. 2020; 10(7):981. https://doi.org/10.3390/met10070981
Chicago/Turabian StyleBlumbergs, Ervins, Vera Serga, Ernests Platacis, Michail Maiorov, Arturs Brekis, and Andrei Shishkin. 2020. "A Sustainable Approach for Cadmium Recovery from Oxide Using Molten Salt Slag" Metals 10, no. 7: 981. https://doi.org/10.3390/met10070981
APA StyleBlumbergs, E., Serga, V., Platacis, E., Maiorov, M., Brekis, A., & Shishkin, A. (2020). A Sustainable Approach for Cadmium Recovery from Oxide Using Molten Salt Slag. Metals, 10(7), 981. https://doi.org/10.3390/met10070981