Investigations of the Influence of a Superimposed Oscillation on the Fatigue Strength
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Fatigue Life Cycles and Tensile Strength
3.2. Metallographics
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, L.-H.; Cai, H.-C.; Weng, S.; Zheng, S.-L. Effect of pre-strain on the fatigue behavior of SAPH440 steel. Mater. Express 2019, 9, 1001–1008. [Google Scholar] [CrossRef]
- Ha, D.W.; Jeong, C.Y. Effect of pre-straining on the high-cycle fatigue properties of hot-rolled steel sheets for automotive structural uses. Korean J. Met. Mater. 2018, 56, 177–186. [Google Scholar]
- Yan, B.; Belanger, P.; Citrin, K. Effect of forming strain on fatigue performance of a mild automotive steel. SAE Trans. 2001. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, G.; Hong, S.-G.; Lee, C.S. Energy-based approach to predict the fatigue life behavior of pre-strained Fe–18Mn TWIP steel. Mater. Sci. Eng. A 2011, 528, 4696–4702. [Google Scholar] [CrossRef]
- Le, Q.; Kang, H.-T.; Kridli, G.; Khosrovaneh, A.; Yan, B. Modified strain-life equation to consider the effect of different prestrain paths for dual phase sheet steel. J. Mater. Process. Technol. 2009, 209, 3525–3531. [Google Scholar] [CrossRef]
- Song, S.M.; Sugimoto, K.I.; Kandaka, S.; Futamura, A.; Kobayashi, M.; Masuda, S. Effects of pre-straining on high cycle fatigue strength of high strength low alloy TRIP steels. J. Soc. Mater. Sci. Jpn. 2001, 50, 1091–1097. [Google Scholar] [CrossRef][Green Version]
- Shang, D.; Liu, X.; Shan, Y.; Jiang, E. Research on the stamping residual stress of steel wheel disc and its effect on the fatigue life of wheel. Int. J. Fatigue 2016, 93, 173–183. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, P.; Meng, J. Fatigue properties of transformation-induced plasticity and dual-phase steels for auto-body lightweight: Experiment, modeling and application. Mater. Des. 2010, 31, 2884–2890. [Google Scholar] [CrossRef]
- Munier, R.; Doudard, C.; Calloch, S.; Weber, B. Towards a faster determination of high cycle fatigue properties taking into account the influence of a plastic pre-strain from selfheating measurements. Procedia Eng. 2010, 2, 1741–1750. [Google Scholar] [CrossRef]
- Izumi, O.; Oyama, K.; Suzuki, Y. Effects of Superimposed Ultrasonic Vibration on Compressive Deformation of Metals. Trans. Jpn. Inst. Met. 1966, 7, 162–167. [Google Scholar] [CrossRef]
- Liu, Y.; Suslov, S.; Han, Q.; Hua, L.; Xu, C. Comparison between Ultrasonic Vibration-Assisted Upsetting and Conventional Upsetting. Met. Mater. Trans. A 2013, 44, 3232–3244. [Google Scholar] [CrossRef]
- Koch, S.; Vučetić, M.; Hübner, S.; Bouguecha, A.; Behrens, B.-A. Superimposed Oscillating and Non-Oscillating Ring Compression Tests for Sheet-Bulk Metal Forming Technology. Appl. Mech. Mater. 2015, 794, 89–96. [Google Scholar] [CrossRef]
- Behrens, B.-A.; Hübner, S.; Müller, P.; Besserer, H.-B.; Gerstein, G.; Koch, S.; Rosenbusch, D. New Multistage Sheet-Bulk Metal Forming Process Using Oscillating Tools. Metals 2020, 10, 617. [Google Scholar] [CrossRef]
- Merklein, M.; Allwood, J.M.; Behrens, B.-A.; Brosius, A.; Hagenah, H.; Kuzman, K.; Mori, K.; Tekkaya, A.E.; Weckenmann, A. Bulk forming of sheet metal. CIRP Ann. Manuf. Technol. 2012, 61, 725–745. [Google Scholar] [CrossRef]
- Schott, G.; Donat, B.; Schaper, M. The consecutive wöhler curve approach to damage accumulation. Fatigue Fract. Eng. Mater. Struct. 1996, 19, 373–385. [Google Scholar] [CrossRef]
- Salzgitter Flachstahl. Produkt Information, Cold Rolled Steel DC04; Salzgitter Flachstahl: Salzgitter, Germany, 2014. [Google Scholar]
- Salzgitter Flachstahl. Produkt Information, Cold Rolled Steel DP600; Salzgitter Flachstahl: Salzgitter, Germany, 2014. [Google Scholar]
- Hance, B.M.; Foley, R.P.; Matlock, D.K. Effect of Strain Path on Formability and Microstructural Evolution in Low-Carbon Sheet Steels. SAE Trans. 1997, 106, 193–204. [Google Scholar]
- Behrens, B.-A.; Meijer, A.; Stangier, D.; Hübner, S.; Biermann, D.; Tillmann, W.; Rosenbusch, D.; Müller, P. Static and oscillation superimposed ring compression tests with structured and coated tools for Sheet-Bulk Metal Forming. J. Manuf. Process. 2020, 55, 78–86. [Google Scholar] [CrossRef]
- Antoine, P.; Vandeputte, S.; Vogt, J.-B. Effect of Microstructure on Strain-hardening Behaviour of a Ti-IF Steel Grade. ISIJ Int. 2005, 45, 399–404. [Google Scholar] [CrossRef]
- Kalashami, A.G.; Kermanpur, A.; Ghassemali, E.; Najafizadeh, A.; Mazaheri, Y. Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels. Mater. Sci. Eng. A 2016, 678, 215–226. [Google Scholar] [CrossRef]
Material | C | Si | Mn | P | S | Al | Cr + Mo + Ni |
---|---|---|---|---|---|---|---|
DC04 | 0.08% | – | 0.4% | 0.03% | 0.03% | – | – |
DP600 | 0.14% | 1.5% | 2.0% | 0.07% | 0.015% | 0.015% | 1.0% |
Material | Pre-Treatment | Sample Class |
---|---|---|
DC04 | oscillation-free pre-stretched (15%) | A |
superimposed oscillation pre-stretched (15%) | B | |
delivery state | C | |
DP600 | oscillation-free pre-stretched (15%) | D |
superimposed oscillation pre-stretched (15%) | E | |
delivery state | F |
Sample | Formula | Number |
---|---|---|
DC04 delivery state | σA = −4.82ln(Nf) + 175.11 | (1) |
DC04 15% oscillation-free pre-stretched | σA = −5.125ln(Nf) + 206.64 | (2) |
DC04 15% superimposed oscillation pre-stretched | σA = −5.095ln(Nf) + 204.5 | (3) |
DP600 delivery state | σA = −3.994ln(Nf) + 170.29 | (4) |
DP600 15% oscillation-free pre-stretched | σA = −35.69ln(Nf) + 628.85 | (5) |
DP600 15% superimposed oscillation pre-stretched | σA = −15.4ln(Nf) + 352.81 | (6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behrens, B.-A.; Hübner, S.; Rosenbusch, D.; Müller, P. Investigations of the Influence of a Superimposed Oscillation on the Fatigue Strength. Metals 2020, 10, 1274. https://doi.org/10.3390/met10101274
Behrens B-A, Hübner S, Rosenbusch D, Müller P. Investigations of the Influence of a Superimposed Oscillation on the Fatigue Strength. Metals. 2020; 10(10):1274. https://doi.org/10.3390/met10101274
Chicago/Turabian StyleBehrens, Bernd-Arno, Sven Hübner, Daniel Rosenbusch, and Philipp Müller. 2020. "Investigations of the Influence of a Superimposed Oscillation on the Fatigue Strength" Metals 10, no. 10: 1274. https://doi.org/10.3390/met10101274
APA StyleBehrens, B.-A., Hübner, S., Rosenbusch, D., & Müller, P. (2020). Investigations of the Influence of a Superimposed Oscillation on the Fatigue Strength. Metals, 10(10), 1274. https://doi.org/10.3390/met10101274