Normative Reference of the Single Leg, Medial Countermovement Jump in Adolescent Youth Ice Hockey Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Procedures
2.3. Jump Protocol
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hockey, U.S.A. 2020–2021 Annual Guide. Available online: https://cdn2.sportngin.com/attachments/document/0039/8240/Annual_Guide_2021_web.pdf (accessed on 4 May 2021).
- Cordingley, D.M.; Sirant, L.; MacDonald, P.B.; Leiter, J.R. Three-year longitudinal fitness tracking in top-level competitive youth ice hockey players. J. Strength Cond. Res. 2019, 33, 2909–2912. [Google Scholar] [CrossRef]
- Donskov, A. Physical Preparation for Ice Hockey: Biological Principles and Practical Solutions; AuthorHouse: Bloomington, IN, USA, 2016. [Google Scholar]
- Farlinger, C.M.; Kruisselbrink, L.D.; Fowles, J.R. Relationships to skating performance in competitive hockey players. J. Strength Cond. Res. 2007, 21, 915–922. [Google Scholar] [PubMed] [Green Version]
- Janot, J.M.; Beltz, N.M.; Dalleck, L.D. Multiple off-ice performance variables predict on-ice skating performance in male and female division III ice hockey players. J. Sports Sci. Med. 2015, 14, 522. [Google Scholar]
- Manske, R.; Reiman, M. Functional performance testing for power and return to sports. Sports Health 2013, 5, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donskov, A.S.; Brooks, J.S.; Dickey, J.P. Reliability of the Single Leg, Medial Countermovement Jump in Youth Ice Hockey Players. Sports 2021, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Meylan, C.M.; Nosaka, K.; Green, J.; Cronin, J.B. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J. Sports Sci. 2010, 28, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, C.F.; Nulty, C.; Vanrenterghem, J.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. The neuromuscular determinants of unilateral jump performance in soccer players are direction-specific. Int. J. Sports Physiol. Perform. 2018, 13, 604–611. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Vanrenterghem, J.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. Unilateral jumps in different directions: A novel assessment of soccer-associated power? J. Sci. Med. Sport 2017, 20, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and horizontal asymmetries are related to slower sprinting and jump performance in elite youth female soccer players. J. Strength Cond. Res. 2021, 35, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Turner, A.; Maloney, S.; Lake, J.; Loturco, I.; Bromley, T. Drop Jump Asymmetry is Associated with Reduced Sprint and Change-of-Direction Speed Performance in Adult Female Soccer Players. Sports 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.; Sato, K.; Alexander, R.; Chiang, C.-Y.; Stone, M.H. Isometric force production symmetry and jumping performance in collegiate athletes. J. Trainol. 2013, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Taylor, M.J.; Cohen, D.; Voss, C.; Sandercock, G.R. Vertical jumping and leg power normative data for English school children aged 10–15 years. J. Sports Sci. 2010, 28, 867–872. [Google Scholar] [CrossRef]
- Tounsi, M.; Tabka, Z.; Trabelsi, Y. Reference values of vertical jumping parameters in Tunisian adolescent athletes. Sport Sci. Health 2015, 11, 159–169. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar]
- Read, M.M.; Cisar, C. The influence of varied rest interval lengths on depth jump performance. J. Strength Cond. Res. 2001, 15, 279–283. [Google Scholar] [PubMed]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef] [Green Version]
- Whitley, E.; Ball, J. Statistics review 5: Comparison of means. Crit. Care 2002, 6, 424. [Google Scholar] [CrossRef]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef]
- Newcombe, R.G. Confidence intervals for an effect size measure based on the Mann–Whitney statistic. Part 1: General issues and tail--area--based methods. Stat. Med. 2006, 25, 543–557. [Google Scholar] [CrossRef]
- Li, J.C.-H. Effect size measures in a two-independent-samples case with nonnormal and nonhomogeneous data. Behav. Res. Methods 2016, 48, 1560–1574. [Google Scholar] [CrossRef] [PubMed]
- Hoaglin, D.C.; Iglewicz, B.; Tukey, J.W. Performance of some resistant rules for outlier labeling. J. Am. Stat. Assoc. 1986, 81, 991–999. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb asymmetries: The need for an individual approach to data analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb asymmetries: Understanding how to calculate differences from bilateral and unilateral tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Baker, D. Improving vertical jump performance through general, special, and specific strength training. J. Strength Cond. Res. 1996, 10, 131–136. [Google Scholar] [CrossRef]
- Perez-Gomez, J.; Calbet, J. Training methods to improve vertical jump performance. J. Sports Med. Phys. Fit. 2013, 53, 339–357. [Google Scholar]
- Focke, A.; Strutzenberger, G.; Jekauc, D.; Worth, A.; Woll, A.; Schwameder, H. Effects of age, sex and activity level on counter-movement jump performance in children and adolescents. Eur. J. Sport Sci. 2013, 13, 518–526. [Google Scholar] [CrossRef]
- Sherar, L.B.; Mirwald, R.L.; Baxter-Jones, A.D.; Thomis, M. Prediction of adult height using maturity-based cumulative height velocity curves. J. Pediatr. 2005, 147, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Lefevre, J.; Beunen, G.; Steens, G.; Claessens, A.; Renson, R. Motor performance during adolescence and age thirty as related to age at peak height velocity. Ann. Hum. Biol. 1990, 17, 423–435. [Google Scholar] [CrossRef] [PubMed]
Group | Number * | Age (Years) | Height (cm) | Mass (kg) |
---|---|---|---|---|
10U/11U | 21 | 10.4 ± 0.4 | 145.2 ± 5.9 | 37.7 ± 5.9 |
12U/13U | 25 | 12.3 ± 0.4 | 158.2 ± 6.8 | 47.5 ± 8.3 |
14U/15U | 26 | 14.6 ± 0.5 | 174.7 ± 5.3 | 70.4 ± 8.9 |
16U/18U | 19 | 16.8 ± 0.5 | 180.4 ± 6.8 | 76.2 ± 9.6 |
Age Groups | Hodges–Lehmann Median Difference | m | n | U | False Discovery Rate Threshold | p-Value * | Effect Size (95% CI) |
---|---|---|---|---|---|---|---|
VERT Avg Con Power (W) | |||||||
10U/11U vs. 12U/13U | 70.55 | 31 | 49 | 426 | 0.033 | 0.0008 ❖ | 0.720 ►►► (0.592–0.816) |
12U/13U vs. 14U/15U | 267.3 | 49 | 52 | 306 | 0.017 | <0.0001 ❖ | 0.880 ►►► (0.792–0.932) |
14 U/15U vs. 16U/18U | 88.85 | 52 | 38 | 744 | 0.05 | 0.046 ❖ | 0.624 ► (0.502–0.729) |
VERT Avg Con Power 100 ms (W) | |||||||
10U/11U vs. 12U/13U | 160.2 | 31 | 49 | 383 | 0.033 | 0.0001 ❖ | 0.748 ►►► (0.622–0.839) |
12U/13U vs. 14U/15U | 647.4 | 49 | 52 | 264 | 0.017 | <0.0001 ❖ | 0.896 ►►► (0.812–0.944) |
14 U/15U vs. 16U/18U | 268.8 | 52 | 38 | 613 | 0.05 | 0.002 ❖ | 0.690 ►► (0.570–0.786) |
LAT Avg Con Power (W) | |||||||
10U/11U vs. 12U/13U | 80.62 | 31 | 49 | 397 | 0.017 | 0.0003 ❖ | 0.739 ►►► (0.612–0.832) |
12U/13U vs. 14U/15U | 93.22 | 49 | 52 | 748 | 0.033 | 0.0003 ❖ | 0.706 ►► (0.596–0.794) |
14 U/15U vs. 16U/18U | 2.10 | 52 | 38 | 981 | 0.05 | 0.958 | 0.504 (0. 386–0.621) |
LAT Avg Con Power 100 ms (W) | |||||||
10U/11U vs. 12U/13U | 144.0 | 31 | 49 | 293 | 0.017 | <0.0001 ❖ | 0.807 ►►► (0.688–0.885) |
12U/13U vs. 14U/15U | 253.8 | 49 | 52 | 356 | 0.033 | <0.0001 ❖ | 0.860 ►►► (0.768–0.917) |
14 U/15U vs. 16U/18U | 43.23 | 52 | 38 | 875 | 0.05 | 0.360 | 0.557 ►►► (0.437–0.670) |
MAX VERT Force (N) | |||||||
10U/11U vs. 12U/13U | 181.2 | 31 | 49 | 293 | 0.017 | <0.0001 ❖ | 0.807 ►►► (0.688–0.885) |
12U/13U vs. 14U/15U | 371.7 | 49 | 52 | 190 | 0.033 | <0.0001 ❖ | 0.657 ►► (0.544–0.752) |
14 U/15U vs. 16U/18U | 89.83 | 52 | 38 | 698 | 0.05 | 0.0175 ❖ | 0.647 ►► (0.526–0.749) |
MAX LAT Force (N) | |||||||
10U/11U vs. 12U/13U | 64.85 | 31 | 49 | 310 | 0.017 | <0.0001 ❖ | 0.796 ►►► (0.675–0.876) |
12U/13U vs. 14U/15U | 157.8 | 49 | 52 | 202 | 0.033 | <0.0001 ❖ | 0.921 ►►► (0.843–0.960) |
14 U/15U vs. 16U/18U | 33.60 | 52 | 38 | 756 | 0.05 | 0.0583 | 0.617 ►►► (0.496–0.724) |
Age Group | VERT Avg Con Power | VERT Avg Con Power (100 ms) | LAT Avg Con Power | LAT Avg Con Power (100 ms) | Max VERT Force | Max LAT Force |
---|---|---|---|---|---|---|
10U/11U | 13.89 (7.50) | 16.67 (8.20) | 12.75 (7.25) | 14.44 (5.46) | 4.32 (1.97) | 7.12 (3.33) |
12U/13U | 12.89 (8.86) | 15.00 (10.27) | 18.77 (12.76) | 14.07 (11.50) | 4.57 (3.50) | 10.45 (9.56) |
14U/15U | 21.53 (11.94) | 19.22 (11.89) | 22.60 (15.52) | 10.32 (8.04) | 4.46 (3.30) | 5.82 (4.31) |
16U/18U | 14.48 (10.85) | 12.33 (5.83) | 22.17 (16.15) | 9.11 (7.33) | 3.74 (2.78) | 6.05 (4.82) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donskov, A.S.; Brooks, J.S.; Dickey, J.P. Normative Reference of the Single Leg, Medial Countermovement Jump in Adolescent Youth Ice Hockey Players. Sports 2021, 9, 105. https://doi.org/10.3390/sports9080105
Donskov AS, Brooks JS, Dickey JP. Normative Reference of the Single Leg, Medial Countermovement Jump in Adolescent Youth Ice Hockey Players. Sports. 2021; 9(8):105. https://doi.org/10.3390/sports9080105
Chicago/Turabian StyleDonskov, Anthony S., Jeffrey S. Brooks, and James P. Dickey. 2021. "Normative Reference of the Single Leg, Medial Countermovement Jump in Adolescent Youth Ice Hockey Players" Sports 9, no. 8: 105. https://doi.org/10.3390/sports9080105
APA StyleDonskov, A. S., Brooks, J. S., & Dickey, J. P. (2021). Normative Reference of the Single Leg, Medial Countermovement Jump in Adolescent Youth Ice Hockey Players. Sports, 9(8), 105. https://doi.org/10.3390/sports9080105