Designing for Life: A Socioeconomic View of Digital Learning Preferences in Cybersecurity, with Emphasis on Older Adults
Abstract
1. Introduction and Scope of Study
2. Literature Review and Theoretical Framework
3. Sample and Methods
3.1. Analytic Plan
3.1.1. Dependent Variables
3.1.2. Independent Variables
4. Results
5. Discussion
5.1. Age-Related Patterns and Theoretical Alignment
5.2. Unexpected Null Effects and Refinements to Experience-Based Learning
5.3. Socioeconomic Predictors and Structural Enablers
5.4. Implications
5.5. Future Work
5.6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, N.; Sturman, D.; Auton, J.C. Exploring the evidence for email phishing training: A scoping review. Comput. Sec. 2024, 139, 103695. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Abd Rauf, M.F.; Mohd Zaid, N.N.; Zainal, A.; Tengku Shahdan, T.S.; Abdul Razak, F.H. Effectiveness of instructional strategies designed for older adults in learning digital technologies: A systematic literature review. SN Comput. Sci. 2022, 3, 130. [Google Scholar] [CrossRef]
- Internet Crime Complaint Center (IC3). Elder Fraud. Internet Crime Complaint Center. 2024. Available online: https://www.ic3.gov/Outreach/Brochures/elder_fraud_tri-fold.pdf (accessed on 20 August 2025).
- Federal Trade Commission (FTC). Protecting Older Consumers 2023–2024. A Report of the Federal Trade Commission; Federal Trade Commission: Washington, DC, USA, 2024. Available online: https://www.ftc.gov/system/files/ftc_gov/pdf/federal-trade-commission-protecting-older-adults-report_102024.pdf (accessed on 20 August 2025).
- Neil, L.; Healy, C.; Haney, J. “A five-year-old could understand it” versus “This is way too confusing”: Exploring Nonexpert Understandings and Perceptions of Cybersecurity Definitions. CHI Conf. Hum. Factors Comput. Syst. 2025, 5, 1–9. [Google Scholar] [CrossRef]
- Pangrazio, L.; Godhe, A.-L.; González López Ledesma, A. What is digital literacy? A comparative review of publications across three language contexts. E-Learn. Digit. Media 2020, 17, 442–459. [Google Scholar] [CrossRef]
- Kebede, A.S.; Ozolins, L.L.; Holst, H.; Galvin, K. Digital engagement of older adults: Scoping review. J. Med. Internet Res. 2022, 24, e40192. [Google Scholar] [CrossRef]
- van Deursen, A.J.; Helsper, E.J. A nuanced understanding of internet use and non-use among the elderly. Eur. J. Commun. 2015, 30, 171–187. [Google Scholar] [CrossRef]
- Carstensen, L.L.; Isaacowitz, D.M.; Charles, S.T. Taking time seriously. A theory of socioemotional selectivity. Am. Psychol. 1999, 54, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Hess, T.M. Selective engagement of cognitive resources: Motivational influences on older adults’ cognitive functioning. Perspect. Psychol. Sci. 2014, 9, 388–407. [Google Scholar] [CrossRef]
- Tournier, I.; Jordan, O.; Ferring, D. Motivation and memory. GeroPsych 2016, 29, 147–154. [Google Scholar] [CrossRef]
- Gegenfurtner, A.; Vauras, M. Age-Related Differences in the Relation between Motivation to Learn and Transfer of Training in Adult Continuing Education. Contemp. Educ. Psychol. 2012, 37, 33–46. [Google Scholar] [CrossRef]
- Vandenbossche, J.; Coomans, D.; Homblé, K.; Deroost, N. The effect of cognitive aging on implicit sequence learning and dual tasking. Front. Psychol. 2014, 5, 154. [Google Scholar] [CrossRef]
- Hadj-Bouziane, F.; Benatru, I.; Brovelli, A.; Klinger, H.; Thobois, S.; Broussolle, E.; Boussaoud, D.; Meunier, M. Advanced Parkinson’s Disease Effect on Goal-Directed and Habitual Processes Involved in Visuomotor Associative Learning. Front. Hum. Neurosci. 2013, 6, 351. [Google Scholar] [CrossRef]
- Caine, K.E.; Nichols, T.A.; Fisk, A.D.; Rogers, W.A.; Meyer, B. Age-related differences in learning incidental, environmental information. Exp. Aging Res. 2011, 37, 17–45. [Google Scholar] [CrossRef]
- Mitzner, T.L.; Fausset, C.B.; Boron, J.B.; Adams, A.E.; Dijkstra, K.; Lee, C.C.; Rogers, W.A.; Fisk, A.D. Older Adults’ Training Preferences for Learning to Use Technology. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2008, 52, 2047–2051. [Google Scholar] [CrossRef]
- Carstensen, L.L. The Influence of a Sense of Time on Human Development. Science 2006, 312, 1913–1915. [Google Scholar] [CrossRef]
- Knowles, M.S. Andragogy in Action: Applying Modern Principles of Adult Education; Jossey-Bass: San Francisco, CA, USA, 1984. [Google Scholar]
- Qin, W. Technology Learning and the Adoption of Telehealth Among Community-Dwelling Older Adults During the COVID-19 Outbreak. J. Appl. Gerontol. 2022, 41, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; López, E.B.; Soligo, M.; Keene, J.R. Older lifelong learners’ motivations for participating in formal volunteer activities in urban communities. Adult Educ. Q. 2017, 67, 118–135. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, M.; Wang, S. Changes in Cognitive Function Among Older Adults: A Latent Profile Transition Analysis. Arch. Gerontol. Geriatr. 2019, 80, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, L.L.; Hershfield, H.E. Beyond stereotypes: Using socioemotional selectivity theory to improve messaging to older adults. Curr. Dir. Psychol. Sci. 2021, 30, 327–334. [Google Scholar] [CrossRef]
- Ortega-Dela Cruz, R. Pedagogical practice preferences among generational groups of learners: Towards effective twenty-first Towards effective twenty-first century higher education. J. Univ. Teach. Learn. Pract. 2020, 17, 5. [Google Scholar] [CrossRef]
- Van Dijk, J.A.G.M. Digital divide research, achievements and shortcomings. Poetics 2006, 34, 221–235. [Google Scholar] [CrossRef]
- Choi, N.G.; DiNitto, D.M. Internet use among older adults: Association with health needs, psychological capital, and social capital. J. Med. Internet Res. 2013, 15, e97. [Google Scholar] [CrossRef]
- Miller, L.M.S.; Callegari, R.A.; Abah, T.; Fann, H. Digital literacy training for low-income older adults through undergraduate community-engaged learning: Single-group pretest-posttest study. JMIR Aging 2024, 7, e51675. [Google Scholar] [CrossRef]
- Ellison-Barnes, A.; Moran, A.; Linton, S.; Chaubal, M.; Missler, M.; Evan Pollack, C. Limited technology access among residents of affordable senior housing during the COVID-19 pandemic. J. Appl. Gerontol. 2021, 40, 958–962. [Google Scholar] [CrossRef]
- Umoh, M.E.; Prichett, L.; Boyd, C.M.; Cudjoe, T.K.M. Impact of technology on social isolation: Longitudinal analysis from the national health aging trends study. J. Am. Geriatr. Soc. 2023, 71, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.G.; DiNitto, D.M.; Marti, C.N.; Choi, B.Y. Telehealth use among older adults during COVID-19: Associations with sociodemographic and health characteristics, technology device ownership, and technology learning. J. Appl. Gerontol. 2022, 41, 600–609. [Google Scholar] [CrossRef]
- Blinka, M.D.; Grieb, S.M.; Lee, T.T.; Hogg, S.; Runge, K.L.; Nogueira, A.; Williams, N.; Prichett, L.; Latkin, C.A.; Gallo, J.J.; et al. ‘I make myself get busy’: Resilience and social connection among low-income older adults living in subsidized housing. J. Am. Geriatr. Soc. 2024, 72, 3188–3199. [Google Scholar] [CrossRef]
- Kraiwanit, T.; Jangjarat, K.; Srijam, A. Factors determining online activities and technology use among older adults in Thailand. Pertanika J. Soc. Sci. Humanit. 2023, 31, 803–816. [Google Scholar] [CrossRef]
- Chung, J.; Winship, J.; Parsons, P.; Falls, K.; Bleich, M. Stakeholder perspectives on implementation of smart speakers for aging in place in low-income senior housing: A qualitative study. J. Gerontol. Nurs. 2022, 48, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Gallo, H.B.; Marshall, L.W.; Levy-Storms, L.; Wilber, K.H.; Loukaitou-Sideris, A. Voices of experience: What do low-income older adults tell us about mobility, technology, and social participation? J. Appl. Gerontol. 2022, 41, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yeung, C.Y.; Chan, G.C.H.; Chang, Q.; Tsang, H.W.H.; Yip, P.S.F. Mobility based on GPS trajectory data and interviews: A pilot study to understand the differences between lower- and higher-income older adults in Hong Kong. Int. J. Environ. Res. Public Health 2022, 19, 5536. [Google Scholar] [CrossRef]
- Chiu, C.J. Relationship between internet behaviors and social engagement in middle-aged and older adults in Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 416. [Google Scholar] [CrossRef]
- Chen, W.C.; Yang, L.; Wang, X.Y. Internet use, cultural engagement, and multi-dimensional health of older adults: A cross-sectional study in China. Front. Public Health 2022, 10, 887840. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Mou, J. Does internet usage make middle-aged and older adults feel healthier? Mediating role of social engagement. Ind. Manag. Data Syst. 2024, 124, 1–28. [Google Scholar] [CrossRef]
- Crouch, E.; Gordon, N.P. Prevalence and factors influencing use of internet and electronic health resources by middle-aged and older adults in a us health plan population: Cross-sectional survey study. JMIR Aging 2019, 2, e11451. [Google Scholar] [CrossRef]
- Bansal, N.; Choudhary, H. Growing old in the digital era: A qualitative study of internet use and outcomes among urban Indian older adults. Work. Older People 2024, 28, 317–335. [Google Scholar] [CrossRef]
- Berner, J.S.; Rennemark, M.; Jogréus, C.; Berglund, J. Factors associated with change in internet usage of Swedish older adults (2004–2010). Health Inform. J. 2013, 19, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, T. Perceived social support, psychological capital, and subjective well-being among college students in the context of online learning during the COVID-19 pandemic. Asia-Pac. Edu. Res. 2022, 31, 563–574. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, P.; Ma, X.; Luo, Q. The influence of community physical exercise on the subjective well-being of older adults: The mediating role of social capital and the moderating role of intergenerational support. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Kim, J.; Moon, K.; Lee, J.; Jeong, Y.; Lee, S.; Ko, Y.G. Online learning performance and engagement during the COVID-19 pandemic: Application of the dual-continua model of mental health. Front. Psychol. 2022, 13, 932777. [Google Scholar] [CrossRef]
- Hsu, P.C.; Chang, I.H.; Chen, R.S. Online learning communities and mental health literacy for preschool teachers: The moderating role of enthusiasm for engagement. Int. J. Environ. Res. Public Health 2019, 16, 4448. [Google Scholar] [CrossRef]
- Toledano-González, A.; Labajos-Manzanares, T.; Romero-Ayuso, D. Well-being, self-efficacy, and independence in older adults: A randomized trial of occupational therapy. Arch. Gerontol. Geriatr. 2019, 83, 277–284. [Google Scholar] [CrossRef]
- Adams, K.B.; Leibbrandt, S.; Moon, H. A critical review of the literature on social and leisure activity and wellbeing in later life. Ageing Soc. 2011, 31, 683–712. [Google Scholar] [CrossRef]
- National Telecommunications and Information Administration (NTIA). Digital Equity Outcomes and Impacts; National Telecommunications and Information Administration: Washington, DC, USA, 2023. Available online: https://broadbandusa.ntia.gov/sites/default/files/2023-04/Digital_Equity_Outcomes.pdf (accessed on 20 August 2025).
- Jones, A.; Wetzel, R.; Workman, F. Bandwidth Requirements for eLearning; Netforecast Report NFR5141; NetForecast, Inc.: Charlottesville, VA, USA, 2021; Available online: https://www.netforecast.com/wp-content/uploads/NFR5141-eLearning-Bandwidth-Requirements.Final_.pdf (accessed on 20 August 2025).
- Goldberg, R. New NTIA Data Show 13 Million More Internet Users in the U.S. in 2023 Than 2021; National Telecommunications and Information Administration: Washington, DC, USA, 2024. Available online: https://www.ntia.gov/blog/2024/new-ntia-data-show-13-million-more-internet-users-us-2023-2021 (accessed on 20 August 2025).
- Reichelmann, A.V.; Costello, M. When patriot becomes hate-triot: The relationship between American identity and the production of cyberhate. Am. J. Crim. Justice 2021, 46, 956–979. [Google Scholar] [CrossRef]
- Dearden, T.E.; Parti, K. Cybercrime, differential association, and self-control: Knowledge transmission through online social learning. Am. J. Crim. Justice 2021, 46, 935–955. [Google Scholar] [CrossRef]
- Hawdon, J.; Parti, K.; Dearden, T.E. Cybercrime in America amid COVID-19: The initial results from a natural experiment. Am. J. Crim. Justice 2020, 45, 546–562. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.; Buil-Gil, D.; Moneva, A.; Miró-Llinares, F.; Díaz-Castaño, N. Empty streets, busy internet: A time-series analysis of cybercrime and fraud trends during COVID-19. J. Contemp. Crim. Justice 2021, 37, 480–501. [Google Scholar] [CrossRef]
- MacInnis, B.; Krosnick, J.A.; Ho, A.S.; Cho, M.-J. The accuracy of measurements with probability and nonprobability survey samples: Replication and extension. Public Opin. Q. 2018, 82, 707–744. [Google Scholar] [CrossRef]
- Simmons, A.D.; Bobo, L.D. Can non-full-probability internet surveys yield useful data? A comparison with full-probability face-to-face surveys in the domain of race and social inequality attitudes. Sociol. Methodol. 2015, 45, 357–387. [Google Scholar] [CrossRef]
- Parti, K.; Dearden, T.; Hawdon, J. Perspectives of paid panel survey research in cybercrime victimization and offending. In The Routledge International Handbook of Online Deviance, 1st ed.; Validity of Global Online Market Research Sampling and Data Collection; Graham, R.S., Humer, S.G., Lee, C.S., Nagy, V., Eds.; Routledge: Oxfordshire, UK, 2024; pp. 114–131. [Google Scholar] [CrossRef]
- Federal Communications Commission (FFC). Broadband Data Collection Shows Access to High-Speed Internet Services is Expanding; Federal Communications Commission: Washington, DC, USA, 2025. Available online: https://www.fcc.gov/news-events/blog/2025/05/20/broadband-data-collection-shows-access-high-speed-internet-services#:~:text=FCC%20Blog-,Broadband%20Data%20Collection%20Shows%20Access%20to,Speed%20Internet%20Services%20is%20Expanding!&text=Since%20June%202022%2C%20the%20FCC,35/3%20Mbps%20or%20greater (accessed on 2 December 2025).
- Shapira, N.; Barak, A.; Gal, I. Promoting older adults’ well-being through internet training and use. Aging Ment. Health 2007, 11, 477–484. [Google Scholar] [CrossRef] [PubMed]
| Sample | US Census | |
|---|---|---|
| Sex | ||
| Female (18+) | 656 (65.4%) | 134.3 M (50.9%) * |
| Male (18+) | 347 (34.6%) | 129.2 M (49.0%) * |
| Total (18+) | 1003 (100.0%) | 263.5 M (100.0%) * |
| Age group (Recoded) | ||
| 18–44 | 440 (43.9%) | 116.9 M (43.8%) ** |
| 45–64 | 302 (30.1%) | 88.6 M (33.2%) ** |
| 65 and above | 261 (26.0%) | 61.2 M (22.9%) ** |
| Total | 1003 (100.0%) | 266.7 M (100.0%) ** |
| Education | ||
| Less than high school | 35 (3.5%) | 24.3 M (9.4%) *** |
| High school diploma or equivalent | 332 (33.5%) | 74.6 M (28.9%) *** |
| Some college | 232 (23.4%) | 42.6 M (16.5%) *** |
| Bachelor’s degree | 163 (16.5%) | 57.3 M (22.2%) *** |
| Associate degree | 131 (13.2%) | 25.6 M (9.9%) *** |
| Master’s degree | 75 (7.6%) | 25.6 M (9.9%) *** |
| Doctoral or professional degree | 23 (2.3%) | 8.5 M (3.3%) *** |
| Total | 991 (100.0%) | 258.5 M (100.0%) *** |
| Income (Recoded) | ||
| Less than $25,000 | 235 (24.6%) | 128.2 M (13.5%) + |
| $25,000–$50,000 | 309 (32.4%) | 22.5 M (16.7%) + |
| $50,001–$75,000 | 192 (20.1%) | 20.4 M (15.1%) + |
| More than $75,001 | 219 (22.9%) | 73.9 M (54.8%) + |
| Total | 955 (100.0%) | 134.8 M (100.0%) + |
| Subjective well-being: Compared to others in the US, how well do you feel yourself? | ||
| A lot better off | 101 (10.2%) | n/a |
| A little better off | 226 (22.8%) | n/a |
| Just the same | 336 (33.9%) | n/a |
| A little worse off | 236 (23.8%) | n/a |
| A lot worse off | 92 (9.3%) | n/a |
| Total | 991 (100.0%) | n/a |
| High-speed internet | ||
| High-speed internet, reliable | 731 (73.8%) | n/a |
| High-speed internet but sometimes slow and unreliable | 198 (19.9%) | n/a |
| No high-speed internet but reliable | 45 (4.5%) | n/a |
| No high-speed internet and not reliable | 6 (0.6%) | n/a |
| No consistent access to internet | 11 (1.1%) | n/a |
| Total | 991 (100.0%) | n/a |
| Polychoric Correlation | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Q2 | 1.000 | ||||||||||
| Q3 | 0.460 | 1.000 | |||||||||
| Q4 | 0.414 | 0.282 | 1.000 | ||||||||
| Q5 | 0.416 | 0.274 | 0.465 | 1.000 | |||||||
| Q6 | 0.389 | 0.255 | 0.482 | 0.830 | 1.000 | ||||||
| Q7 | 0.408 | 0.263 | 0.539 | 0.782 | 0.774 | 1.000 | |||||
| Q8 | 0.439 | 0.297 | 0.308 | 0.538 | 0.526 | 0.606 | 1.000 | ||||
| Q9 | 0.496 | 0.308 | 0.508 | 0.579 | 0.552 | 0.587 | 0.534 | 1.000 | |||
| Q10 | 0.544 | 0.314 | 0.392 | 0.502 | 0.521 | 0.545 | 0.599 | 0.581 | 1.000 | ||
| Q11 | 0.515 | 0.360 | 0.288 | 0.387 | 0.408 | 0.432 | 0.624 | 0.507 | 0.699 | 1.000 | |
| Q12 | 0.361 | 0.159 | 0.315 | 0.299 | 0.311 | 0.320 | 0.301 | 0.449 | 0.472 | 0.390 | 1.000 |
| Ordinal Logistic Regressions | n | AIC | Nagelkerke’s R2 |
|---|---|---|---|
| 2. Importance of interactive features | 999 | 2799.062 | 0.117 |
| 3. Frequency of interactive elements | 1003 | 2908.745 | 0.037 |
| 4. Scam scenarios with human actors | 1003 | 2784.876 | 0.004 |
| 5. VR could enhance learning | 998 | 2926.979 | 0.033 |
| 6. AR could enhance learning | 957 | 2780.281 | 0.043 |
| 7. Realistic VR/AR scenarios | 947 | 2858.610 | 0.057 |
| 8. Level of interaction | 769 | 1564.133 | 0.160 |
| 9. In-person workshops | 995 | 3004.276 | 0.049 |
| 10. Gamified elements | 875 | 2576.310 | 0.171 |
| 11. Level of gamification | 746 | 1441.729 | 0.189 |
| 12. Online platform tailored to age groups | 981 | 2906.771 | 0.018 |
| Coefficients: | AIC | Nagelkerke’s R2 | ||||
|---|---|---|---|---|---|---|
| Estimate | Std. Error | z Value | Pr (>|z|) | |||
| Q2: Importance of interactive features | ||||||
| Age_group.L *** | −1.091738 | 0.112812 | −9.677 | <2e−16 | 2582.894 | 0.342 |
| Age_group.Q | −0.138214 | 0.110592 | −1.250 | 0.211387 | ||
| HS_Internet.L *** | 1.858883 | 0.485231 | 3.831 | 0.000128 | ||
| HS_Internet.Q | −0.379421 | 0.426828 | −0.889 | 0.374040 | ||
| HS_Internet.C | −0.626268 | 0.578655 | −1.082 | 0.279127 | ||
| HS_Internet ^4 | 0.453530 | 0.463741 | 0.978 | 0.328084 | ||
| Education.L * | 0.856151 | 0.358928 | 2.385 | 0.017065 | ||
| Education.Q | 0.076407 | 0.331833 | 0.230 | 0.817891 | ||
| Education.C * | 0.576377 | 0.268683 | 2.145 | 0.031937 | ||
| Education ^4 | 0.244606 | 0.214375 | 1.141 | 0.253862 | ||
| Education ^5 | −0.002485 | 0.162807 | −0.015 | 0.987823 | ||
| Education ^6 | −0.207534 | 0.155753 | −1.332 | 0.182711 | ||
| SWB.L ** | 0.537480 | 0.204399 | 2.630 | 0.008549 | ||
| SWB.Q *** | 0.671387 | 0.173876 | 3.861 | 0.000113 | ||
| SWB.C *** | 0.483463 | 0.145319 | 3.327 | 0.000878 | ||
| SWB ^4 | −0.024750 | 0.117001 | −0.212 | 0.832468 | ||
| income2.L | 0.273970 | 0.141483 | 1.936 | 0.052817 | ||
| Income.Q | −0.086563 | 0.125559 | −0.689 | 0.490557 | ||
| Income.C | 0.086114 | 0.121512 | 0.709 | 0.478519 | ||
| Q3: Frequency of interactive elements | ||||||
| Age_group.L *** | −0.65023 | 0.11177 | −5.817 | 5.98e−09 | 2696.149 | 0.273 |
| Age_group.Q | −0.16851 | 0.10892 | −1.547 | 0.12184 | ||
| HS_Internet.L | 0.85078 | 0.47469 | 1.792 | 0.07309 | ||
| HS_Internet.Q | −0.08479 | 0.42523 | −0.199 | 0.84196 | ||
| HS_Internet.C | −0.18438 | 0.52313 | −0.352 | 0.72449 | ||
| HS_Internet ^4 | −0.03567 | 0.42343 | −0.084 | 0.93286 | ||
| Education.L ** | 1.12835 | 0.34535 | 3.267 | 0.00109 | ||
| Education.Q | 0.12697 | 0.32151 | 0.395 | 0.69291 | ||
| Education.C * | 0.58052 | 0.25958 | 2.236 | 0.02532 | ||
| Education ^4 | 0.14954 | 0.20606 | 0.726 | 0.46800 | ||
| Education ^5 | 0.01800 | 0.15844 | 0.114 | 0.90956 | ||
| Education ^6 | 0.15507 | 0.15254 | 1.017 | 0.30936 | ||
| SWB.L | −0.11912 | 0.19094 | −0.624 | 0.53272 | ||
| SWB.Q | 0.14676 | 0.16277 | 0.902 | 0.36726 | ||
| SWB.C | 0.22251 | 0.14001 | 1.589 | 0.11199 | ||
| SWB ^4 | −0.15490 | 0.11770 | −1.316 | 0.18815 | ||
| Income.L | 0.12879 | 0.14230 | 0.905 | 0.36544 | ||
| Income.Q | −0.02290 | 0.12630 | −0.181 | 0.85614 | ||
| Income.C | −0.05976 | 0.11940 | −0.501 | 0.61670 | ||
| Q4: Videos of scam scenarios with human actors | ||||||
| Age_group.L | −0.072948 | 0.108839 | −0.670 | 0.502706 | 2559.210 | 0.260 |
| Age_group.Q | −0.134849 | 0.110166 | −1.224 | 0.220935 | ||
| HS_Internet.L *** | 1.676836 | 0.459227 | 3.651 | 0.000261 | ||
| HS_Internet.Q | 0.367321 | 0.410676 | 0.894 | 0.371092 | ||
| HS_Internet.C | −1.063442 | 0.565360 | −1.881 | 0.059972 | ||
| HS_Internet ^4 | 0.508349 | 0.453515 | 1.121 | 0.262327 | ||
| Education.L | 0.403409 | 0.356608 | 1.131 | 0.257954 | ||
| Education.Q | −0.056510 | 0.333582 | −0.169 | 0.865478 | ||
| Education.C | 0.221237 | 0.268367 | 0.824 | 0.409722 | ||
| Education ^4 | 0.199304 | 0.213534 | 0.933 | 0.350636 | ||
| Education ^5 | 0.061498 | 0.161717 | 0.380 | 0.703738 | ||
| Education ^6 | 0.052098 | 0.153458 | 0.339 | 0.734239 | ||
| SWB.L | 0.049386 | 0.204110 | 0.242 | 0.808814 | ||
| SWB.Q *** | 0.611153 | 0.173084 | 3.531 | 0.000414 | ||
| SWB.C | 0.182677 | 0.143178 | 1.276 | 0.201999 | ||
| SWB ^4 | −0.090096 | 0.117103 | −0.769 | 0.441669 | ||
| Income.L | 0.155653 | 0.141384 | 1.101 | 0.270930 | ||
| Income.Q | −0.006692 | 0.125848 | −0.053 | 0.957595 | ||
| Income.C | 0.114193 | 0.121697 | 0.938 | 0.348069 | ||
| Q5: VR could enhance learning | ||||||
| Age_group.L *** | −0.52509 | 0.11009 | −4.770 | 1.85e−06 | 2701.451 | 0.282 |
| Age_group.Q | −0.07957 | 0.10841 | −0.734 | 0.462965 | ||
| HS_Internet.L *** | 1.96295 | 0.48786 | 4.024 | 5.73e−05 | ||
| HS_Internet.Q | −0.84535 | 0.43322 | −1.951 | 0.051016 | ||
| HS_Internet.C | −0.62417 | 0.52945 | −1.179 | 0.238443 | ||
| HS_Internet ^4 | 0.70226 | 0.42611 | 1.648 | 0.099344 | ||
| Education.L | −0.10678 | 0.35017 | −0.305 | 0.760420 | ||
| Education.Q | −0.20052 | 0.32887 | −0.610 | 0.542040 | ||
| Education.C | −0.20188 | 0.26443 | −0.763 | 0.445180 | ||
| Education ^4 | −0.20467 | 0.21020 | −0.974 | 0.330202 | ||
| Education ^5 | −0.12286 | 0.16056 | −0.765 | 0.444135 | ||
| Education ^6 | −0.17613 | 0.15350 | −1.147 | 0.251195 | ||
| SWB.L *** | 0.73508 | 0.20062 | 3.664 | 0.000248 | ||
| SWB.Q | 0.32974 | 0.16920 | 1.949 | 0.051320 | ||
| SWB.C * | 0.37072 | 0.14421 | 2.571 | 0.010147 | ||
| SWB ^4 | −0.13008 | 0.11595 | −1.122 | 0.261898 | ||
| Income.L * | 0.34055 | 0.14066 | 2.421 | 0.015478 | ||
| Income.Q | 0.06184 | 0.12542 | 0.493 | 0.621940 | ||
| Income.C | 0.06965 | 0.12077 | 0.577 | 0.564118 | ||
| Q6: AR could enhance learning | ||||||
| Age_group.L *** | −0.62301 | 0.11288 | −5.519 | 3.41e−08 | 2586.074 | 0.272 |
| Age_group.Q | −0.12860 | 0.11119 | −1.157 | 0.247450 | ||
| HS_Internet.L ** | 1.39276 | 0.49218 | 2.830 | 0.004658 | ||
| HS_Internet.Q | −0.21047 | 0.43643 | −0.482 | 0.629620 | ||
| HS_Internet.C | −0.85687 | 0.53954 | −1.588 | 0.112255 | ||
| HS_Internet ^4 | 0.59020 | 0.43162 | 1.367 | 0.171499 | ||
| Education.L | 0.48389 | 0.36469 | 1.327 | 0.184561 | ||
| Education.Q | −0.23745 | 0.34355 | −0.691 | 0.489459 | ||
| Education.C | 0.22580 | 0.27517 | 0.821 | 0.411902 | ||
| Education ^4 | −0.22786 | 0.21790 | −1.046 | 0.295689 | ||
| Education ^5 | 0.12788 | 0.16471 | 0.776 | 0.437509 | ||
| Education ^6 | 0.04178 | 0.15837 | 0.264 | 0.791911 | ||
| SWB.L *** | 0.69000 | 0.20170 | 3.421 | 0.000624 | ||
| SWB.Q | 0.06799 | 0.17061 | 0.399 | 0.690244 | ||
| SWB.C * | 0.34709 | 0.14679 | 2.365 | 0.018049 | ||
| SWB ^4 | −0.14023 | 0.11854 | −1.183 | 0.236825 | ||
| Income.L * | 0.34908 | 0.14307 | 2.440 | 0.014688 | ||
| Income.Q | 0.16223 | 0.12813 | 1.266 | 0.205491 | ||
| Income.C | −0.04957 | 0.12371 | −0.401 | 0.688643 | ||
| Q7: Realistic VR/AR scenarios | ||||||
| Age_group.L *** | −0.69905 | 0.11221 | −6.230 | 4.67e−10 | 2661.548 | 0.286 |
| Age_group.Q | −0.02388 | 0.11106 | −0.215 | 0.82974 | ||
| HS_Internet.L ** | 1.40024 | 0.43716 | 3.203 | 0.00136 | ||
| HS_Internet.Q | −0.15932 | 0.39417 | −0.404 | 0.68607 | ||
| HS_Internet.C | −0.58856 | 0.52236 | −1.127 | 0.25985 | ||
| HS_Internet ^4 | 0.25734 | 0.42615 | 0.604 | 0.54593 | ||
| Education.L | 0.66860 | 0.35454 | 1.886 | 0.05932 | ||
| Education.Q | −0.15517 | 0.33071 | −0.469 | 0.63893 | ||
| Education.C | 0.20286 | 0.26793 | 0.757 | 0.44896 | ||
| Education ^4 | −0.22262 | 0.21357 | −1.042 | 0.29724 | ||
| Education ^5 | −0.04911 | 0.16301 | −0.301 | 0.76321 | ||
| Education ^6 | −0.01761 | 0.15524 | −0.113 | 0.90968 | ||
| SWB.L * | 0.50940 | 0.20181 | 2.524 | 0.01160 | ||
| SWB.Q | 0.09199 | 0.17197 | 0.535 | 0.59270 | ||
| SWB.C * | 0.31064 | 0.14669 | 2.118 | 0.03420 | ||
| SWB ^4 | −0.08612 | 0.11836 | −0.728 | 0.46688 | ||
| Income.L | 0.22028 | 0.14284 | 1.542 | 0.12305 | ||
| Income.Q | 0.02347 | 0.12716 | 0.185 | 0.85357 | ||
| Income.C | 0.05636 | 0.12377 | 0.455 | 0.64885 | ||
| Q8: Level of interaction | ||||||
| Age_group.L *** | −1.25567 | 0.13966 | −8.991 | <2e−16 | 1463.845 | 0.329 |
| Age_group.Q | 0.07930 | 0.13152 | 0.603 | 0.5465 | ||
| HS_Internet.L | 1.31806 | 0.87840 | 1.501 | 0.1335 | ||
| HS_Internet.Q | −0.30481 | 0.76007 | −0.401 | 0.6884 | ||
| HS_Internet.C | −0.39791 | 0.84723 | −0.470 | 0.6386 | ||
| HS_Internet ^4 | 0.17942 | 0.63397 | 0.283 | 0.7772 | ||
| Education.L | 0.33534 | 0.40161 | 0.835 | 0.4037 | ||
| Education.Q | 0.05474 | 0.38019 | 0.144 | 0.8855 | ||
| Education.C | 0.20631 | 0.30415 | 0.678 | 0.4976 | ||
| Education ^4 | −0.18008 | 0.24092 | −0.747 | 0.4548 | ||
| Education ^5 | 0.02055 | 0.18664 | 0.110 | 0.9123 | ||
| Education ^6 | 0.13149 | 0.18232 | 0.721 | 0.4708 | ||
| SWB.L * | 0.57740 | 0.23667 | 2.440 | 0.0147 | ||
| SWB.Q | 0.39023 | 0.19911 | 1.960 | 0.0500 | ||
| SWB.C | 0.27184 | 0.16877 | 1.611 | 0.1072 | ||
| SWB ^4 | −0.07305 | 0.13992 | −0.522 | 0.6016 | ||
| Income.L | 0.15605 | 0.16751 | 0.932 | 0.3516 | ||
| Income.Q | 0.02188 | 0.15119 | 0.145 | 0.8849 | ||
| Income.C | −0.15710 | 0.14518 | −1.082 | 0.2792 | ||
| Q9: In-person workshops | ||||||
| Age_group.L *** | −0.66038 | 0.10922 | −6.047 | 1.48e−09 | 2771.139 | 0.299 |
| Age_group.Q | −0.02461 | 0.10897 | −0.226 | 0.82132 | ||
| HS_Internet.L ** | 1.52186 | 0.49933 | 3.048 | 0.00231 | ||
| HS_Internet.Q | −0.22160 | 0.44370 | −0.499 | 0.61747 | ||
| HS_Internet.C | −0.61906 | 0.64554 | −0.959 | 0.33757 | ||
| HS_Internet ^4 | 0.52639 | 0.51058 | 1.031 | 0.30256 | ||
| Education.L | 0.62519 | 0.33692 | 1.856 | 0.06351 | ||
| Education.Q | 0.22651 | 0.31252 | 0.725 | 0.46859 | ||
| Education.C | 0.39415 | 0.25453 | 1.549 | 0.12150 | ||
| Education ^4 | −0.01394 | 0.20570 | −0.068 | 0.94596 | ||
| Education ^5 | 0.10733 | 0.15847 | 0.677 | 0.49824 | ||
| Education ^6 | −0.05796 | 0.15201 | −0.381 | 0.70297 | ||
| SWB.L *** | 0.88891 | 0.20351 | 4.368 | 1.25e−05 | ||
| SWB.Q * | 0.43277 | 0.17096 | 2.531 | 0.01136 | ||
| SWB.C ** | 0.36967 | 0.14238 | 2.596 | 0.00942 | ||
| SWB ^4 | −0.13812 | 0.11580 | −1.193 | 0.23297 | ||
| Income.L | 0.21414 | 0.13916 | 1.539 | 0.12385 | ||
| Income.Q | −0.01375 | 0.12429 | −0.111 | 0.91190 | ||
| Income.C | −0.01564 | 0.12057 | −0.130 | 0.89677 | ||
| Q10: Gamified elements | ||||||
| Age_group.L *** | −1.29249 | 0.12153 | −10.635 | <2e−16 | 2395.537 | 0.381 |
| Age_group.Q | 0.02604 | 0.11877 | 0.219 | 0.82644 | ||
| HS_Internet.L ** | 1.62199 | 0.53969 | 3.005 | 0.00265 | ||
| HS_Internet.Q | −0.40984 | 0.48217 | −0.850 | 0.39533 | ||
| HS_Internet.C | −0.64261 | 0.65791 | −0.977 | 0.32870 | ||
| HS_Internet ^4 | 0.40191 | 0.52363 | 0.768 | 0.44276 | ||
| Education.L | 0.30744 | 0.37640 | 0.817 | 0.41404 | ||
| Education.Q | 0.59481 | 0.35319 | 1.684 | 0.09216 | ||
| Education.C | 0.44470 | 0.28228 | 1.575 | 0.11517 | ||
| Education ^4 * | 0.46301 | 0.22296 | 2.077 | 0.03783 | ||
| Education ^5 | 0.14691 | 0.16859 | 0.871 | 0.38352 | ||
| Education ^6 | −0.11629 | 0.15841 | −0.734 | 0.46289 | ||
| SWB.L * | 0.46347 | 0.21427 | 2.163 | 0.03054 | ||
| SWB.Q * | 0.37683 | 0.18057 | 2.087 | 0.03689 | ||
| SWB.C | 0.07426 | 0.15303 | 0.485 | 0.62747 | ||
| SWB ^4 | 0.03927 | 0.12423 | 0.316 | 0.75191 | ||
| Income.L | −0.02479 | 0.14948 | −0.166 | 0.86830 | ||
| Income.Q | 0.12719 | 0.13518 | 0.941 | 0.34678 | ||
| Income.C | 0.12260 | 0.12860 | 0.953 | 0.34040 | ||
| Q11: Level of gamification | ||||||
| Age_group.L *** | −1.429160 | 0.143882 | −9.933 | <2e−16 | 1351.927 | 0.348 |
| Age_group.Q | 0.161951 | 0.140547 | 1.152 | 0.24920 | ||
| HS_Internet.L | 1.581531 | 0.829155 | 1.907 | 0.05647 | ||
| HS_Internet.Q | −0.960932 | 0.733034 | −1.311 | 0.18989 | ||
| HS_Internet.C | 0.313752 | 0.735522 | 0.427 | 0.66969 | ||
| HS_Internet ^4 | −0.282181 | 0.560216 | −0.504 | 0.61447 | ||
| Education.L | 0.609776 | 0.417032 | 1.462 | 0.14369 | ||
| Education.Q | −0.427453 | 0.389882 | −1.096 | 0.27292 | ||
| Education.C ** | 1.019767 | 0.315124 | 3.236 | 0.00121 | ||
| Education ^4 | 0.047980 | 0.251492 | 0.191 | 0.84870 | ||
| Education ^5 | 0.328634 | 0.193738 | 1.696 | 0.08983 | ||
| Education ^6 | 0.096401 | 0.183517 | 0.525 | 0.59937 | ||
| SWB.L | 0.399468 | 0.239561 | 1.668 | 0.09541 | ||
| SWB.Q | 0.280259 | 0.203307 | 1.379 | 0.16805 | ||
| SWB.C | 0.202821 | 0.173735 | 1.167 | 0.24304 | ||
| SWB ^4 | −0.008207 | 0.144858 | −0.057 | 0.95482 | ||
| Income.L | 0.084860 | 0.172077 | 0.493 | 0.62190 | ||
| Income.Q | −0.032623 | 0.155178 | −0.210 | 0.83349 | ||
| Income.C | −0.025687 | 0.148126 | −0.173 | 0.86233 | ||
| Q12: Online platform tailored to age groups | ||||||
| Age_group.L * | −0.24570 | 0.11115 | −2.211 | 0.02707 | 2703.807 | 0.253 |
| Age_group.Q | 0.21378 | 0.10908 | 1.960 | 0.05002 | ||
| HS_Internet.L ** | 1.31077 | 0.45359 | 2.890 | 0.00386 | ||
| HS_Internet.Q | −0.24275 | 0.40691 | −0.597 | 0.55079 | ||
| HS_Internet.C | −0.65617 | 0.51628 | −1.271 | 0.20374 | ||
| HS_Internet ^4 | 0.64289 | 0.42107 | 1.527 | 0.12680 | ||
| Education.L | 0.23821 | 0.34069 | 0.699 | 0.48442 | ||
| Education.Q | 0.04149 | 0.31458 | 0.132 | 0.89507 | ||
| Education.C | 0.27336 | 0.25714 | 1.063 | 0.28775 | ||
| Education ^4 | 0.10899 | 0.20881 | 0.522 | 0.60171 | ||
| Education ^5 | 0.18429 | 0.16159 | 1.141 | 0.25408 | ||
| Education ^6 | −0.12963 | 0.15186 | −0.854 | 0.39332 | ||
| SWB.L ** | 0.63709 | 0.20129 | 3.165 | 0.00155 | ||
| SWB.Q ** | 0.48165 | 0.16866 | 2.856 | 0.00429 | ||
| SWB.C * | 0.32047 | 0.14338 | 2.235 | 0.02541 | ||
| SWB ^4 | −0.09999 | 0.11697 | −0.855 | 0.39264 | ||
| Income.L | 0.13409 | 0.14079 | 0.952 | 0.34089 | ||
| Income.Q | 0.13810 | 0.12609 | 1.095 | 0.27341 | ||
| Income.C * | −0.24305 | 0.12280 | −1.979 | 0.04779 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parti, K.; Abdelhamid, S.; Ladancsik, T. Designing for Life: A Socioeconomic View of Digital Learning Preferences in Cybersecurity, with Emphasis on Older Adults. Societies 2025, 15, 342. https://doi.org/10.3390/soc15120342
Parti K, Abdelhamid S, Ladancsik T. Designing for Life: A Socioeconomic View of Digital Learning Preferences in Cybersecurity, with Emphasis on Older Adults. Societies. 2025; 15(12):342. https://doi.org/10.3390/soc15120342
Chicago/Turabian StyleParti, Katalin, Sherif Abdelhamid, and Tibor Ladancsik. 2025. "Designing for Life: A Socioeconomic View of Digital Learning Preferences in Cybersecurity, with Emphasis on Older Adults" Societies 15, no. 12: 342. https://doi.org/10.3390/soc15120342
APA StyleParti, K., Abdelhamid, S., & Ladancsik, T. (2025). Designing for Life: A Socioeconomic View of Digital Learning Preferences in Cybersecurity, with Emphasis on Older Adults. Societies, 15(12), 342. https://doi.org/10.3390/soc15120342

