Optimization of the Critical Speed Concept for Tactical Professionals: A Brief Review
Abstract
:1. Introduction
2. Methods of Critical Speed Testing
3. Association of Critical Speed in Occupational Tasks
4. Critical Speed-Derived Exercise Prescriptions for Tactical Populations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nindl, B.C.; Castellani, J.; Warr, B.J.; Sharp, M.A.; Henning, P.C.; Spiering, B.A.; Scofield, D.E. Physiological Employment Standards III: Physiological challenges and consequences encountered during international military deployments. Eur. J. Appl. Physiol. 2013, 113, 2655–2672. [Google Scholar] [CrossRef] [PubMed]
- Harman, E.A.; Gutekunst, D.J.; Frykman, P.N.; Nindl, B.C.; Alemany, J.A.; Mello, R.P.; Sharp, M.A. Effects of Two Different Eight-Week Training Programs on Military Physical Performance. J. Strength Cond. Res. 2008, 22, 524–534. [Google Scholar] [CrossRef]
- Sharp, M.A.; Cohen, B.S.; Boye, M.W.; Foulis, S.A.; Redmond, J.E.; Larcom, K.; Hydren, J.R.; Gebhardt, D.L.; Canino, M.C.; Warr, B.J.; et al. U.S. Army physical demands study: Identification and validation of the physically demanding tasks of combat arms occupations. J. Sci. Med. Sport 2017, 20, S62–S67. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.Q.; Clasey, J.L.; Yates, J.W.; Koebke, N.C.; Palmer, T.G.; Abel, M.G. Relationship of Physical Fitness Measures vs. Occupational Physical Ability in Campus Law Enforcement Officers. J. Strength Cond. Res. 2015, 29, 2340–2350. [Google Scholar] [CrossRef]
- Dawes, J.J.; Orr, R.M.; Flores, R.R.; Lockie, R.G.; Kornhauser, C.; Holmes, R. A physical fitness profile of state highway patrol officers by gender and age. Ann. Occup. Environ. Med. 2017, 29, 16. [Google Scholar] [CrossRef] [PubMed]
- Lewinski, W.J.; Dysterheft, J.L.; Dicks, N.D.; Pettitt, R.W. The influence of officer equipment and protection on short sprinting performance. Appl. Ergon. 2015, 47, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Dawes, J.J.; Balfany, K.; Gonzales, C.E.; Beitzel, M.M.; Dulla, J.M.; Orr, R.M. Physical Fitness Characteristics That Relate to Work Sample Test Battery Performance in Law Enforcement Recruits. Int. J. Environ. Res. Public Health 2018, 15, 2477. [Google Scholar] [CrossRef] [Green Version]
- Elsner, K.L.; Kolkhorst, F.W. Metabolic demands of simulated firefighting tasks. Ergonomics 2008, 51, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Siddall, A.; Stevenson, R.D.; Turner, P.J.; Bilzon, J. Physical and Physiological Performance Determinants of a Firefighting Simulation Test. J. Occup. Environ. Med. 2018, 60, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Dennison, K.J.; Mullineaux, D.; Yates, J.W.; Abel, M.G. The Effect of Fatigue and Training Status on Firefighter Performance. J. Strength Cond. Res. 2012, 26, 1101–1109. [Google Scholar] [CrossRef]
- Nazari, G.; MacDermid, J.C.; Sinden, K.E.; Overend, T.J. The Relationship between Physical Fitness and Simulated Firefighting Task Performance. Rehabil. Res. Pract. 2018, 2018, 3234176. [Google Scholar] [CrossRef] [Green Version]
- Knapik, J.J.; Reynolds, K.L.; Harman, E. Soldier Load Carriage: Historical, Physiological, Biomechanical, and Medical Aspects. Mil. Med. 2004, 169, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempsey, P.C.; Handcock, P.; Rehrer, N.J. Impact of police body armour and equipment on mobility. Appl. Ergon. 2013, 44, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, N.R.; Sharp, M.A.; Alemany, J.A.; Walker, L.A.; Harman, E.A.; Spiering, B.A.; Hatfield, D.L.; Yamamoto, L.M.; Maresh, C.M.; Kraemer, W.J.; et al. Combined resistance and endurance training improves physical capacity and performance on tactical occupational tasks. Eur. J. Appl. Physiol. 2010, 109, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Clasey, J.L.; Palmer, T.; Symons, T.B.; Abel, M.G. The Effect of a Novel Tactical Training Program on Physical Fitness and Occupational Performance in Firefighters. J. Strength Cond. Res. 2015, 29, 578–588. [Google Scholar] [CrossRef]
- Dempsey, P.; Handcock, P.J.; Rehrer, N.J. Body armour: The effect of load, exercise and distraction on landing forces. J. Sports Sci. 2013, 32, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.M.; Pohl, M.B.; Shapiro, R.; Keeler, J.; Abel, M.G. Effect of Load Carriage on Tactical Performance in Special Weapons and Tactics Operators. J. Strength Cond. Res. 2018, 32, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Solomonson, A.A.; Dicks, N.; Kerr, W.J.; Pettitt, R.W. Influence of Load Carriage on High-Intensity Running Performance Estimation. J. Strength Cond. Res. 2016, 30, 1391–1396. [Google Scholar] [CrossRef]
- Dicks, N.D.; Mahoney, S.J.; Kramer, M.; Lyman, K.J.; Christensen, B.K.; Pettitt, R.W.; Hackney, K.J. Increased velocity at VO2max and load carriage performance in army ROTC cadets: Prescription using the critical velocity concept. Ergonomics 2021, 1–11. [Google Scholar] [CrossRef]
- Jones, B.H.; Hauschild, V.D. Physical Training, Fitness, and Injuries. J. Strength Cond. Res. 2015, 29, S57–S64. [Google Scholar] [CrossRef]
- Wills, J.A.; Saxby, D.J.; Glassbrook, D.J.; Doyle, T. Load-Carriage Conditioning Elicits Task-Specific Physical and Psychophysical Improvements in Males. J. Strength Cond. Res. 2019, 33, 2338–2343. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Roberts, A.; Irving, S.; Orr, R. Aerobic Fitness is of Greater Importance than Strength and Power in the Load Carriage Performance of Specialist Police. Int. J. Exerc. Sci. 2018, 11, 987–998. [Google Scholar] [PubMed]
- Orr, R.M.; Pope, R.; Johnston, V.; Coyle, J. Load carriage: Minimising soldier injuries through physical conditioning—A narrative review. J. Mil. Veterans Health 2010, 18, 31. [Google Scholar]
- Knapik, J.J.; Harman, E.A.; Steelman, R.A.; Graham, B.S. A Systematic Review of the Effects of Physical Training on Load Carriage Performance. J. Strength Cond. Res. 2012, 26, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Burnley, M.; Vanhatalo, A.; Rossiter, H.; Jones, A.M. Critical Power. Med. Sci. Sports Exerc. 2016, 48, 2320–2334. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, R.; Jamnick, N.; Clark, I. 3-min All-out Exercise Test for Running. Int. J. Sports Med. 2012, 33, 426–431. [Google Scholar] [CrossRef]
- Hill, D.W.; Poole, D.C.; Smith, J.C. The relationship between power and the time to achieve VO2max. Med. Sci. Sports Exerc. 2002, 34, 709–714. [Google Scholar] [PubMed]
- Fukuba, Y.; Whipp, B.J. A metabolic limit on the ability to make up for lost time in endurance events. J. Appl. Physiol. 1999, 87, 853–861. [Google Scholar] [CrossRef]
- Clark, I.E.; West, B.M.; Reynolds, S.K.; Murray, S.R.; Pettitt, R.W. Applying the Critical Velocity Model for an Off-Season Interval Training Program. J. Strength Cond. Res. 2013, 27, 3335–3341. [Google Scholar] [CrossRef]
- Thomas, E.J.; Pettitt, R.W.; Kramer, M. High-Intensity Interval Training Prescribed Within the Secondary Severe-Intensity Domain Improves Critical Speed But Not Finite Distance Capacity. J. Sci. Sport Exerc. 2020, 2, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, R.W. Applications of the Running 3-Min All-Out Exercise Test: An Update. MOJ Sports Med. 2017, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Saari, A.; Dicks, N.D.; Hartman, M.E.; Pettitt, R.W. Validation of the 3-Minute All-Out Exercise Test for Shuttle Running Prescription. J. Strength Cond. Res. 2019, 33, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Dicks, N.D.; Joe, T.V.; Hackney, K.J.; Pettitt, R.W. Validity of Critical Velocity Concept for Weighted Sprinting Performance. Int. J. Exerc. Sci. 2018, 11, 900–909. [Google Scholar] [PubMed]
- Courtright, S.P.; Williams, J.L.; Clark, I.E.; Pettitt, R.W.; Dicks, N.D. Monitoring interval-training responses for swimming using the 3-min all-out exercise test. Int. J. Exerc. Sci. 2016, 9, 1. [Google Scholar]
- Jones, A.M.; Vanhatalo, A. The ‘Critical Power’ Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Med. 2017, 47, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Bacon, A.P.; Carter, R.E.; Ogle, E.A.; Joyner, M.J. VO2max Trainability and High Intensity Interval Training in Humans: A Meta-Analysis. PLoS ONE 2013, 8, e73182. [Google Scholar] [CrossRef] [PubMed]
- De Aguiar, R.A.; Salvador, A.F.; Penteado, R.; Faraco, H.C.; Pettitt, R.W.; Caputo, F. Reliability and validity of the 3-min all-out running test. Rev. Bras. Ciênc. Esporte 2018, 40, 288–294. [Google Scholar] [CrossRef]
- Broxterman, R.; Ade, C.; Poole, D.; Harms, C.; Barstow, T. A single test for the determination of parameters of the speed–time relationship for running. Respir. Physiol. Neurobiol. 2013, 185, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, D.; Smith, A.E.; Kendall, K.; Cramer, J.; Stout, J.R. An Alternative Approach to the Army Physical Fitness Test Two-Mile Run Using Critical Velocity and Isoperformance Curves. Mil. Med. 2012, 177, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Ade, C.J.; Broxterman, R.M.; Craig, J.C.; Schlup, S.J.; Wilcox, S.L.; Barstow, T.J. Standardized Exercise Tests and Simulated Terrestrial Mission Task Performance. Aerosp. Med. Hum. Perform. 2015, 86, 982–989. [Google Scholar] [CrossRef]
- Hoffman, M.W.; Stout, J.R.; Hoffman, J.; Landua, G.; Fukuda, D.; Sharvit, N.; Moran, D.S.; Carmon, E.; Ostfeld, I. Critical Velocity Is Associated with Combat-Specific Performance Measures in a Special Forces Unit. J. Strength Cond. Res. 2016, 30, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Aguilar, C.D.; Radzak, K.; Manning, J.W.; DeBeliso, M. Reliability of Trail Walking and Running Tasks Using the Stryd Power Meter. Int. J. Sports Med. 2019, 40, 498–502. [Google Scholar] [CrossRef]
- Kramer, M.; Du Randt, R.; Watson, M.; Pettitt, R.W. Bi-exponential modeling derives novel parameters for the critical speed concept. Physiol. Rep. 2019, 7, e13993. [Google Scholar] [CrossRef]
- Kramer, M.; Du Randt, R.; Watson, M.; Pettitt, R.W. Oxygen uptake kinetics and speed-time correlates of modified 3-min all-out shuttle running in soccer players. PLoS ONE 2018, 13, e0201389. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-C.; Nagai, T.; Lovalekar, M.; Connaboy, C.; Nindl, B.C. Physical Fitness Predictors of a Warrior Task Simulation Test. J. Strength Cond. Res. 2018, 32, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- US Department of the Army. Field Manual 7–22: Army Physical Readiness Training; US Department of the Army: Washington, DC, USA, 2012.
- Morton, R.H. Why peak power is higher at the end of steeper ramps: An explanation based on the “critical power” concept. J. Sports Sci. 2011, 29, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, D.; Azevedo, R.D.A.; Keir, D.A.; Murias, J.M. Establishing the VO2 versus constant-work-rate relationship from ramp-incremental exercise: Simple strategies for an unsolved problem. J. Appl. Physiol. 2019, 127, 1519–1527. [Google Scholar] [CrossRef]
- Kuipers, H.; Verstappen, F.T.J.; Keizer, H.A.; Geurten, P.; Van Kranenburg, G. Variability of Aerobic Performance in the Laboratory and Its Physiologic Correlates. Int. J. Sports Med. 1985, 6, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Robergs, R.A. Simplified method and program for incremental exercise protocol development. J. Exerc. Physiol. 2007, 10, 1–23. [Google Scholar]
- Pettitt, R.W.; Clark, I.E.; Ebner, S.M.; Sedgeman, D.T.; Murray, S.R. Gas exchange threshold and VO2max testing for athletes: An update. J. Strength Cond. Res. 2013, 27, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Jamnick, N.A.; Pettitt, R.W.; Granata, C.; Pyne, D.B.; Bishop, D.J. An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Med. 2020, 50, 1729–1756. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, R.W.; Placek, A.M.; Clark, I.E.; Jamnick, N.A.; Murray, S.R. Sensitivity of prescribing high-intensity, interval training using the critical power concept. Int. J. Exerc. Sci. 2015, 8, 202–212. [Google Scholar]
- Roloff, Z.A.; Dicks, N.D.; Krynski, L.M.; Hartman, M.E.; Ekkekakis, P.; Pettitt, R.W. Ratings of affective valence closely track changes in oxygen uptake: Application to high-intensity interval exercise. Perform. Enhanc. Health 2020, 7, 100158. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Liew, B.X.W.; Morris, S.; Keogh, J.W.L.; Appleby, B.; Netto, K. Effects of two neuromuscular training programs on running biomechanics with load carriage: A study protocol for a randomised controlled trial. BMC Musculoskelet. Disord. 2016, 17, 445. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dicks, N.D.; Pettitt, R.W. Optimization of the Critical Speed Concept for Tactical Professionals: A Brief Review. Sports 2021, 9, 106. https://doi.org/10.3390/sports9080106
Dicks ND, Pettitt RW. Optimization of the Critical Speed Concept for Tactical Professionals: A Brief Review. Sports. 2021; 9(8):106. https://doi.org/10.3390/sports9080106
Chicago/Turabian StyleDicks, Nathan D., and Robert W. Pettitt. 2021. "Optimization of the Critical Speed Concept for Tactical Professionals: A Brief Review" Sports 9, no. 8: 106. https://doi.org/10.3390/sports9080106