Microstructural Evolution and Growth of Intermetallic Compounds at the Interface between Solid Cast Iron and Liquid Al–Si Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cast Iron/Pure Aluminum Interface
3.2. Cast Iron/Al–Si Alloy Interface
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dangi, B.; Brown, T.W.; Kulkarni, K.N. Effect of silicon, manganese and nickel present in iron on the intermetallic growth at iron-aluminum alloy interface. J. Alloys Compd. 2018, 769, 777–787. [Google Scholar] [CrossRef]
- Jiang, W.; Li, G.; Jiang, Z.; Wu, Y.; Fan, Z. Effect of heat treatment on microstructures and mechanical properties of Al/Fe bimetal. Mater. Sci. Technol. 2018, 34, 1519–1528. [Google Scholar] [CrossRef]
- Moosavi-Khoonsari, E.; Jalilian, F.; Paray, F.; Emadi, D.; Drew, R.A.L. Cast joining of cast iron to aluminium casting matrix. Mater. Sci. Technol. 2011, 27, 1707–1717. [Google Scholar] [CrossRef]
- Yeremenko, V.N.; Natanzon, Y.V.; Dybkov, V.I. The effect of dissolution on the growth of the Fe2Al5 interlayer on the solid iron-liquid aluminium system. J. Mater. Sci. 1981, 16, 1748–1756. [Google Scholar] [CrossRef]
- Yan, M.; Fan, Z. Review: Durability of materials in molten aluminium alloys. J. Mater. Sci. 2001, 36, 1748–1756. [Google Scholar] [CrossRef]
- Denner, S.G.; Jones, R.D. Kinetic interactions between aluminium and iron/steel for conditions applicable to hot-dip aluminizing. Met. Technol. 1977, 4, 167–174. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, Q.; Lu, W.; Ge, X.; Cao, S.; Sun, S.; Yang, T.; Xia, M.; Li, J. Microstructural evolution and growth behavior of intermetallic compounds at the liquid Al/Solid Fe interface by synchrotron X-ray radiography. Mater. Charact. 2018, 136, 157–164. [Google Scholar] [CrossRef]
- Jiang, W.; Fan, Z.; Li, G.; Liu, X.; Liu, F. Effects of hot-dip galvanizing and aluminizing on interfacial microstructures and mechanical properties of aluminum/iron bimetallic composites. J. Alloys Compd. 2016, 688, 742–751. [Google Scholar] [CrossRef]
- Takata, N.; Nishimoto, M.; Kobayashi, S.; Takeyama, M. Morphology and formation of Fe-Al intermetallic layers on iron hot-dipped in Al-Mg-Si alloy melt. Intermetallics 2014, 54, 136–142. [Google Scholar] [CrossRef]
- Shin, J.; Kim, T.; Lim, K.; Cho, H.; Yang, D.; Jeong, C.; Yi, S. Effects of steel type and sandblasting pretreatment on the solid-liquid compound casting characteristics of Zn-coated steel/aluminum bimetals. J. Alloys Compd. 2019, 778, 170–185. [Google Scholar] [CrossRef]
- Cheng, W.J.; Wang, C.J. Observation of high-temperature phase transformation in the Si-modified aluminide coating on mild steel using EBSD. Mater. Charact. 2010, 61, 467–473. [Google Scholar] [CrossRef]
- Takata, N.; Nishimoto, M.; Kobayashi, S.; Takeyama, M. Crystallography of Fe2Al5 phase at the interface between solid Fe and liquid Al. Intermetallics 2015, 67, 1–11. [Google Scholar] [CrossRef]
- Bouayad, A.; Gerometta, C.; Belkebir, A.; Ambari, A. Kinetic interactions between solid iron and molten aluminium. Mater. Sci. Eng. A 2003, A363, 53–61. [Google Scholar] [CrossRef]
- Deqing, W.; Ziyuan, S.; Longjiang, Z. A liquid aluminum corrosion resistance surface on steel substrate. Appl. Surf. Sci. 2003, 214, 304–311. [Google Scholar] [CrossRef]
- Cheng, W.J.; Wang, C.J. Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel. Intermetallics 2011, 19, 1455–1460. [Google Scholar] [CrossRef]
- Soderhjelm, C. Multi-Material Metal Casting: Metallurgical Bonding Aluminum to Ferrous Inserts. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 25 April 2017. [Google Scholar]
- Springer, H.; Kostka, A.; Payton, E.J.; Raabe, D.; Kaysser-Pyzalla, A.; Eggeler, G. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater. 2011, 59, 1586–1600. [Google Scholar] [CrossRef]
- Fedian, D.; Josse, C.; Nquyen, P.; Gey, N.; Ratel-Ramond, N.; Parseval, P.; Thebault, Y.; Malard, B.; Lacaze, J.; Salvo, L. Chinese script vs plate-like precipitation of beta-Al9Fe2Si2 phase in an Al-6.5Si-1Fe alloy. Metal. Mater. Trans. A 2015, 46, 2814–2818. [Google Scholar] [CrossRef]
- Sacinti, M.; Cubuklusu, E.; Birol, Y. Effect of iron on microstructure and mechanical properties of primary AlSi7Mg0.3 alloy. Int. J. Cast Met. Res. 2016, 59, 1586–1600. [Google Scholar] [CrossRef]
- Sakow, S.; Tokunaga, T.; Ohno, M.; Matsuura, K. Microstructure refinement and mechanical properties improvement of Al-Si-Fe alloys by hot extrusion using a specially designed high-strain die. J. Mater. Process. Tech. 2020, 277, 1116447. [Google Scholar] [CrossRef]










| Alloy | C | Si | Mg | Mn | Fe | Al |
|---|---|---|---|---|---|---|
| Cast Iron | 2.65 | 0.31 | - | 0.15 | Balanced | - |
| A356 | - | 6.96 | 0.31 | - | - | Balanced |
| Time | 0 min | 1 min | 5 min | 10 min | ||||
|---|---|---|---|---|---|---|---|---|
| Location | C | A | C | A | C | A | C | A |
| Fe | 23.0 (38.2) | 0.2 (0.4) | 23.5 (38.9) | 0.7 (1.4) | 26.5 (42.8) | 0.2 (0.4) | 26.4 (42.6) | 0.2 (0.3) |
| Al | 77.0 (61.8) | 99.8 (99.6) | 76.5 (61.1) | 99.3 (98.6) | 73.5 (57.2) | 99.8 (99.6) | 73.6 (57.4) | 99.8 (99.7) |
| Time | 0 min | 1 min | 5 min | 10 min | ||||
|---|---|---|---|---|---|---|---|---|
| Location | C | A | C | A | C | A | C | A |
| Fe | 15.6 (27.4) | - | 16.1 (28.3) | - | 17.5 (30.3) | - | 15.2 (26.8) | - |
| Al | 67.1 (57.2) | 97.8 (97.7) | 67.7 (57.3) | 92.3 (92.1) | 68.6 (57.4) | 98.1 (98.1) | 66.8 (57.1) | 98.6 (98.6) |
| Si | 17.1 (15.1) | 1.8 (1.9) | 16.0 (14.1) | 7.2 (7.5) | 13.7 (12.0) | 1.5 (1.6) | 17.8 (15.8) | 0.9 (1.0) |
| Mn | 0.2 (0.3) | - | 0.2 (0.3) | - | 0.2 (0.3) | - | 0.2 (0.3) | - |
| Mg | - | 0.4 (0.4) | - | 0.5 (0.4) | - | 0.4 (0.3) | - | 0.5 (0.4) |
| Phase | Al4.5FeSi | Al8Fe2Si | Al13Fe4 | Al5Fe2 | Al | Ferrite |
|---|---|---|---|---|---|---|
| Fraction | 0.19 | 0.19 | 0.14 | 0.21 | 0.13 | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-M.; Shin, K.; Shin, J.-S. Microstructural Evolution and Growth of Intermetallic Compounds at the Interface between Solid Cast Iron and Liquid Al–Si Alloy. Metals 2020, 10, 759. https://doi.org/10.3390/met10060759
Kim J-M, Shin K, Shin J-S. Microstructural Evolution and Growth of Intermetallic Compounds at the Interface between Solid Cast Iron and Liquid Al–Si Alloy. Metals. 2020; 10(6):759. https://doi.org/10.3390/met10060759
Chicago/Turabian StyleKim, Jeong-Min, Keesam Shin, and Je-Sik Shin. 2020. "Microstructural Evolution and Growth of Intermetallic Compounds at the Interface between Solid Cast Iron and Liquid Al–Si Alloy" Metals 10, no. 6: 759. https://doi.org/10.3390/met10060759
APA StyleKim, J.-M., Shin, K., & Shin, J.-S. (2020). Microstructural Evolution and Growth of Intermetallic Compounds at the Interface between Solid Cast Iron and Liquid Al–Si Alloy. Metals, 10(6), 759. https://doi.org/10.3390/met10060759
