Combined but Not Isolated Ingestion of Caffeine and Taurine Improves Wingate Sprint Performance in Female Team-Sport Athletes Habituated to Caffeine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Wingate Anaerobic Test
2.4. Supplementation Protocol
2.5. Blinding and Side Effect Assessment
2.6. Statistical Analysis
3. Results
3.1. Performance in the WAnT
3.2. Blinding and Side Effects
3.3. Blood Lactate, Heart Rate and Ratings of Perceived Exertion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kraak, V.I.; Davy, B.M.; Rockwell, M.S.; Kostelnik, S.; Hedrick, V.E. Policy recommendations to address energy drink marketing and consumption by vulnerable populations in the United States. J. Acad. Nutr. Diet. 2020, 120, 767–777. [Google Scholar] [CrossRef]
- Duncan, M.J.; Eyre, E.; Grgic, J.; Tallis, J. The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. Eur. J. Sport Sci. 2019, 19, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Waldron, M.; Patterson, S.D.; Jeffries, O. Oral taurine improves critical power and severe-intensity exercise tolerance. Amino Acids 2019, 51, 1433–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, M.; Nielsen, J.J.; Bangsbo, J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J. Appl. Physiol. 2011, 111, 1372–1379. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sport nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Waldron, M.; Patterson, S.D.; Tallent, J.; Jeffries, O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: A meta-analysis. Sports Med. 2018, 48, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtz, A.; Van Dusseldorp, T.A.; Doyle, J.A.; Otis, J.S. Taurine in sports and exercise. J. Int. Soc. Sports Nutr. 2021, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, E.J.; Berg, H.M.; Easton, C.J.; Bakker, A.J. The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse. Amino Acids 2006, 31, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, O.; Hill, J.; Patterson, S.D.; Waldron, M. Energy drink doses of caffeine and taurine have a null or negative effect on sprint performance. J. Strength Cond. Res. 2020, 34, 3475–3481. [Google Scholar] [CrossRef]
- Warnock, R.; Jeffries, O.; Patterson, S.; Waldron, M. The effects of caffeine, taurine, or caffeine-taurine coingestion on repeated-sprint cycling performance and physiological responses. Int. J. Sports Physiol. Perform. 2017, 12, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Candow, D.G.; Little, J.P.; Magnus, C.; Chilibeck, P.D. Effect of red bull energy drink on repeated wingate cycle performance and bench-press muscle endurance. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 433–444. [Google Scholar] [CrossRef]
- Quinlivan, A.; Irwin, C.; Grant, G.D.; Anoopkumar-Dukie, S.; Skinner, T.; Leveritt, M.; Desbrow, B. The effects of red bull energy drink compared with caffeine on cycling time-trial performance. Int. J. Sports Physiol. Perform. 2015, 10, 897–901. [Google Scholar] [CrossRef]
- Astorino, T.A.; Matera, A.J.; Basinger, J.; Evans, M.; Schurman, T.; Marquez, R. Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 2012, 42, 1803–1808. [Google Scholar] [CrossRef]
- Nelson, M.T.; Bilts, G.R.; Dengel, D.R. Cardiovascular and ride time-to-exhaustion effects on an energy drink. J. Int. Soc. Sport Nutr. 2014, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Kang, J.; Ratamess, N.A.; Hoffman, M.W.; Tranchina, C.P.; Faigenbaum, A.D. Examination of a pre-exercise, high energy supplement on exercise performance. J. Int. Soc. Sport Nutr. 2009, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielgo-Ayuso, J.; Marquez-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of caffeine supplementation on sports performance based on differences between sexes: A systematic review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, B.; Hellín, J.G.; Ruíz-Moreno, C.; Romero-Moraleda, B.; Del Coso, J. Acute caffeine intake increases performance in the 15-s wingate test during the menstrual cycle. Br. J. Clin. Pharmacol. 2020, 86, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, B.; Moreno-Ruiz, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filip, A.; Wilk, M.; Krzystofik, M.; Del Coso, J. Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: Is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Bühler, E.; Lachenmeire, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahr. Umschau. 2014, 61, 58–63. [Google Scholar]
- Eston, R. Use of ratings of perceived exertion in sports. Int. J. Sports. Physiol. Perform. 2012, 7, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Or, O. The wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Mehdavi, R.; Daneghian, S.; Jafari, A.; Homayouni, A. Effect of acute caffeine supplementation on anaerobic power and blood lactate levels in female athletes. J. Caffeine Res. 2015, 5, 83–87. [Google Scholar] [CrossRef]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.S.; Yamaguchi, T.; Maciel, M.E.; Roschel, H.; Artioli, G.G.; Gualano, B. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sports 2017, 27, 1240–1247. [Google Scholar] [CrossRef]
- Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y. Modulatory effects of taurine on jejunal contractility. Braz. J. Med. Biol. Res. 2014, 47, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
- Waldron, M.; Knight, F.; Tallent, J.; Patterson, S.; Jeffries, O. The effects of taurine on repeated sprint cycling after low or high cadence exhaustive exercise in females. Amino Acids 2018, 50, 663–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaki, Y.; Miyazaki, T.; Miyakawa, S.; Bouscarel, B.; Ikegami, T.; Tanaka, N. Decreased taurine concentration in skeletal muscles after exercise for various times. Med. Sci. Sports Exerc. 2002, 34, 793–797. [Google Scholar] [CrossRef]
- Balshaw, T.G.; Bampuras, T.M.; Barry, T.J.; Sparks, S.A. The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids 2013, 44, 555–561. [Google Scholar] [CrossRef]
- Milioni, F.; Malta, E.S.; Rocha, L.G.S.A.; Mesquita, C.A.A.; Freitas, E.C.; Zagatto, A.M. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Appl. Physiol. Nutr. Metab. 2016, 41, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Diedhiou, A.B.; Karayigit, R.; Sisman, A.; Sahin, N.; Ersoz, G. High dose of taurine ingestion improves anaerobic power in female athletes. In Proceedings of the 22th Scientific Conference, Fis Communications in Physical Education, Sport and Recreation, Book of Abstract, Niš, Serbia, 17–19 October 2019; p. 95. [Google Scholar]
- Lara, B.; Salinero, J.J.; Giraldez-Costas, V.; Del Coso, J. Similar ergogenic effect of caffeine on anaerobic performance in men and women athletes. Eur. J. Nutr. 2021, 60, 4107–4114. [Google Scholar] [CrossRef]
- Sarshin, A.; Naderi, A.; da Cruz, C.J.G.; Feizolahi, F.; Forbes, S.C.; Candow, D.G.; Mohammadgholian, E.; Amiri, M.; Jafari, N.; Rahimi, A.; et al. The effects of varying doses of caffeine on cardiac parasympathetic reactivation following an acute bout of anaerobic exercise in recreational athletes. J. Int. Soc. Sports Nutr. 2020, 17, 44. [Google Scholar] [CrossRef]
- Clarke, N.D.; Richardson, D.L. Habitual caffeine consumption does not affect the ergogenicity of coffee ingestion during a 5 km cycling time trial. Int. J. Sport Nutr. Exerc. Metab. 2020, 31, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.S.; Painelli, V.S.; Yamaguchi, G.; Oliveira, L.F.; Saunders, B.; Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017, 123, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painelli, V.S.; Teixeira, E.L.; Tardone, B.; Moreno, M.; Morandini, J.; Larrain, V.H.; Pires, F.O. Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. What should we do about habitual caffeine use in athletes? Sports Med. 2019, 49, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Imagawa, T.F.; Hirano, I.; Utsuki, K.; Horie, M.; Naka, A.; Matsumoto, K.; Imagawa, S. Caffeine and taurine enhance endurance performance. Int. J. Sports Med. 2009, 30, 485–488. [Google Scholar] [CrossRef]
- Bakker, A.J.; Berg, H.M. Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J. Physiol. 2002, 538, 185–194. [Google Scholar] [CrossRef]
- Lara, B.; Gonzalez-Millan, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Munoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef]
- Tallis, J.; Higgins, M.F.; Cox, V.M.; Duncan, M.J.; James, R.S. Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine? Can. J. Physiol. Pharmacol. 2014, 92, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Painelli, V.D.S.; Brietzke, C.; Franco-Alvarenga, P.E.; Canestri, R.; Vinicius, I.; Pires, F.O. Comment on: “Caffeine an exercise: What next?”. Sports Med. 2020, 50, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
PLA | TAU | CAF | CAF+TAU | |||||
---|---|---|---|---|---|---|---|---|
Side Effects | +0 HR | +24 HR | +0 HR | +24 HR | +0 HR | +24 HR | +0 HR | +24 HR |
Muscle soreness | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Increased Urine Output | 2 (11%) | 1 (5%) | 0 (0%) | 1 (5%) | 0 (0%) | 2 (11%) | 2 (11%) | 0 (0%) |
Tachycardia and heart palpitations | 1 (5%) | 0 (0%) | 0 (0%) | 1 (5%) | 3 (17%) | 1 (5%) | 4 (23%) | 0 (0%) |
Anxiety or nervousness | 3 (17%) | 0 (0%) | 4 (23%) | 1 (5%) | 2 (11%) | 1 (5%) | 3 (17%) | 0 (0%) |
Headache | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5%) | 0 (0%) | 0 (0%) | 1 (5%) | 0 (0%) |
Gastrointestinal disturbances | 1 (5%) | 0 (0%) | 1 (5%) | 1 (5%) | 0 (0%) | 1 (5%) | 2 (11%) | 1 (5%) |
Increased vigor/activeness | 3 (17%) | 1 (5%) | 2 (11%) | 2 (11%) | 4 (23%) | 2 (11%) | 5 (29%) | 1 (5%) |
Insomnia | 1 (5%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5%) | 0 (0%) |
Total score | 11 | 2 | 7 | 7 | 9 | 7 | 18 | 2 |
Time Point | PLA | TAU | CAF | CAF+TAU | |
---|---|---|---|---|---|
Lactate (mmol/L) | Before | 1.0 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.1 |
After * | 7.7 ± 1.4 | 7.5 ± 1.3 | 8.0 ± 1.7 | 7.8 ± 1.1 | |
Heart rate (beats/min) | Before | 67.2 ± 5.5 | 66.3 ± 5.0 | 67.7 ± 5.0 | 69.0 ± 6.1 |
After * | 179.8 ± 4.1 | 179.0 ± 4.6 | 179.5 ± 6.1 | 180.2 ± 4.0 | |
RPE (arbitrary units) | After | 16.8 ± 1.6 | 17.0 ± 1.6 | 16.5 ± 1.5 | 16.6 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karayigit, R.; Naderi, A.; Saunders, B.; Forbes, S.C.; Coso, J.D.; Berjisian, E.; Yildirim, U.C.; Suzuki, K. Combined but Not Isolated Ingestion of Caffeine and Taurine Improves Wingate Sprint Performance in Female Team-Sport Athletes Habituated to Caffeine. Sports 2021, 9, 162. https://doi.org/10.3390/sports9120162
Karayigit R, Naderi A, Saunders B, Forbes SC, Coso JD, Berjisian E, Yildirim UC, Suzuki K. Combined but Not Isolated Ingestion of Caffeine and Taurine Improves Wingate Sprint Performance in Female Team-Sport Athletes Habituated to Caffeine. Sports. 2021; 9(12):162. https://doi.org/10.3390/sports9120162
Chicago/Turabian StyleKarayigit, Raci, Alireza Naderi, Bryan Saunders, Scott C. Forbes, Juan Del Coso, Erfan Berjisian, Ulas Can Yildirim, and Katsuhiko Suzuki. 2021. "Combined but Not Isolated Ingestion of Caffeine and Taurine Improves Wingate Sprint Performance in Female Team-Sport Athletes Habituated to Caffeine" Sports 9, no. 12: 162. https://doi.org/10.3390/sports9120162
APA StyleKarayigit, R., Naderi, A., Saunders, B., Forbes, S. C., Coso, J. D., Berjisian, E., Yildirim, U. C., & Suzuki, K. (2021). Combined but Not Isolated Ingestion of Caffeine and Taurine Improves Wingate Sprint Performance in Female Team-Sport Athletes Habituated to Caffeine. Sports, 9(12), 162. https://doi.org/10.3390/sports9120162