Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Literature Search Methodology
2.3. Search Parameters and Criteria
2.4. Data Extraction
2.5. Assessment of Study Quality
3. Results
Intervention Type and Protocol | |||||||
---|---|---|---|---|---|---|---|
Authors [Reference No.] | Participants (Male/Female) | Age (Age ± SD Years) | WBC or PBC | Intervention Group | Control Group | Exposure and Period of Time | Results |
Costello et al. (2012) [29] | 12 healthy men and 6 healthy women in experimental and control group | 20.8 ± 1.2 | WBC | 20 s at −60 °C then 3 min in −110 °C | Both chambers set to 15 ± 3 °C | Two exposures with 2 h between each exposure | WBC had no effect on maximal voluntary isometric contraction and peak power output of the knee extensors. |
De Nardi et al. (2020) [31] | 11 healthy women | 28.0 ± 2.2 | PBC | 2.5 min at −130 °C to −170 °C | 2.5 min in a thermoneutral environment (22.0 ± 0.5 °C) | One exposure prior to same day testing | PBC exposure improved sit and reach flexibility scores (+2.8 cm) compared to control (+1 cm). Active knee extension was improved range of motion more after PBC (+11.8%) than control (−0.7%). |
De Nardi et al. (2017) [28] | 50 healthy men and 50 heathy women | Men: 42.4 ± 14.2 Women: 37.1 ± 9.3 | PBC | 2.5 min at −130 °C to −160 °C | 2.5 min in a thermoneutral environment (22.0 ± 0.5 °C) | One exposure prior to same day testing | PBC exposure improved grip strength in women after (+2.0 kg) compared with control (+0.5 kg) and in men (+1.5 kg) compared to the control (+0.5 kg). |
De Nardi et al. (2015) [27] | 60 healthy men and 60 healthy women | Men: 33.7 ± 9.9 Women: 32.8 ± 10.4 | WBC | 2.5 min at −130 °C to −140 °C | 2.5 min in a thermoneutral environment (22.0 ± 0.5 °C) | One exposure prior to same day testing | Increase in sit-and-reach score in men after WBC (+2.3 cm) compared to control (+0.2 cm) and in women in both WBC and control group (+3.1 cm and +0.8 cm, respectively). |
Ferreira-Junior et al. (2014) [30] | 13 healthy, physically active men | 27.9 ± 4.2 | PBC * | 3 min at −110 °C | 3 min in a thermoneutral environment (21 °C) | One exposure prior to same day testing | No significant difference from baseline for peak torque between WBC (+1.6 N.m) and control condition (+1.5 N.m). Unclear power output changes for both WBC and control (0.8 W and 0.8 W, respectively). |
Mila-Kierzenkowska et al. (2013) [36] | 18 professional male volleyball athletes | 28.3 ± 4.0 | WBC | 10–20 s at −10 °C then 2 min at −130 °C | No exposure to cryogenic temperatures | One exposure prior to same day testing | CAT was two times higher pre-post in control condition (+10%) and two times lower in WBC condition (−0.5%). IL-6 was significantly lower after WBC (−14%) exposure compared to control (+124%). |
Mila-Kierzenkowska et al. (2011) [38] | Nine Olympic team female kayakers | 23.9 ± 3.2 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures | Twice a day exposure over a 10-day training cycle | Decreased concentrations of ASA (43%), AcP (40%) after 6 days of cryostimulation. |
Mila-Kierzenkowska et al. (2009) [33] | Nine professional female kayakers | 23.9 ± 3.2 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures | Twice a day exposure over a 10-day training cycle | Decreased concentration of SOD (−10%), CAT (−21%), TBARS were significantly reduced at both 6-days post-WBC exposure (−34%). |
Partridge et al. (2021) [32] | Twelve male rugby union athletes | PBC | 3 min at −140 °C | No exposure to cryogenic temperatures | One exposure 3 h before same day testing | Improved CMJ peak velocity (+4.9%), increase in sAA concentration (+131%) 15 min post-PBC, and improvements in perceived muscle soreness, mood and mental fatigue. | |
Wozniak et al. (2013) [34] | Six elite male rowers | 26.7 ± 3.6 | WBC | 3 min at −125 °C to −150 °C | No exposure to cryogenic temperatures prior to training | Twice a day exposure over a 6-day training cycle | Decrease in SOD (−44%), CD (−35%), GPx (−42%), and AcP (−50%) after 3-days of daily WBC exposure. TBARS concentration after 6 days of exposure decreased 50%. |
Wozniak et al. (2007) [37] | 20 Olympic team male kayakers and 10 untrained men | Athletes: 24.8 ± 4.1 Untrained: 26.9 ± 4.1 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures prior to training | Twice a day exposure over a 10-day training cycle | Decrease in CD in plasma by −46%, TBARS −24%, SOD −47% lower, and GPx −50% after 6 days of WBC exposure. |
Wozniak et al. (2007) [35] | 21 Olympic team male kayakers and 10 untrained men | Athletes: 24.6 ± 4.3 Untrained: 26.9 ± 4.1 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures prior to training | Three WBC exposures a day over a 10-day training cycle for athlete group and one WBC exposure a day for untrained men. | Decreased concentrations of ASA (46%), AcP (32%) and CK (34%) with WBC exposure 10-days of regular training. |
WBC: whole-body cryotherapy PBC: partial-body cryotherapy CAT: catalase IL-6: interleukin 6 ASA: arylsulfatase CK: creatine kinase sAA: salivary α-amylase | AcP: acid phosphatase SOD: superoxide dismutase TBARS: thiobarbituric acid reactive substance CD: conjugated dienes GPx: glutathione peroxidase CMJ: countermovement jump |
4. Discussion
4.1. Quality and Risk of Bias
4.2. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouzigon, R.; Grappe, F.; Ravier, G.; Dugue, B. Whole and partial-body cryostimulation/cryotherapy: Current technologies and practical applications. J. Therm. Biol. 2016, 61, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, H.E.; Mikkelsson, M.K.; Kautiainen, H.; Pohjolainen, T.H.; Leirisalo-Repo, M. Effectiveness of different cryotherapies on pain and disease activity in active rheumatoid arthritis. A randomised single blinded controlled trial. Clin. Exp. Rheumatol. 2006, 24, 295–301. [Google Scholar] [PubMed]
- Wilson, L.; Dimitriou, L.; Hills, F.; Gondek, M.; Cockburn, E. Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: A case of mind over matter? Eur. J. Appl. Physiol. 2019, 119, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.; Willoughby, D.S. The effectiveness of whole-body cryotherapy compared to cold water immersion: Implications for sport and exercise recovery. Int. J. Kinesio Sport Sci. 2016, 4, 32–39. [Google Scholar] [CrossRef][Green Version]
- Wujek-Krajewska, E.; Cudnoch-Jędrzejewska, A.; Puchalska, L.; Chybowska, B.; Janiszewski, M.; Klimczak, D.; Kuch, M. The influence of systemic cryotherapy on selected hemodynamic parameters and the assessment of the safety of its use in patients with successfully treated hypertension. Cryobiology 2017, 78, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Hohenauer, E.; Costello, J.T.; Deliens, T.; Clarys, P.; Stoop, R.; Clijsen, R. Partial-body cryotherapy (−135 °C) and cold-water immersion (10 °C) after muscle-damage in females. Scand. J. Med. Sci. Sports 2019, 30, 485–495. [Google Scholar] [CrossRef]
- Banfi, G.; Lombardi, G.; Colombini, A.; Melegati, G. Whole-body cryotherapy in athletes. Sports Med. 2010, 40, 509–517. [Google Scholar] [CrossRef]
- Zalewski, P.; Bitner, A.; Słomko, J.; Szrajda, J.; Klawe, J.J.; Tafil-Klawe, M.; Newton, J.L. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature. J. Therm. Biol. 2014, 45, 75–80. [Google Scholar] [CrossRef]
- Kwiecien, S.Y.; McHugh, M.P. The cold truth: The role of cryotherapy in the treatment of injury and recovery from exercise. Eur J. Appl. Physiol. 2021, 121, 2125–2142. [Google Scholar] [CrossRef]
- Hausswirth, C.; Louis, J.; Bieuzen, F.; Pournot, H.; Fournier, J.; Filliard, J.R.; Brisswalter, J. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS ONE 2011, 6, e27749. [Google Scholar] [CrossRef]
- Fuchs, C.J.; Kouw, I.W.K.; Churchward-Venne, T.A.; Smeets, J.S.J.; Senden, J.M.; Lichtenbelt, W.; Verdijk, L.B.; van Loon, L.J.C. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J. Physiol. 2020, 598, 755–772. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.M.; Birch, M.J.; Love, P.T.; Cook, P.C.; Bracken, P.R.; Taylor, P.T.; Swift, P.E.; Cockburn, P.E.; Finn, P.C.; Cunningham, P.D.; et al. The effects of a single whole-body cryotherapy exposure on physiological, performance, and perceptual responses of professional academy soccer players after repeated sprint exercise. J. Strength Cond. Res. 2017, 31, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Christophe, H.; Karine, S.; Yann Le, M.; François, B.; Jean-Robert, F.; Marielle, V.; Julien, L. Parasympathetic activity and blood catecholamine responses following a single partial-body cryostimulation and a whole-body cryostimulation. PLoS ONE 2013, 8, e72658. [Google Scholar] [CrossRef]
- Schaal, K.; Le Meur, Y.; Louis, J.; Filliard, J.-R.; Hellard, P.; Casazza, G.; Hausswirth, C. Whole-body cryostimulation limits overreaching in elite synchronized swimmers. Med. Sci. Sports Exerc. 2015, 47, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Stanek, A.; Romuk, E.; Wielkoszynski, T.; Bartus, S.; Cieslar, G.; Cholewka, A. Decreased lipid profile and oxidative stress in healthy subjects who underwent whole-body cryotherapy in closed cryochamber with subsequent kinesiotherapy. Oxid. Med. Cell Longev. 2019, 2019, 7524878. [Google Scholar] [CrossRef]
- Stanek, A.; Sieroń-Stołtny, K.; Romuk, E.; Cholewka, A.; Wielkoszyński, T.; Cieślar, G.; Kwiatek, S.; Sieroń, A.; Kawczyk-Krupka, A. Whole-body cryostimulation as an effective method of reducing oxidative stress in healthy men. Adv. Clin. Exp. Med. 2016, 25, 1281–1291. [Google Scholar] [CrossRef]
- Pournot, H.; Bieuzen, F.; Louis, J.; Fillard, J.-R.; Barbiche, E.; Hausswirth, C. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise (inflammatory response after whole-body cryotherapy). PLoS ONE 2011, 6, e22748. [Google Scholar] [CrossRef]
- Westerlund, T.; Uusitalo, A.; Smolander, J.; Mikkelsson, M. Heart rate variability in women exposed to very cold air (−110 °C) during whole-body cryotherapy. J. Therm. Biol. 2006, 31, 342–346. [Google Scholar] [CrossRef]
- Zalewski, P.; Klawe, J.J.; Pawlak, J.; Tafil-Klawe, M.; Newton, J. Thermal and hemodynamic response to whole-body cryostimulation in healthy subjects. Cryobiology 2013, 66, 295–302. [Google Scholar] [CrossRef]
- Douzi, W.; Dupuy, O.; Tanneau, M.; Boucard, G.; Bouzigon, R.; Dugué, B. 3-min whole body cryotherapy/cryostimulation after training in the evening improves sleep quality in physically active men. Eur. J. Sport Sci. 2019, 19, 860–867. [Google Scholar] [CrossRef]
- Kojima, C.; Kasai, N.; Kondo, C.; Ebi, K.; Goto, K. Post-exercise whole-body cryotherapy (−140 °C) increases energy intake in athletes. Nutrients 2018, 10, 893. [Google Scholar] [CrossRef]
- Partridge, E.M.; Cooke, J.; McKune, A.; Pyne, D.B. Whole-body cryotherapy: Potential to enhance athlete preparation for competition? Front. Physiol. 2019, 10, 1007. [Google Scholar] [CrossRef]
- Bernardo, W.M. PRISMA statement and PROSPERO. Int. Braz. J. Urol. 2017, 43, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 372, 89. [Google Scholar] [CrossRef] [PubMed]
- Black, N.; Downs, S. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar]
- O’Connor, S.R.; Tully, M.A.; Ryan, B.; Bradley, J.M.; Baxter, G.D.; McDonough, S.M. Failure of a numerical quality assessment scale to identify potential risk of bias in a systematic review: A comparison study. BMC Res. Notes 2015, 8, 224. [Google Scholar] [CrossRef]
- De Nardi, M.; La Torre, A.; Benis, R.; Sarabon, N.; Fonda, B. Acute effects of whole-body cryotherapy on sit-and-reach amplitude in women and men. Cryobiology 2015, 71, 511–513. [Google Scholar] [CrossRef]
- De Nardi, M.; Pizzigalli, L.; Benis, R.; Caffaro, F.; Micheletti Cremasco, M. Acute effects of partial-body cryotherapy on isometric strength: Maximum handgrip strength evaluation. J. Strength Cond. Res. 2017, 31, 3497–3502. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.T.; Algar, L.A.; Donnelly, A.E. Effects of whole-body cryotherapy (−110 °C) on proprioception and indices of muscle damage. Scand. J. Med. Sci. Sports 2012, 22, 190–198. [Google Scholar] [CrossRef]
- Ferreira-Junior, J.B.; Vieira, C.A.; Soares, S.R.; Guedes, R.; Rocha Junior, V.A.; Simoes, H.G.; Brown, L.E.; Bottaro, M. Effects of a single whole body cryotherapy (−110 °C) bout on neuromuscular performance of the elbow flexors during isokinetic exercise. Int. J. Sports Med. 2014, 35, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- De Nardi, M.; Facheris, C.; Ruggeri, P.; La Torre, A.; Codella, R. High-impact routines to ameliorate trunk and lower limbs flexibility in women. Int. J. Sports Med. 2020, 41, 1039–1046. [Google Scholar] [CrossRef]
- Partridge, E.M.; Cooke, J.; McKune, A.; Pyne, D.B. Application of acute pre-exercise partial-body cryotherapy promotes jump performance, salivary α-amylase and athlete readiness. Biol. Sport 2021, 39, 563–569. [Google Scholar] [CrossRef]
- Mila-Kierzenkowska, C.; Wozniak, A.; Wozniak, B.; Drewa, G.; Rakowski, A.; Jurecka, A.; Rajewski, R. Whole-body cryostimulation in kayaker women: A study of the effect of cryogenic temperatures on oxidative stress after the exercise. J. Sports Med. Phys. Fit. 2009, 49, 201–207. [Google Scholar]
- Wozniak, A.; Mila-Kierzenkowska, C.; Szpinda, M.; Chwalbinska-Moneta, J.; Augustynska, B.; Jurecka, A. Whole-body cryostimulation and oxidative stress in rowers: The preliminary results. Arch. Med. Sci. 2013, 9, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, A.; Wozniak, B.; Drewa, G.; Mila-Kierzenkowska, C. The effect of whole-body cryostimulation on the prooxidant-antioxidant balance in blood of elite kayakers after training. Eur. J. Appl. Physiol. 2007, 101, 533–537. [Google Scholar] [CrossRef]
- Mila-Kierzenkowska, C.; Jurecka, A.; Wozniak, A.; Szpinda, M.; Augustynska, B.; Wozniak, B. The effect of submaximal exercise preceded by single whole-body cryotherapy on the markers of oxidative stress and inflammation in blood of volleyball players. Oxid. Med. Cell Longev. 2013, 2013, 409567. [Google Scholar] [CrossRef]
- Wozniak, A.; Wozniak, B.; Drewa, G.; Mila-Kierzenkowska, C.; Rakowski, A. The effect of whole-body cryostimulation on lysosomal enzyme activity in kayakers during training. Eur. J. Appl. Physiol. 2007, 100, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Mila-Kierzenkowska, C.; Woźniak, A.; Boraczyński, T.; Jurecka, A.; Augustyńska, B.; Woźniak, B. The effect of whole-body cryostimulation on the activity of lysosomal enzymes in kayaker women after intense exercise. J. Therm. Biol. 2011, 36, 29–33. [Google Scholar] [CrossRef]
- Thain, P.K.; Bleakley, C.M.; Mitchell, A.C. Muscle reaction time during a simulated lateral ankle sprain after wet-ice application or cold-water immersion. J. Athl. Train. 2015, 50, 697–703. [Google Scholar] [CrossRef]
- Douzi, W.; Dugué, B.; Vinches, L.; Al Sayed, C.; Hallé, S.; Bosquet, L.; Dupuy, O. Cooling during exercise enhances performances, but the cooled body areas matter: A systematic review with meta-analyses. Scand. J. Med. Sci. Sports 2019, 29, 1660–1676. [Google Scholar] [CrossRef]
- Vassalle, C.; Del Turco, S.; Sabatino, L.; Basta, G.; Maltinti, M.; Sbrana, F.; Ndreu, R.; Mastorci, F.; Pingitore, A. New inflammatory and oxidative stress-based biomarker changes in response to a half-marathon in recreational athletes. J. Sports Med. Phys. Fit. 2020, 60, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Apor, P.; Rádi, A. Physical exercise, oxidative stress and damage. Orv. Hetil. 2006, 147, 1025–1031. [Google Scholar]
- Tanskanen, M.; Atalay, M.; Uusitalo, A. Altered oxidative stress in overtrained athletes. J. Sports Sci. 2010, 28, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.A.; Simpkin, A.J.; Moseley, S.; Turner, G.; Homer, M.; Redgrave, A.; Pedlar, C.R.; Burden, R. Increased oxidative stress in injured and ill elite international olympic rowers. Int. J. Sports Physiol. Perform. 2020, 15, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Córdova Martínez, A.; Martorell Pons, M.; Sureda Gomila, A.; Tur Marí, J.A.; Pons Biescas, A. Changes in circulating cytokines and markers of muscle damage in elite cyclists during a multi-stage competition. Clin. Physiol. Funct Imaging 2015, 35, 351–358. [Google Scholar] [CrossRef]
- Slattery, K.; Bentley, D.; Coutts, A.J. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: Implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med. 2015, 45, 453–471. [Google Scholar] [CrossRef]
- Pastor, R.; Tur, J.A. Antioxidant supplementation and adaptive response to training: A systematic review. Curr. Pharm. Des. 2019, 25, 1889–1912. [Google Scholar] [CrossRef]
- Bakońska-Pacoń, E.; Jethon, Z.; Podhorska-Okołów, M.; Dziegiel, P. Changes of lysosomal enzymes activity in the skeletal muscle fibers exposed to endurance exercise. Rocz. Akad. Med. Bialymst 2005, 50 (Suppl. 1), 284–287. [Google Scholar]
- Schott, L.H.; Terjung, R.L. The influence of exercise on muscle lysosomal enzymes. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 175–182. [Google Scholar] [CrossRef]
Study (Year Published) | Reporting | External Validity | Internal Validity (Bias) | Internal Validity (Confounding) | Power | Total Score | Quality of Study | |
---|---|---|---|---|---|---|---|---|
Total (28) | % | |||||||
Costello et al. (2012) | 8 | 3 | 5 | 4 | 0 | 20 | 71 | Good |
De Nardi et al. (2020) | 7 | 3 | 5 | 4 | 1 | 20 | 71 | Good |
De Nardi et al. (2017) | 7 | 3 | 4 | 4 | 0 | 18 | 64 | Fair |
De Nardi et al. (2015) | 7 | 2 | 5 | 4 | 0 | 18 | 64 | Fair |
Ferreira-Junior et al. (2014) | 9 | 2 | 5 | 3 | 1 | 20 | 71 | Good |
Mila-Kierzenkowska et al. (2013) | 7 | 3 | 5 | 4 | 0 | 19 | 67 | Fair |
Mila-Kierzenkowska et al. (2011) | 6 | 2 | 4 | 2 | 0 | 14 | 50 | Poor |
Mila-Kierzenkowska et al. (2009) | 5 | 2 | 4 | 3 | 0 | 14 | 50 | Poor |
Partridge et al. (2021) | 9 | 3 | 5 | 5 | 1 | 23 | 82 | Good |
Wozniak et al. (2013) | 6 | 3 | 4 | 3 | 0 | 16 | 57 | Fair |
Wozniak et al. (2007) | 5 | 2 | 4 | 4 | 0 | 15 | 53 | Fair |
Wozniak et al. (2007) | 6 | 2 | 4 | 4 | 0 | 16 | 57 | Fair |
Total for studies | 82 | 30 | 54 | 44 | 3 | |||
% for studies | 68.3 | 83.3 | 64.3 | 61.1 | 25.0 | |||
Average | 6.8 | 2.5 | 4.5 | 3.7 | 0.3 | 17.8 | 63.1 | Fair |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partridge, E.M.; Cooke, J.; McKune, A.J.; Pyne, D.B. Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review. Sports 2021, 9, 135. https://doi.org/10.3390/sports9100135
Partridge EM, Cooke J, McKune AJ, Pyne DB. Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review. Sports. 2021; 9(10):135. https://doi.org/10.3390/sports9100135
Chicago/Turabian StylePartridge, Emily M., Julie Cooke, Andrew J. McKune, and David B. Pyne. 2021. "Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review" Sports 9, no. 10: 135. https://doi.org/10.3390/sports9100135
APA StylePartridge, E. M., Cooke, J., McKune, A. J., & Pyne, D. B. (2021). Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review. Sports, 9(10), 135. https://doi.org/10.3390/sports9100135