Next Article in Journal
Effect of Post Processing Heat Treatment Routes on Microstructure and Mechanical Property Evolution of Haynes 282 Ni-Based Superalloy Fabricated with Selective Laser Melting (SLM)
Previous Article in Journal
Leaching of Oxide Copper Ores by Addition of Weak Acid from Copper Smelters
Open AccessArticle

Precise Control of Copper-Localized Surface Plasmon Resonance in the Near Infrared Region for Enhancement of Up-Conversion Luminescence

1
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, Qingdao 266071, China
2
Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
*
Authors to whom correspondence should be addressed.
Metals 2020, 10(5), 628; https://doi.org/10.3390/met10050628
Received: 19 April 2020 / Revised: 6 May 2020 / Accepted: 7 May 2020 / Published: 12 May 2020
The surface plasmon resonance of copper in the near infrared region provides a novel method for enhancement of up-conversion luminescence compared to using gold and silver, as the former grants significant cost savings. In this study, we made a flat Cu film covered TiO2 to enhance the up-conversion fluorescence intensity. The results show that the deposition of copper/TiO2 dioxide nanocomposite film prepared via spin-coating has no effect on the structure of NaGdF4:Er3+, Yb3+. The absorption wavelength of the copper film moved from the original visible wavelength (~600 nm) range to the infrared wavelength after covering TiO2, and most obviously, the copper film covered two layers of TiO2 by about 16 nm; the peak of the absorption appeared at 835 nm due to the enhanced excitation field. The behavior of the nanocomposite film with NaGdF4:Er3+ and Yb3+ under 980 nm excitation was investigated; it provides a novel way for studying mental-enhanced fluorescence. Besides, the peaks of the fluorescence spectrum show different emissions at 542 nm and 660 nm, respectively. The copper nanoparticles-covered TiO2 layer can obviously enhance the fluorescence intensity, and the maximum enhancement factors of emission of NaGdF4:Er3+ and Yb3+ nanoparticles are 3.1 and 1.9 on the nanocomposite film, respectively. View Full-Text
Keywords: surface plasmon resonance; mental enhancement fluorescence; enhanced up-conversion emission; copper nanoparticles surface plasmon resonance; mental enhancement fluorescence; enhanced up-conversion emission; copper nanoparticles
Show Figures

Figure 1

MDPI and ACS Style

Pan, Y.; Chu, L.; Liu, J.; Lv, B.; Belfiore, L.A.; Tang, J. Precise Control of Copper-Localized Surface Plasmon Resonance in the Near Infrared Region for Enhancement of Up-Conversion Luminescence. Metals 2020, 10, 628.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop