Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Approach to the Problem
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Reliability
3.2. Contact Times
3.3. Joint Angle
3.4. Range of Motion
4. Discussion
4.1. Contact Time
4.2. Trunk Lean
4.3. Hip Angle
4.4. Knee Angle
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morin, J.-B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. J. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef]
- Wild, J.; Bezodis, N.; Blagrove, R.C.; Bezodis, I. A biomechanical comparison of accelerative and maximum velocity sprinting: Specific strength training considerations. Prof. Strength Cond. 2011, 21, 23–37. [Google Scholar]
- Cross, M.R.; Brughelli, M.; Samozino, P.; Morin, J.B. Methods of Power-Force-Velocity Profiling During Sprint Running: A Narrative Review. Sports Med. 2017, 47, 1255–1269. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-B.; Slawinski, J.; Dorel, S.; Couturier, A.; Samozino, P.; Brughelli, M.; Rabita, G. Acceleration capability in elite sprinters and ground impulse: Push more, brake less? J. Biomech. 2015, 48, 3149–3154. [Google Scholar] [CrossRef]
- Rabita, G.; Dorel, S.; Slawinski, J.; Sàez-de-Villarreal, E.; Couturier, A.; Samozino, P.; Morin, J.B. Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. Scand. J. Med. Sci. Sports 2015, 25, 583–594. [Google Scholar] [CrossRef]
- Morin, J.-B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.-R. Mechanical determinants of 100-m sprint running performance. J. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrakos, G.; Morin, J.B.; Egan, B. Resisted Sled Sprint Training to Improve Sprint Performance: A Systematic Review. Sports Med. 2016, 46, 381–400. [Google Scholar] [CrossRef]
- Young, W.B. Transfer of strength and power training to sports performance. Int. J. Sports Physiol. Perform. 2006, 1, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Duehring, M.D.; Feldmann, C.R.; Ebben, W.P. Strength and conditioning practices of United States high school strength and conditioning coaches. J. Strength Cond. Res. 2009, 23, 2188–2203. [Google Scholar] [CrossRef]
- Simenz, C.J.; Dugan, C.A.; Ebben, W.P. Strength and conditioning practices of National Basketball Association strength and conditioning coaches. J. Strength Cond. Res. 2005, 19, 495–504. [Google Scholar]
- Ebben, W.P.; Carroll, R.M.; Simenz, C.J. Strength and conditioning practices of National Hockey League strength and conditioning coaches. J. Strength Cond. Res. 2004, 18, 889–897. [Google Scholar]
- Wilson, G.J.; Murphy, A.J.; Walshe, A. The specificity of strength training: The effect of posture. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Cahill, M.J.; Cronin, J.B.; Oliver, J.L.; Clark, K.P.; Lloyd, R.S.; Cross, M.R. Resisted sled training for young athletes: When to push and pull. Strength Cond. J. 2020, 42, 91–99. [Google Scholar] [CrossRef]
- Young, W.; Benton, D.; Pryor, J. Resistance training for short sprints and maximum-speed sprints. Strength Cond. J. 2001, 23, 7. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis. Sports Med. (Auckland N.Z.) 2018, 48, 2143–2165, Erratum in 2018, 48, 2167–2168. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. Authors’ Reply to Cross et al.: Comment on: “The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis”. Sports Med. (Auckland N.Z.) 2019, 49, 353–356. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Palao, J.M.; Elvira, J.L. Determining the optimal load for resisted sprint training with sled towing. J. Strength Cond. Res. 2009, 23, 480–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaraz, P.E.; Palao, J.M.; Elvira, J.L.; Linthorne, N.P. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J. Strength Cond. Res. 2008, 22, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Valencia, M.A.; Gonzalez-Rave, J.M.; Santos-Garcia, D.J.; Alcaraz Ramon, P.E.; Navarro-Valdivielso, F. Interrelationships between different loads in resisted sprints, half-squat 1 RM and kinematic variables in trained athletes. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S18–S24. [Google Scholar] [CrossRef]
- Martínez-Valencia, M.A.; Romero-Arenas, S.; Elvira, J.L.; González-Ravé, J.M.; Navarro-Valdivielso, F.; Alcaraz, P.E. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase. J. Hum. Kinet. 2015, 46, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabaloy, S.; Carlos-Vivas, J.; Freitas, T.T.; Pareja-Blanco, F.; Pereira, L.; Loturco, I.; Comyns, T.; Gálvez-González, J.; Alcaraz, P.E. Relationships between Resisted Sprint Performance and Different Strength and Power Measures in Rugby Players. Sports 2020, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachero-Mena, B.; González-Badillo, J.J. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass. J. Strength Cond. Res. 2014, 28, 2954–2960. [Google Scholar] [CrossRef] [PubMed]
- Bachero-Mena, B.; Pareja-Blanco, F.; González-Badillo, J.J. Effects of Resistance Training on Physical Performance in High-Level 800-Meter Athletes: A Comparison Between High-Speed Resistance Training and Circuit Training. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Bachero-Mena, B.; Sánchez-Moreno, M.; Pareja-Blanco, F.; Sañudo, B. Acute and Short-Term Response to Different Loading Conditions During Resisted Sprint Training. Int. J. Sports Physiol. Perform. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Cronin, J.; Hansen, K.; Kawamori, N.; McNair, P. Effects of weighted vests and sled towing on sprint kinematics. Sports Biomech. 2008, 7, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.R.; Samozino, P.; Brown, S.R.; Morin, J.B. A comparison between the force-velocity relationships of unloaded and sled-resisted sprinting: Single vs. multiple trial methods. Eur. J. Appl. Physiol. 2018, 118, 563–571. [Google Scholar] [CrossRef]
- Cross, M.R.; Tinwala, F.; Lenetsky, S.; Brown, S.R.; Brughelli, M.; Morin, J.B.; Samozino, P. Assessing Horizontal Force Production in Resisted Sprinting: Computation and Practical Interpretation. Int. J. Sports Physiol. Perform. 2019, 14, 689–693. [Google Scholar] [CrossRef]
- Murray, A. The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance. J. Sports Med. Phys. Fit. 2007, 47, 133. [Google Scholar]
- Murray, A.; Aitchison, T.C.; Ross, G.; Sutherland, K.; Watt, I.; McLean, D.; Grant, S. The effect of towing a range of relative resistances on sprint performance. J. Sports Sci. 2005, 23, 927–935. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Spinks, C.D. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J. Strength Cond. Res. 2003, 17, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Spinks, C.D.; Murphy, A.J.; Spinks, W.L.; Lockie, R.G. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players. J. Strength Cond. Res. 2007, 21, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Pantoja, P.D.; Carvalho, A.R.; Ribas, L.R.; Peyré-Tartaruga, L.A. Effect of weighted sled towing on sprinting effectiveness, power and force-velocity relationship. PLoS ONE 2018, 13, e204473. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Asián-Clemente, J.A.; Sáez de Villarreal, E. Combined Squat and Light-Load Resisted Sprint Training for Improving Athletic Performance. J. Strength Cond. Res. 2019, 9, 2457–2463. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Pereira, L.A.; Freitas, T.T.; Alcaraz, P.E.; Reis, V.P.; Guerriero, A.; Arruda, A.; Zabaloy, S.; De Villarreal, E.; Loturco, I. Acute Effects of Progressive Sled Loading on Resisted Sprint Performance and Kinematics. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Pareja-Blanco, F.; Sánchez-Medina, L.; Suárez-Arrones, L.; González-Badillo, J.J. Effects of Velocity Loss During Resistance Training on Performance in Professional Soccer Players. Int. J. Sports Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef]
- Jarvis, P.; Turner, A.; Chavda, S.; Bishop, C. The acute effects of heavy sled towing on subsequent sprint acceleration performance. J. Trainol. 2017, 6, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Lahti, J.; Huuhka, T.; Romero, V.; Bezodis, I.; Morin, J.; Häkkinen, K. Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. PeerJ 2020, 8, e10507. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, P.E.; Elvira, J.L.; Palao, J.M. Kinematic, strength, and stiffness adaptations after a short-term sled towing training in athletes. Scand. J. Med. Sci. Sports 2014, 24, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Luteberget, L.S.; Raastad, T.; Seynnes, O.; Spencer, M. Effect of traditional and resisted sprint training in highly trained female team handball players. Int. J. Sports Physiol. Perform. 2015, 10, 642–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremec, D. Very Heavy Resisted Sprinting: A Better Way to Improve Acceleration?: Effects of a 4-Week Very Heavy Resisted Sprinting Intervention on Acceleration, Sprint and Jump Performance in Youth Soccer Players. Master’s Thesis, Swedish School of Sport and Health Sciences, Stockholm, Sweden, 2018. [Google Scholar]
- van den Tillaar, R.; von Heimburg, E. Comparison of different sprint training sessions with assisted and resisted running: Effects on performance and kinematics in 20-m sprints. Hum. Mov. 2017, 18, 21–29. [Google Scholar] [CrossRef]
- van den Tillaar, R. Comparison of Step-by-Step Kinematics of Elite Sprinters’ Unresisted and Resisted 10-m Sprints Measured With Optojump or Musclelab. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Gamble, P. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs. Sports Biomech. 2019, 18, 539–552. [Google Scholar] [CrossRef]
- van den Tillaar, R. Effect of active resisted 30 m sprints upon step and joint kinematics and muscle activity in experienced male and female sprinters. J. Sports Sci. 2021, 39, 1060–1069. [Google Scholar] [CrossRef]
- Lizana, J.A.; Bachero-Mena, B.; Calvo-Lluch, A.; Sanchez-Moreno, M.; Pereira, L.A.; Loturco, I.; Pareja-Blanco, F. Do Faster, Stronger, and More Powerful Athletes Perform Better in Resisted Sprints? J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Clark, K.P.; Stearne, D.J.; Walts, C.T.; Miller, A.D. The longitudinal effects of resisted sprint training using weighted sleds vs. weighted vests. J. Strength Cond. Res. 2010, 24, 3287–3295. [Google Scholar] [CrossRef]
- Kawamori, N.; Newton, R.U.; Hori, N.; Nosaka, K.; Research, C. Effects of weighted sled towing with heavy versus light load on sprint acceleration ability. J. Strength Cond. Res. 2014, 28, 2738–2745. [Google Scholar] [CrossRef]
- Jakalski, K. The pros and cons of using resisted and assisted training methods with high school sprinters: Parachutes, tubing and towing. J. Track Coach 1998, 144, 4585–4589. [Google Scholar]
- Luteberget, L.S. Traditional versus resisted sprint training in highly-trained, female team handball players: Effects on performance and muscle architecture. Master’s Thesis, Norwegian School of Sport Science, Oslo, Norway, 2014. [Google Scholar]
- Jeffreys, I. Warm-up revisited: The ramp method of optimizing warm-ups. Prof. Strength Cond. 2007, 6, 12–18. [Google Scholar]
- Upton, D.E. The effect of assisted and resisted sprint training on acceleration and velocity in Division IA female soccer athletes. J. Strength Cond. Res. 2011, 25, 2645–2652. [Google Scholar] [CrossRef] [Green Version]
- Harrison, A.J.; Bourke, G. The effect of resisted sprint training on speed and strength performance in male rugby players. J. Strength Cond. Res. 2009, 23, 275–283. [Google Scholar] [CrossRef]
- de Salles, B.; Simao, R.; Miranda, F.; da Silva Novaes, J.; Lemos, A.; Willardson, J. Rest interval between sets in strength training. Sports Med. 2009, 39, 765–777. [Google Scholar] [CrossRef]
- Maulder, P.S.; Bradshaw, E.J.; Keogh, J.W. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks. J. Strength Cond. Res. 2008, 22, 1992–2002. [Google Scholar] [CrossRef] [PubMed]
- Thiel, D.; Shepherd, J.; Espinosa, H.; Kenny, M.; Fischer, K.; Worsey, M.; Matsuo, A.; Wada, T. Predicting Ground Reaction Forces in Sprint Running Using a Shank Mounted Inertial Measurement Unit. Proc. 12th Conf. Int. Sports Eng. Assoc. 2018, 2, 199. [Google Scholar] [CrossRef] [Green Version]
- West, D.J.; Cunningham, D.J.; Bracken, R.M.; Bevan, H.R.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Effects of resisted sprint training on acceleration in professional rugby union players. J. Strength Cond. Res. 2013, 27, 1014–1018. [Google Scholar] [CrossRef]
- Chen, C.; Huang, C.; Lee, C.; Lin, Y. The biomechanical analysis of straight and flexural leg swing of the chinese martial arts jumping front kick. ISBS-Conf. Proc. Archive 1998. [Google Scholar]
- Murphy, A.; Lockie, R.; Coutts, A. Kinematic determinants of early acceleration in field sport athletes. J. Sports Sci. Med. 2003, 2, 144. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W. Spreadsheets for analysis of validity and reliability. Sportscience 2017, 21, 36–44. [Google Scholar]
- Morin, J.B.; Petrakos, G.; Jiménez-Reyes, P.; Brown, S.R.; Samozino, P.; Cross, M.R. Very-Heavy Sled Training for Improving Horizontal-Force Output in Soccer Players. Int. J. Sports Physiol. Perform. 2017, 12, 840–844. [Google Scholar] [CrossRef]
- Bezodis, N.; Willwacher, S.; Salo, A.I. The biomechanics of the track and field sprint start: A narrative review. J. Sports Med. 2019, 49, 1345–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monte, A.; Nardello, F.; Zamparo, P. Sled Towing: The Optimal Overload for Peak Power Production. Int. J. Sports Physiol. Perform. 2017, 12, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Letzelter, M. Resistance runs in speed development. Mod. Athl. Coach 1995, 33, 7–12. [Google Scholar]
- Cross, M.R.; Brughelli, M.; Samozino, P.; Brown, S.R.; Morin, J.B. Optimal Loading for Maximizing Power During Sled-Resisted Sprinting. Int. J. Sports Physiol. Perform. 2017, 12, 1069–1077. [Google Scholar] [CrossRef]
- Baker, D.G.; Nance, S. The relation between strength and power in professional rugby league players. J. Strength Cond. 1999, 13, 224–229. [Google Scholar]
- Zafeiridis, A.; Saraslanidis, P.; Manou, V.; Ioakimidis, P.; Dipla, K.; Kellis, S. The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance. J. Sports Med. Phys. Fit. 2005, 45, 284–290. [Google Scholar]
- Kugler, F.; Janshen, L. Body position determines propulsive forces in accelerated running. J. Biomech. 2010, 43, 343–348. [Google Scholar] [CrossRef]
- Kunz, H.; Kaufmann, D. Biomechanical analysis of sprinting: Decathletes versus champions. Br. J. Sports Med. 1981, 15, 177–181. [Google Scholar] [CrossRef]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of the thorax and pelvis during accelerated sprinting. J. Sports Med. Phys. Fit. 2017, 58, 1253–1263. [Google Scholar]
- Osterwald, K.M.; Kelly, D.; Braga Rodrigues, T.; Ó Cathain, C. Kinematic characteristics of resisted sled sprints under different loading conditions. ISBS Proc. Arch. 2020, 38, 844. [Google Scholar]
- Weyand, P.; Sternlight, D.; Bellizzi, M.; Wright, S.M. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. [Google Scholar] [CrossRef] [Green Version]
- Docherty, D.; Wenger, H.; Neary, P. Time-motion analysis related to the physiological demands of rugby. J. Hum. Mov. Stud. 1988, 14, 269–277. [Google Scholar]
- Fredericson, M.; Cookingham, C.; Chaudhari, A.; Dowdell, B.; Oestreicher, N.; Sahrmann, S. Hip abductor weakness in distance runners with iliotibial band syndrome. Clin. J. Sport Med. 2000, 10, 169–175. [Google Scholar] [CrossRef]
- Frederick, E.; Hagy, J.; Mann, R. The prediction of vertical impact force during running. J. Biomech. 1981, 14, 498. [Google Scholar] [CrossRef]
- Jonhagen, S.; Nemeth, G.; Eriksson, E. Hamstring injuries in sprinters: The role of concentric and eccentric hamstring muscle strength and flexibility. Am. J. Sports Med. 1994, 22, 262–266. [Google Scholar] [CrossRef]
- Wiemann, K.; Tidow, G. Relative activity of hip and knee extensors in sprinting-implications for training. New Stud. Athl. 1995, 10, 29. [Google Scholar]
- Bissas, A.; Walker, J.; Tucker, C.; Paradisis, G.; Merlino, S. Biomechanical Report IAAF London 2017; Leeds Beckett University: Leeds, UK, 2017. [Google Scholar]
- Richter, C.; O’Connor, N.; Moran, K. Comparison of discrete point and continuous data analysis for identifying performance determining factors. ISBS-Conf. Proc. Archive 2012, 31, 301–302. [Google Scholar]
- Richter, C.; Marshall, B.; Moran, K. Comparison of discrete-point vs. dimensionality-reduction techniques for describing performance-related aspects of maximal vertical jumping. J. Biomech. 2014, 47, 3012–3017. [Google Scholar] [CrossRef]
- Jensen, R.; Ebben, W.; Petushek, E.; Moran, K.; O’Connor, N.; Richter, C. Continuous waveform analysis of force, velocity, and power adaptations to a periodized plyometric training program. In Proceedings of the Congress of the International Society of Biomechanics in Sports, Taipei, Taiwan, 7–13 July 2013. [Google Scholar]
- Richter, C.; O’Connor, N.; Moran, K. The Benefit of Continuous Data Analysis to Analyze Countermovement Jump Performance; Dublin City University: Dublin, Ireland, 2012. [Google Scholar]
Landmark | Description |
---|---|
Shoulder | Acromion process |
Hip | Greater trochanter, located at the proximal, lateral part of the shaft of the femur |
Knee | Lateral condyle, at the superior end of the tibia |
Ankle | Lateral malleolus, at the low end of the fibula |
Toe | Fifth metatarsal bone/transmetatarsal joint at the distal outer edges of the foot (on the shoe) |
First Ground Contact (s) | Second Ground Contact (s) | MaxV Ground Contact (s) | ||
---|---|---|---|---|
Load | Group | Mean ± SD | Mean ± SD | Mean ± SD |
0% | Sprint | 0.17 (±0.01) | 0.14 (±0.01) | 0.11 (±0.01) |
Team | 0.20 (±0.02) | 0.16 (±0.01) | 0.13 (±0.06) | |
Total | 0.19 (±0.02) | 0.15 (±0.01) | 0.12 (±0.05) | |
10% | Sprint | 0.19 (±0.01) | 0.16 (±0.01) | 0.12 (±0.00) |
Team | 0.22 (±0.02) | 0.17 (±0.01) | 0.12 (±0.01) | |
Total | 0.21 (±0.02) * | 0.17 (±0.01) * | 0.12 (±0.01) | |
20% | Sprint | 0.22 (±0.03) | 0.17 (±0.01) | 0.13 (±0.01) |
Team | 0.23 (±0.03) | 0.18 (±0.02) | 0.14 (±0.01) | |
Total | 0.22 (±0.03) * | 0.18 (±0.02) * | 0.14 (±0.01) | |
30% | Sprint | 0.22 (±0.02) | 0.20 (±0.02) | 0.16 (±0.01) |
Team | 0.24 (±0.04) | 0.20 (±0.02) | 0.16 (±0.02) | |
Total | 0.24 (±0.04) * | 0.20 (±0.02) * | 0.16 (±0.02) * |
Acceleration Phase | ||||||||
Step 1 | Hip Angle (°) | Knee Angle (°) | Ankle Angle (°) | Trunk Angle (°) | ||||
TD (Mean ± SD) | TO (Mean ± SD) | TD (Mean ± SD) | TO (Mean ± SD) | TD (Mean ± SD) | TO (Mean ± SD) | TD (Mean ± SD) | TO (Mean ± SD) | |
0% | 101.7 (± 9.46) | 177.2 (±7.34) | 112.3 (±7.89) | 146.7 (±9.55) | 102.5 (±8.74) | 136.9 (±9.66) | 48.2 (±19.34) | 45.7 (±19.40) |
10% | 97.6 (±10.84) | 170.9 (±14.09) | 108.4 (±8.46) * | 144.1 (±21.78) | 101.2 (±8.43) | 135.2 (±9.10) | 51.7 (±14.81) | 46.8 (±6.51) |
20% | 98.4 (±11.58) | 171.3 (±7.13) | 105.1 (±8.27) * | 146.3 (±9.91) | 99.1 (±19.75) | 136.3 (±9.84) | 49.1 (±7.34) | 47.8 (±5.90) |
30% | 99.9 (±11.69) | 170.1 (±8.80) | 101.8 (±7.39) * | 144.7 (±10.29) | 98.6 (±19.08) | 135.2 (±9.24) | 48.6 (±8.15) | 46.9 (±5.18) |
Load (p-value, ES) | p = 0.16, ηp2 = 0.05 | p = 0.14, ηp2 = 0.08 | p = 0.00, ηp2 = 0.46 | p = 0.55, ηp2 = 0.01 | p = 0.72, ηp2 = 0 0.01 | p = 0.51, ηp2 = 0.02 | p = 0.62, ηp2 = 0.01 | p = 0.57, ηp2 = 0.00 |
Group (p-value, ES) | p = 0.38, ηp2 = 0.07 | p = 0.05, ηp2 = 0.04 | p = 0.54, ηp2 = 0.01 | p = 0.05, ηp2 = 0.12 | p = 0.13, ηp2 = 0.08 | p = 0.75, ηp2 = 0.00 | p = 0.87, ηp2 = 0.00 | p = 0.68, ηp2 = 0.00 |
Step 2 | ||||||||
0% | 113.5 (±9.15) | 177.0 (±7.34) | 121.6 (±6.55) | 150.8 (±7.29) | 104.9 (±7.80) | 132.1 (±6.87) | 34.3 (±7.16) | 33.0 (±5.90) |
10% | 108.3 (±10.58) | 169.8 (±14.09) | 118.2 (±6.73) * | 151.6 (±7.58) | 99.6 (±7.89) * | 133.4 (±6.94) | 38.7 (±7.61) * | 37.3 (±6.71) * |
20% | 108.1 (±9.24) | 170.8 (±7.13) * | 113.4 (±7.87) *^ | 150.2 (±8.55) | 102.9 (±8.18) | 135.3 (±6.93) | 42.2 (±12.31) * | 39.7 (±5.61) *^ |
30% | 107.0 (±10.27) | 169.5 (±8.8) * | 110.9 (±6.19) * | 148.5 (±7.72) | 101.6 (±7.43) | 132.7 (±6.49) | 41.0 (±7.49) * | 40.2 (±5.39) * |
Load (p-value, ES) | p = 0.00, ηp2 = 0.18 | p = 0.00, ηp2 = 0.13 | p = 0.00, ηp2 = 0.49 | p = 0.11, ηp2 = 0.06 | p = 0.01, ηp2 = 0.11 | p = 0.06, ηp2 = 0.08 | p = 0.00, ηp2 = 0.27 | p = 0.00, ηp2 = 0.43 |
Group (p-value, ES) | p = 0.28, ηp2 = 0.04 | p = 0.11, ηp2 = 0.08 | p = 0.22, ηp2 = 0.05 | p = 0.05, ηp2 = 0.14 | p = 0.32, ηp2 = 0.03 | p = 0.33, ηp2 = 0.03 | p = 0.29, ηp2 = 0.03 | p = 0.22, ηp2 = 0.04 |
Maximum Velocity Phase | ||||||||
Hip Angle (°) | Knee Angle (°) | Ankle Angle (°) | Trunk Angle (°) | |||||
TD (Mean ± SD) | TO (Mean ± SD) | TD (Mean ± SD) | TO (Mean ± SD) | TD (Mean ± SD) | TO (Mean ± SD) | TD (Mean ± SD) | TO (Mean ± SD) | |
0% | 120.3 (±35.68) | 133.4 (±88.86) | 121.5 (±45.89) | 139.1 (±39.63) | 83.7 (±51.32) | 106.1 (±50.47) | 10.6 (±4.87) | 9.9 (±5.52) |
10% | 110.6 (±50.03) | 164.9 (±72.75) | 138.6 (±39.63) | 134.3 (±53.00) | 70.4 (52.51) | 125.9 (±25.80) | 12.8 (±6.76) | 13.5 (±6.97) |
20% | 109.3 (±45.32) | 179.9 (±52.07) | 128.6 (±35.96) | 135.1 (±47.42) | 58.5 (±50.39) | 117.2 (±41.51) | 16.6 (±8.33) * | 19.5 (±6.00) *^ |
30% | 99.8 (±51.92) | 152.9 (±70.99) | 112.2 (±40.53) | 147.0 (±29.17) | 62.2 (±48.34) | 108.7 (±51.63) | 23.3 (±9.95) *^ | 24.3 (±8.66) *^˟ |
Load (p-value, ES) | p = 0.57, ηp2 = 0.03 | p = 0.46, ηp2 = 0.08 | p = 0.10, ηp2 = 0.09 | p = 0.70, ηp2 = 0.01 | p = 0.30, ηp2 = 0.05 | p = 0.46, ηp2 = 0.03 | p = 0.00, ηp2 = 0.40 | p = 0.00, ηp2 = 0.52 |
Group (p-value, ES) | p = 0.86, ηp2 = 0.00 | p = 0.38, ηp2 = 0.39 | p = 0.14, ηp2 = 0.09 | p = 0.20, ηp2 = 0.07 | p = 0.69, ηp2 = 0.00 | p = 0.33, ηp2 = 0.04 | p = 0.79, ηp2 = 0.00 | p = 0.13, ηp2 = 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osterwald, K.M.; Kelly, D.T.; Comyns, T.M.; Catháin, C.Ó. Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population. Sports 2021, 9, 137. https://doi.org/10.3390/sports9100137
Osterwald KM, Kelly DT, Comyns TM, Catháin CÓ. Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population. Sports. 2021; 9(10):137. https://doi.org/10.3390/sports9100137
Chicago/Turabian StyleOsterwald, Katja M., David T. Kelly, Thomas M. Comyns, and Ciarán Ó Catháin. 2021. "Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population" Sports 9, no. 10: 137. https://doi.org/10.3390/sports9100137
APA StyleOsterwald, K. M., Kelly, D. T., Comyns, T. M., & Catháin, C. Ó. (2021). Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population. Sports, 9(10), 137. https://doi.org/10.3390/sports9100137