Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suryanarayana, C.; Inoue, A. Iron-based bulk metallic glasses. Int. Mater. Rev. 2013, 58, 131–166. [Google Scholar] [CrossRef]
- Jiles, C.D. Recent advances and future directions in magnetic materials. Acta Mater. 2003, 51, 5907–5939. [Google Scholar] [CrossRef]
- Li, Z.; Yao, K.; Li, D.; Ni, X.; Lu, Z. Core loss analysis of Finemet type nanocrystalline alloy ribbon with different thickness. Prog. Nat. Sci. Mater. Int. 2017, 27, 588–592. [Google Scholar] [CrossRef]
- Chen, H.S. Glassy metals. Rep. Prog. Phys. 1980, 43, 353–432. [Google Scholar] [CrossRef]
- Chen, M. A Brief Overview of Bulk Metallic Glasses. NPG Asia Mater. 2011, 3, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.H. Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater Sci. 2007, 52, 540–596. [Google Scholar] [CrossRef]
- Manivel Raja, M.; Chattopadhyay, K.; Majumdar, B.; Narayanasamy, A. Structure and soft magnetic properties of Finemet alloys. J. Alloys Compd. 2000, 297, 199–205. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Yamauchi, K.; Oguma, S. Fe-base soft magnetic alloy and method of producing same. European Patent Application 0 271 657, 22 June 1988. [Google Scholar]
- Herzer, G. Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Magn. 1989, 25, 3327–3329. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Yamauchi, K. Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. Mater. Trans. Jpn. Int. Metals 1990, 31, 307. [Google Scholar] [CrossRef] [Green Version]
- Herzer, G.; Warlimont, H. Nanocrystalline soft magnetic materials by partial crystallization of amorphous alloys. Nanostruct. Mater. 1992, 1, 263–268. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Oguma, S.; Yamauchi, K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 1988, 64, 6044. [Google Scholar] [CrossRef]
- Makino, A.; Hatani, T.; Naitoh, Y.; Bitoh, T.; Inoue, A.; Masumoto, T. Applications of Nanocrystalline Soft Magnetic Fe-M-B (M = Zr, Nb) Alloys “NANOPERM@”. IEEE Trans. Magn. 1997, 33, 5. [Google Scholar] [CrossRef]
- Makino, A.; Men, H.; Kubota, T.; Yubuta, K.; Inoue, A. FeSiBPCu Nanocrystalline Soft Magnetic Alloys with High Bs of 1.9 Tesla Produced by Crystallizing Hetero-Amorphous Phase. Mater. Trans. 2009, 50, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Hsu, Y.; McHenry, E.; Laughlin, D. Soft magnetic properties of nanocrystalline amorphous HITPERM films and multilayers. IEEE Trans. Magn. 2001, 37, 4. [Google Scholar] [CrossRef] [Green Version]
- FINEMET^TM. 2015. Available online: http://www.hitachi.co.kr/products/material/emc/nano/index.html (accessed on 16 October 2019).
- Ohta, M.; Yoshizawa, Y. Magnetic properties of nanocrystalline Fe82.65Cu1.35SixB16−x alloys (x = 0–7). Appl. Phys. Lett. 2007, 91, 062517. [Google Scholar] [CrossRef]
- Yoshizawa, Y. Magnetic Properties and Microstructure of Nanocrystalline Fe-Based Alloys. Mater. Sci. Forum. 1999, 307, 51. [Google Scholar] [CrossRef]
- Herzer, G. Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 1996, 158, 133–136. [Google Scholar] [CrossRef]
- Kulik, T. The influence of copper, niobium and tantalum additions on the crystallization of Fe-Si-B-based glasses. Mater. Sci. Eng. A 1992, 159, 95–101. [Google Scholar] [CrossRef]
- Vazquez, M.; Marin, P.; Davies, H.A.; Olofinjana, A.O. Magnetic hardening of FeSiBCuNb ribbons and wires during the first stage of crystallization to a nanophase structure. Appl. Phys. Lett. 1994, 64, 3185–3186. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, S.; Choi-Yim, H.; Kang, K.H.; Yoon, C.S. High saturation magnetic flux density of Novel nanocrystalline core annealed under magnetic field. J. Alloys Compd. 2020, 826, 154136. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, S.; Choi-Yim, H. Improvement of saturation magnetic flux density in Fe-Si-B-Nb-Cu nanocomposite alloys by magnetic field annealing. Curr. Appl. Phys 2020, 20, 37–42. [Google Scholar] [CrossRef]
- Chen, W.Z.; Ryder, P.L. X-ray and differential scanning calorimetry study of the crystallization of amorphous Fe73.5 Cu1Nb3 Si13. 5B9 alloy. Mater. Sci. Eng. 1995, B34, 204–209. [Google Scholar] [CrossRef]
Alloy | ρ (g/cm3) | Ms (emu/g) | Ms (T) |
---|---|---|---|
Fe84Si1B11Nb3Cu1 | 7.41 | 165.4 | 1.54 |
Fe83Si1B12Nb3Cu1 | 7.38 | 163.5 | 1.52 |
Fe82Si1B13Nb3Cu1 | 7.34 | 163.5 | 1.51 |
Fe81Si6B9Nb3Cu1 | 7.03 | 175.3 | 1.55 |
Fe79Si8B9Nb3Cu1 | 6.86 | 172.4 | 1.49 |
Fe77Si10B9Nb3Cu1 | 6.69 | 166.7 | 1.40 |
Composition (at.%) | Tx (°C) | Annealing Temperature (°C), 1 h | |||
---|---|---|---|---|---|
Fe96−x−ySixByNb3Cu1 | |||||
x = 1, y = 11 | 394 | 395 | 445 | 495 | 545 |
x = 1, y = 12 | 406 | 410 | 460 | 510 | 560 |
x = 1, y = 13 | 422 | 420 | 470 | 520 | 570 |
x = 6, y = 9 | 425 | 425 | 475 | 525 | 575 |
x = 8, y = 9 | 452 | 450 | 450 | 550 | 600 |
x = 10, y = 9 | 475 | 480 | 530 | 580 | 630 |
Alloy | Ta (°C) | Ms (emu/g) | Ms (T) | Hc (A/m) | ||
---|---|---|---|---|---|---|
1 (kHz) | 10 | 20 | ||||
Fe84Si1B11Nb3Cu1 | as-spun | 165.4 | 1.54 | |||
395 °C | 209.1 | 1.95 | 272.96 | 329.01 | 357.94 | |
445 °C | 203.0 | 1.89 | 301.88 | 368.93 | 404.38 | |
495 °C | 214.1 | 1.99 | 207.43 | 278.92 | 318.82 | |
545 °C | 221.3 | 2.06 | 114.52 | 157.18 | 184.83 |
Alloy | Ta (°C) | μr | Pcv (mW/cm3) | ||||
---|---|---|---|---|---|---|---|
1 (kHz) | 10 | 20 | 1 | 10 | 20 | ||
Fe84Si1B11Nb3Cu1 | 395 | 650.0 | 645.99 | 645.21 | 519.32 | 5920.7 | 12,820 |
445 | 885.5 | 850.67 | 851.63 | 702.14 | 8527.9 | 18,890 | |
495 | 1025.7 | 1024.40 | 1025.2 | 532.2 | 7166.7 | 16,530 | |
545 | 1347.2 | 1340.60 | 1344.9 | 406.18 | 5486.5 | 13,120 | |
Fe83Si1B12Nb3Cu1 | 410 | 768.2 | 752.59 | 748.36 | 1012.8 | 10,900 | 22,680 |
460 | 917.7 | 915.59 | 916.2 | 631.01 | 7970.1 | 17,890 | |
510 | 1014.8 | 1014.20 | 1017.4 | 761.18 | 9636.9 | 21,780 | |
560 | 1302.7 | 1299.40 | 1302.4 | 246.83 | 3717.5 | 9273.9 | |
Fe82Si1B13Nb3Cu1 | 420 | 914.1 | 907.56 | 905.83 | 733.91 | 8639.4 | 19,130 |
470 | 741.0 | 736.20 | 735.99 | 707.47 | 8142.7 | 17,600 | |
520 | 1030.2 | 1021.40 | 1017.6 | 542.97 | 7193.8 | 16,280 | |
570 | 590.8 | 534.73 | 532.74 | 379.15 | 3051.3 | 6138.9 | |
Fe81Si6B9Nb3Cu1 | 425 | 658.9 | 655.32 | 656.33 | 226.53 | 3027.5 | 7110.6 |
475 | 758.1 | 754.24 | 756.5 | 240.97 | 3523.6 | 8359 | |
525 | 812.6 | 810.18 | 812.94 | 281.05 | 3864.1 | 9154.5 | |
575 | 887.5 | 885.09 | 889.47 | 200.91 | 3475 | 8684.9 | |
Fe79Si8B9Nb3Cu1 | 450 | 780.0 | 775.56 | 777.49 | 72.164 | 1819.9 | 4913.1 |
500 | 882.3 | 880.42 | 883.41 | 125.85 | 3039.3 | 8035.8 | |
550 | 1068.2 | 1069.00 | 1074.8 | 94.186 | 2482.6 | 6899.5 | |
600 | 915.5 | 913.35 | 917.54 | 100.42 | 2176.3 | 5809.6 | |
Fe77Si10B9Nb3Cu1 | 480 | 792.6 | 791.90 | 792.9 | 76.789 | 1921.8 | 5130.5 |
530 | 901.2 | 902.98 | 907.13 | 76.215 | 1872.4 | 5099.9 | |
580 | 1061.4 | 1058.60 | 1062.4 | 141.42 | 3418.4 | 8784.9 | |
630 | 1091.1 | 1089.10 | 1094.7 | 321.02 | 4714.4 | 11,250 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Kwon, S.; Sohn, S.; Schroers, J.; Choi-Yim, H. Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio. Metals 2020, 10, 1297. https://doi.org/10.3390/met10101297
Han J, Kwon S, Sohn S, Schroers J, Choi-Yim H. Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio. Metals. 2020; 10(10):1297. https://doi.org/10.3390/met10101297
Chicago/Turabian StyleHan, Jonghee, Seoyeon Kwon, Sungwoo Sohn, Jan Schroers, and Haein Choi-Yim. 2020. "Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio" Metals 10, no. 10: 1297. https://doi.org/10.3390/met10101297
APA StyleHan, J., Kwon, S., Sohn, S., Schroers, J., & Choi-Yim, H. (2020). Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio. Metals, 10(10), 1297. https://doi.org/10.3390/met10101297