Effects of Iron Oxidation State and Chromium Distribution on the Corrosion Resistance of High Interstitial Stainless Steel for Down-Hole Application
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, L.; Jiang, Z.; Chen, Y.; Xiao, F. Study and application of corrosion mechanisms and corrosion prevention design for the sour gas wells under adverse corrosion environments. J. Chem. Pharm. 2014, 6, 288–293. [Google Scholar]
- Duprez, L.; De Cooman, B.; Akdut, N. Microstructure evolution during isothermal annealing of a standard duplex stainless steel type 1.4462. Steel Res. Int. 2000, 71, 417–422. [Google Scholar] [CrossRef]
- Chen, T.H.; Weng, J.R.; Yang, J.R. The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater. Sci. Eng. A 2002, 338, 259–270. [Google Scholar] [CrossRef]
- Scharfstein, L.R. Handbook of Stainless Steels; McGraw Hill: New York, NY, USA, 1977. [Google Scholar]
- Berns, H.; Gavriljuk, V.G.; Riedner, S. High Interstitial Stainless Austenitic Steels, 1st ed.; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Fourie, J.W.; Bentley, A.P. High Manganese High Nitrogen Austenitic Stainless Steels; ASM International: Novelty, OH, USA, 1992. [Google Scholar]
- Rawers, J.C. High carbon nitrogen iron alloys. J. Mater. Sci. 1999, 34, 941–944. [Google Scholar] [CrossRef]
- Rawers, J.C. Alloying effects on the microstructure and phase stability of Fe-Cr-Mn steels. J. Mater. Sci. 2008, 43, 3618–3624. [Google Scholar] [CrossRef]
- Raj, B. High Nitrogen Steels and Stainless Steels, 1st ed.; Woodhead Publishing: Sarston, UK, 2004. [Google Scholar]
- Satir, A.H.; Feichtinger, H.K. On the solubility of Nitrogen in liquid iron and steel alloys using elevated pressure. Int. J. Mater. Res. 1991, 82, 689–697. [Google Scholar]
- Ha, H.-Y.; Lee, T.-H.; Oh, C.-S.; Kim, S.-J. Effects of combined addition of carbon and nitrogen on pitting corrosion behavior of Fe-18Cr-10Mn alloys. Scr. Mater. 2009, 61, 121–124. [Google Scholar] [CrossRef]
- Schmalt, F.; Berns, H.; Gavriljuk, V.G. Mechanical properties of a stainless austenitic CrMnCN steel. In Proceedings of the 7 International Conference on High Nitrogen Steels, Ostend, Belgium, 19–22 September 2004; pp. 437–446. [Google Scholar]
- Lee, E.; Mishra, B.; Palmer, B.R. Effect of heat treatment on wear resistance of Fe-Cr-Mn-C-N high-interstitial stainless steel. Wear 2016, 368–369, 70–74. [Google Scholar] [CrossRef]
- Lee, E.; Ryu, J.; Jeon, S.; Mishra, B.; Palmer, B.R. Mechanical and Corrosion Properties of Fe-Cr-Mn-C-N Austenitic Stainless Steels for Drill Collars. Metall. Mater. Trans. A 2016, 47, 2550–2554. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, H.; Lee, Y.; Cho, S.; Mishra, B.; Lee, E. Development of High Interstitial Stainless Steel and Evaluation of Its NaCl Corrosion Resistance. Met. Mater. Int. 2019. [Google Scholar] [CrossRef]
- Dhua, S.K.; Mukerjee, D.; Sarma, D.S. Effect of cooling rate on the as-quenched microstructure and mechanical properties of HSLA-100 steel plates. Metall. Mater. Trans. A 2003, 34, 2493–2504. [Google Scholar] [CrossRef]
- Stavitski, E.; de Groot, F.M.F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 2010, 41, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olasolo, M.; Uranga, P.; Rodriguez-Ibabe, J.M.; López, B. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel. Mater. Sci. Eng. A 2011, 528, 2559–2569. [Google Scholar] [CrossRef]
- Javidi, M.; Haghshenas, S.M.S.; Shariat, M.H. CO2 corrosion behavior of sensitized 304 and 316 austenitic stainless steels in 3.5 wt.% NaCl solution and presence of H2S. Corros. Sci. 2020, 163, 108230. [Google Scholar] [CrossRef]
- Sun, Y.; Haruman, E. Effect of carbon addition on low-temperature plasma nitriding characteristics of austenitic stainless steel. Vacuum 2006, 81, 114–119. [Google Scholar] [CrossRef]
- Blawert, C.; Kalvelage, H.; Mordike, B.L.; Collins, G.A.; Short, K.T.; Jirásková, Y.; Schneeweiss, O. Nitrogen and carbon expanded austenite produced by PI3. Surf. Coat. Technol. 2001, 136, 181–187. [Google Scholar] [CrossRef]
- Ha, H.-Y.; Lee, T.-H.; Kim, S.-J. Effect of C Fraction on Corrosion Properties of High Interstitial Alloyed Stainless Steels. Metall. Mater. Trans. A 2012, 43, 2999–3005. [Google Scholar] [CrossRef]
- Byrnes, M.L.G.; Grujicic, M.; Owen, W.S. Nitrogen strengthening of a stable austenitic stainless steel. Acta Mater. 1987, 35, 1853–1862. [Google Scholar] [CrossRef]
- Groh, J.R. Effect of cooling rate from solution heat treatment on waspaloy microstructure and properties. Superalloys 1996, 1996, 621–626. [Google Scholar]
- Çalik, A. Effect of cooling rate on hardness and microstructure of AISI 1020, AISI 1040 and AISI 1060 Steels. Int. J. Phys. Sci. 2009, 4, 514–518. [Google Scholar]
- Lee, E. Strengthening Mechanisms and Mechanical Properties of High Interstitial Stainless Steel for Drill Collar and Its Corrosion Resistance. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2015. [Google Scholar]
- Levey, P.R.; Bennekom, A.V. A Mechanistic Study of the Effects of Nitrogen on the Corrosion Properties of Stainless Steels. Corrosion 1995, 51, 911–921. [Google Scholar] [CrossRef]
- Sun, W.; Nesic, S.; Papavinasam, S. Kinetics of Iron Sulfide and Mixed Iron Sulfide/Carbonate Scale Precipitation in CO2/H2S Corrosion. In CORROSION 2006; NACE International: Houston, TX, USA, 2016; Volume 06644, pp. 1–26. [Google Scholar]
- Koteeswaran, M. CO2 and H2S Corrosion in Oil Pipelines. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2010. [Google Scholar]
- Van Hunnik, E.; Posts, B.F.M.; Hendriksen, E.L.J.A. The Formation of Protective FeCO3 Corrosion Product Layers in CO2 Corrosion; NACE International: Houston, TX, USA, 1996; Volume 6. [Google Scholar]
Alloy | Element | |||||||
---|---|---|---|---|---|---|---|---|
C | N | Cr | Mn | Ni | Si | Mo | Fe | |
316L | <0.03 | <0.10 | 16.0–18.0 | <2.0 | 10.0–14.0 | 0.75 | 2.0–3.0 | Bal. |
CN66 | 0.28 | 0.38 | 23.9 | 8.33 | 0.79 | 0.75 | 0.56 | |
CN71 | 0.27 | 0.44 | 23.5 | 8.65 | 0.82 | 0.93 | 0.40 |
Alloy | Cooling Condition | Ecorr (mV) | Icorr (mA/cm2) | Epit (mV) | Ipit (mA/cm2) | Corosion Rate (mpy) | Sour Corrosion Rate (mg·cm−2·year−1)/Area (cm2) | Ferrite Fraction (%) |
CN66 | as-cast | −368.4 | 3.95 × 10−7 | −159 | 1.57 × 10−2 | 1.80 × 10−1 | 1.96/9.32 | 3.36 |
AQ | −307.4 | 1.20 × 10−7 | −106 | 3.08 × 10−3 | 5.47 × 10−2 | 0.22/4.13 | 5.76 | |
WQ | −213.2 | 8.00 × 10−9 | −75 | 7.98 × 10−5 | 3.65 × 10−3 | 1.1/3.33 | 8.86 | |
CN71 | as-cast | −294.7 | 5.82 × 10−8 | −114 | 7.41 × 10−2 | 2.65 × 10−2 | − | 1.31 |
AQ | −233.3 | 3.82 × 10−8 | −96 | 6.31 × 10−5 | 1.74 × 10−2 | <0.01/5.04 | 3.84 | |
WQ | −223.7 | 4.00 × 10−9 | −12 | 9.33 × 10−5 | 1.82 × 10−3 | 0.29/3.18 | 5.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Ahn, C.; Khalfaoui, W.; Mishra, B.; Jo, I.; Lee, E. Effects of Iron Oxidation State and Chromium Distribution on the Corrosion Resistance of High Interstitial Stainless Steel for Down-Hole Application. Metals 2020, 10, 1302. https://doi.org/10.3390/met10101302
Lee H, Ahn C, Khalfaoui W, Mishra B, Jo I, Lee E. Effects of Iron Oxidation State and Chromium Distribution on the Corrosion Resistance of High Interstitial Stainless Steel for Down-Hole Application. Metals. 2020; 10(10):1302. https://doi.org/10.3390/met10101302
Chicago/Turabian StyleLee, Hyunju, Cheolmin Ahn, Walid Khalfaoui, Brajendra Mishra, Ilguk Jo, and Eunkyung Lee. 2020. "Effects of Iron Oxidation State and Chromium Distribution on the Corrosion Resistance of High Interstitial Stainless Steel for Down-Hole Application" Metals 10, no. 10: 1302. https://doi.org/10.3390/met10101302
APA StyleLee, H., Ahn, C., Khalfaoui, W., Mishra, B., Jo, I., & Lee, E. (2020). Effects of Iron Oxidation State and Chromium Distribution on the Corrosion Resistance of High Interstitial Stainless Steel for Down-Hole Application. Metals, 10(10), 1302. https://doi.org/10.3390/met10101302