Choose Where You Live Carefully: Built Environment Differences in Children’s Cardiorespiratory Fitness and Cardiometabolic Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Instruments and Procedures
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, D.A.S.; Lang, J.J.; Barnes, J.D.; Tomkinson, G.R.; Tremblay, M.S. Cardiorespiratory fitness in children: Evidence for criterion-referenced cut-points. PLoS ONE 2018, 13, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Högström, G.; Nordström, A.; Nordström, P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: A nationwide cohort study in men. Eur. Heart J. 2014, 35, 3133–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diez-Fernandez, A.; Sanchez-Lopez, M.; Mora-Rodriguez, R.; Notario-Pacheco, B.; Torrijos-Nino, C.; Martinez-Vizcaino, V. Obesity as a mediator of the influence of cardiorespiratory fitness on cardiometabolic risk: A mediation analysis. Diab. Care 2014, 37, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Mota, J.; Garcia-Hermoso, A. Comparison of Different Maximal Oxygen Uptake Equations to Discriminate the Cardiometabolic Risk in Children and Adolescents. J. Pediatr. 2018, 194, 152–157. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Cavero-Redondo, I.; Ortega, F.B.; Welk, G.J.; Andersen, L.B.; Martinez-Vizcaino, V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; What level of fitness should raise a red flag? A systematic review and meta-analysis. BJSM 2016, 50, 1451–1458. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Palermi, S.; Sacco, A.M.; Belviso, I.; Romano, V.; Montesano, P.; Corrado, B.; Sirico, F. Guidelines for Physical Activity—A Cross-Sectional Study to Assess Their Application in the General Population. Have We Achieved Our Goal? Int. J. Environ. Res. Public Health 2020, 17, 3980. [Google Scholar] [CrossRef]
- Sirico, F.; Fernando, F.; Bianco, A.; Biffi, A. Parental Perception of Children’s Weight Status: Love Overpasses Scientific Evidence! A Cross-Sectional Observational Study. High Blood Press. Cardiovasc. Prev. 2020, 27, 29–34. [Google Scholar] [CrossRef]
- Booth, S.L.; Sallis, J.F.; Ritenbaugh, C.; Hill, J.O.; Birch, L.L.; Frank, L.D.; Hays, N.P. Environmental and societal factors affect food choice and physical activity: Rationale, influences, and leverage points. Nutr. Rev. 2001, 59, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Joens-Matre, R.R.; Welk, G.J.; Calabro, M.A.; Russell, D.W.; Nicklay, E.; Hensley, L.D. Rural–urban differences in physical activity, physical fitness, and overweight prevalence of children. J. Rural Health 2008, 24, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.F.; Gaya, A.R.; Brand, C.; Pizarro, A.I.; Fochesatto, C.F.; Mendes, T.M.; Gaya, A.C.A. Distance from home to the nearest park and the use of the parks for physical activity: The mediator role of road safety perception in adolescents. Public Health 2019, 168, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Dollman, J.; Norton, K.; Tucker, G. Anthropometry, fitness and physical activity of urban and rural South Australian children. Ped. Exerc. Sci. 2002, 14, 297–312. [Google Scholar] [CrossRef]
- Mamalakis, G.; Kafatos, A.; Manios, Y.; Anagnostopoulou, T.; Apostolaki, I. Obesity indices in a cohort of primary school children in Crete: A six year prospective study. Int. J. Obes. 2000, 24, 765–771. [Google Scholar] [CrossRef] [Green Version]
- McMurray, R.G.; Harrell, J.S.; Bangdiwala, S.I.; Deng, S. Cardiovascular disease risk factors and obesity of rural and urban elementary school children. J Rural Health 1999, 15, 365–374. [Google Scholar] [CrossRef]
- Sylejmani, B.; Myrtaj, N.; Maliqi, A.; Gontarev, S.; Georgiev, G.; Kalac, R. Physical fitness in children and adolescents in rural and urban areas. J. Hum. Sport Exerc. 2019, 14, 866–875. [Google Scholar] [CrossRef]
- Tsimeas, P.D.; Tsiokanos, A.L.; Koutedakis, Y.; Tsigilis, N.; Kellis, S. Does living in urban or rural settings affect aspects of physical fitness in children? An allometric approach. BJSM 2005, 39, 671–674. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Cross-national comparison of childhoodobesity: The epidemic and the relationshipbetween obesity and socioeconomic status. Int. J. Epidemiol. 2001, 30, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Physical activity levels among children aged 9–13 years—United States, 2002. MMWR Morb. Mortal. Wkly. Rep. 2003, 52, 785–788.
- Gaya, A.C.A. Projeto Esporte Brasil Manual de Testes e Avaliação; Universidade Federal Do Rio Grande Do Sul: Rio Grande Do Sul, Brazil, 2015. [Google Scholar]
- Bergmann, G.; Bergmann, M.; Castro, A.; Lorenzi, T.; Pinheiro, E.; Moreira, R.; Gaya, A. Use of the 6-minute walk/run test to predict peak oxygen uptake in adolescents TT. Revista Brasileira Atividade Física Saúde 2014, 19, 64–73. [Google Scholar] [CrossRef]
- Associação Brasileira de Empresas de Pesquisa ABEP. Critério de Classificação Econômica Brasil—CCEB. Códigos e Guias 2015, 1–6. Available online: http://www.abep.org/criterio-brasil (accessed on 10 January 2021).
- Stavnsbo, M.; Resaland, G.K.; Anderssen, S.A.; Steene-Johannessen, J.; Domazet, S.L.; Skrede, T.; Aadland, E. Reference values for cardiometabolic risk scores in children and adolescents: Suggesting a common standard. Atherosclerosis 2018, 278, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevill, A.M.; Holder, R.L. Scaling, normalizing, and per ratio standards: An allometric modeling approach. J. Appl. Physiol. 1995, 79, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Nevill, A.M.; Bryant, E.; Wilkinson, K.; Gomes, T.N.; Chaves, R.; Pereira, S.; Duncan, M.J. Can waist circumference provide a new “third” dimension to BMI when predicting percentage body fat in children? Insights using allometric modelling. Ped. Obes. 2018, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alkerwi, A.; El Bahi, I.; Stranges, S.; Beissel, J.; Delagardelle, C.; Noppe, S.; Kandala, N.B. Geographic variations in cardiometabolic risk factors in Luxembourg. Int. J. Env. Res. Public Health 2017, 14, 648. [Google Scholar] [CrossRef] [Green Version]
- World Heart Federation. Urbanization and Cardiovascular Disease; World Heart Federation: Geneva, Switzerland, 2017. [Google Scholar]
- Riha, J.; Karabarinde, A.; Ssenyomo, G.; Allender, S.; Asiki, G.; Kamali, A.; Seeley, J. Urbanicity and Lifestyle Risk Factors for Cardiometabolic Diseases in Rural Uganda: A Cross-Sectional Study. PLoS Med. 2014, 11, e1001683. [Google Scholar] [CrossRef] [Green Version]
- Stuckler, D.; Basu, S.; McKee, M. Commentary: UN high level meeting on non-communicable diseases: An opportunity for whom? BMJ 2011, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, V.W.; Baruth, M.; Beets, M.W.; Durstine, J.L.; Liu, J.; Blair, S.N. Fitness vs. fatness on all-cause mortality: A meta-analysis. Prog. Cardiovasc. Dis. 2014, 56, 382–390. [Google Scholar] [CrossRef]
- Hainer, V.; Toplak, H.; Stich, V. Fat or fit: What is more important? Diab. Care 2009, 32, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuaela, P.L.; Snatos-Lozano, A.; Torres Barran, A.; Fernandez-Navarro, F.; Lucia, A. Joint association of physical activity and body mass index with cardiiovascular risk: A nationwide population-based cross-sectional study. Eur. J. Prev. Cardiol. 2021, zwaa151. [Google Scholar] [CrossRef]
- Brand, C.; Reuter, C.P.; Dias, A.F.; Mota, J.; Duncan, M.; Gaya, A.R.; Naujorks Reis, L.; Pollo Renner, J.D.; Villa-González, E. Like Mother, like Son: Physical Activity, Commuting, and Associated Demographic Factors. Sustainability 2020, 12, 5631. [Google Scholar] [CrossRef]
Age | Male | Female | Total | ||||
---|---|---|---|---|---|---|---|
Centre | Periphery | Rural | Centre | Periphery | Rural | ||
6 | 6 | 6 | 0 | 8 | 15 | 0 | 35 |
7 | 25 | 31 | 12 | 17 | 41 | 19 | 145 |
8 | 27 | 41 | 12 | 35 | 52 | 20 | 187 |
9 | 23 | 69 | 26 | 31 | 71 | 17 | 237 |
10 | 23 | 62 | 26 | 34 | 77 | 31 | 253 |
11 | 23 | 61 | 27 | 31 | 89 | 27 | 258 |
12 | 22 | 74 | 33 | 32 | 82 | 25 | 268 |
13 | 14 | 69 | 30 | 24 | 89 | 30 | 256 |
14 | 14 | 50 | 30 | 16 | 95 | 26 | 231 |
15 | 19 | 36 | 15 | 36 | 64 | 17 | 187 |
16 | 24 | 31 | 10 | 22 | 26 | 15 | 128 |
17 | 12 | 11 | 6 | 18 | 11 | 7 | 65 |
- | 232 | 541 | 227 | 304 | 712 | 234 | 2250 |
Parameter | B | Std. Error | t | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Intercept | 5.948 | 0.089 | 66.953 | <0.001 | 5.774 | 6.122 |
age | 0.007 | 0.002 | 3.944 | <0.001 | 0.003 | 0.010 |
LnMass | −0.580 | 0.025 | −23.399 | <0.001 | −0.629 | −0.531 |
LnH | 1.480 | 0.059 | 25.131 | <0.001 | 1.364 | 1.595 |
LnWC | −0.149 | 0.035 | −4.237 | <0.001 | −0.218 | −0.080 |
SES points | −0.002 | 0.000 | −3.921 | <0.001 | −0.003 | −0.001 |
Male | 0.130 | 0.010 | 12.574 | <0.001 | 0.110 | 0.151 |
Parameter | B | Std. Error | t | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Intercept | −0.500 | 0.375 | −1.333 | 0.183 | −1.237 | 0.236 |
Age | −0.228 | 0.047 | −4.852 | <0.001 | −0.320 | −0.136 |
age2 | 0.008 | 0.002 | 4.087 | <0.001 | 0.004 | 0.011 |
BMI | 0.013 | 0.007 | 2.020 | 0.043 | 0.000 | 0.026 |
WC | 0.033 | 0.002 | 14.743 | <0.001 | 0.029 | 0.037 |
VO2max | −0.012 | 0.003 | −3.572 | <0.001 | −0.019 | −0.005 |
SES points | 0.005 | 0.002 | 2.104 | 0.036 | 0.000 | 0.009 |
Male | −0.062 | 0.029 | −2.114 | 0.035 | −0.120 | −0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevill, A.M.; Reuter, C.P.; Brand, C.; Gaya, A.R.; Mota, J.; Pollo Renner, J.D.; Duncan, M.J. Choose Where You Live Carefully: Built Environment Differences in Children’s Cardiorespiratory Fitness and Cardiometabolic Risk. Sports 2021, 9, 31. https://doi.org/10.3390/sports9020031
Nevill AM, Reuter CP, Brand C, Gaya AR, Mota J, Pollo Renner JD, Duncan MJ. Choose Where You Live Carefully: Built Environment Differences in Children’s Cardiorespiratory Fitness and Cardiometabolic Risk. Sports. 2021; 9(2):31. https://doi.org/10.3390/sports9020031
Chicago/Turabian StyleNevill, Alan M., Cézane Priscila Reuter, Caroline Brand, Anelise Reis Gaya, Jorge Mota, Jane Dagmar Pollo Renner, and Michael J. Duncan. 2021. "Choose Where You Live Carefully: Built Environment Differences in Children’s Cardiorespiratory Fitness and Cardiometabolic Risk" Sports 9, no. 2: 31. https://doi.org/10.3390/sports9020031
APA StyleNevill, A. M., Reuter, C. P., Brand, C., Gaya, A. R., Mota, J., Pollo Renner, J. D., & Duncan, M. J. (2021). Choose Where You Live Carefully: Built Environment Differences in Children’s Cardiorespiratory Fitness and Cardiometabolic Risk. Sports, 9(2), 31. https://doi.org/10.3390/sports9020031