Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Literature Search Methodology
2.3. Search Parameters and Criteria
2.4. Data Extraction
2.5. Assessment of Study Quality
3. Results
Intervention Type and Protocol | |||||||
---|---|---|---|---|---|---|---|
Authors [Reference No.] | Participants (Male/Female) | Age (Age ± SD Years) | WBC or PBC | Intervention Group | Control Group | Exposure and Period of Time | Results |
Costello et al. (2012) [29] | 12 healthy men and 6 healthy women in experimental and control group | 20.8 ± 1.2 | WBC | 20 s at −60 °C then 3 min in −110 °C | Both chambers set to 15 ± 3 °C | Two exposures with 2 h between each exposure | WBC had no effect on maximal voluntary isometric contraction and peak power output of the knee extensors. |
De Nardi et al. (2020) [31] | 11 healthy women | 28.0 ± 2.2 | PBC | 2.5 min at −130 °C to −170 °C | 2.5 min in a thermoneutral environment (22.0 ± 0.5 °C) | One exposure prior to same day testing | PBC exposure improved sit and reach flexibility scores (+2.8 cm) compared to control (+1 cm). Active knee extension was improved range of motion more after PBC (+11.8%) than control (−0.7%). |
De Nardi et al. (2017) [28] | 50 healthy men and 50 heathy women | Men: 42.4 ± 14.2 Women: 37.1 ± 9.3 | PBC | 2.5 min at −130 °C to −160 °C | 2.5 min in a thermoneutral environment (22.0 ± 0.5 °C) | One exposure prior to same day testing | PBC exposure improved grip strength in women after (+2.0 kg) compared with control (+0.5 kg) and in men (+1.5 kg) compared to the control (+0.5 kg). |
De Nardi et al. (2015) [27] | 60 healthy men and 60 healthy women | Men: 33.7 ± 9.9 Women: 32.8 ± 10.4 | WBC | 2.5 min at −130 °C to −140 °C | 2.5 min in a thermoneutral environment (22.0 ± 0.5 °C) | One exposure prior to same day testing | Increase in sit-and-reach score in men after WBC (+2.3 cm) compared to control (+0.2 cm) and in women in both WBC and control group (+3.1 cm and +0.8 cm, respectively). |
Ferreira-Junior et al. (2014) [30] | 13 healthy, physically active men | 27.9 ± 4.2 | PBC * | 3 min at −110 °C | 3 min in a thermoneutral environment (21 °C) | One exposure prior to same day testing | No significant difference from baseline for peak torque between WBC (+1.6 N.m) and control condition (+1.5 N.m). Unclear power output changes for both WBC and control (0.8 W and 0.8 W, respectively). |
Mila-Kierzenkowska et al. (2013) [36] | 18 professional male volleyball athletes | 28.3 ± 4.0 | WBC | 10–20 s at −10 °C then 2 min at −130 °C | No exposure to cryogenic temperatures | One exposure prior to same day testing | CAT was two times higher pre-post in control condition (+10%) and two times lower in WBC condition (−0.5%). IL-6 was significantly lower after WBC (−14%) exposure compared to control (+124%). |
Mila-Kierzenkowska et al. (2011) [38] | Nine Olympic team female kayakers | 23.9 ± 3.2 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures | Twice a day exposure over a 10-day training cycle | Decreased concentrations of ASA (43%), AcP (40%) after 6 days of cryostimulation. |
Mila-Kierzenkowska et al. (2009) [33] | Nine professional female kayakers | 23.9 ± 3.2 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures | Twice a day exposure over a 10-day training cycle | Decreased concentration of SOD (−10%), CAT (−21%), TBARS were significantly reduced at both 6-days post-WBC exposure (−34%). |
Partridge et al. (2021) [32] | Twelve male rugby union athletes | PBC | 3 min at −140 °C | No exposure to cryogenic temperatures | One exposure 3 h before same day testing | Improved CMJ peak velocity (+4.9%), increase in sAA concentration (+131%) 15 min post-PBC, and improvements in perceived muscle soreness, mood and mental fatigue. | |
Wozniak et al. (2013) [34] | Six elite male rowers | 26.7 ± 3.6 | WBC | 3 min at −125 °C to −150 °C | No exposure to cryogenic temperatures prior to training | Twice a day exposure over a 6-day training cycle | Decrease in SOD (−44%), CD (−35%), GPx (−42%), and AcP (−50%) after 3-days of daily WBC exposure. TBARS concentration after 6 days of exposure decreased 50%. |
Wozniak et al. (2007) [37] | 20 Olympic team male kayakers and 10 untrained men | Athletes: 24.8 ± 4.1 Untrained: 26.9 ± 4.1 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures prior to training | Twice a day exposure over a 10-day training cycle | Decrease in CD in plasma by −46%, TBARS −24%, SOD −47% lower, and GPx −50% after 6 days of WBC exposure. |
Wozniak et al. (2007) [35] | 21 Olympic team male kayakers and 10 untrained men | Athletes: 24.6 ± 4.3 Untrained: 26.9 ± 4.1 | WBC | 3 min at −120 °C to −140 °C | No exposure to cryogenic temperatures prior to training | Three WBC exposures a day over a 10-day training cycle for athlete group and one WBC exposure a day for untrained men. | Decreased concentrations of ASA (46%), AcP (32%) and CK (34%) with WBC exposure 10-days of regular training. |
WBC: whole-body cryotherapy PBC: partial-body cryotherapy CAT: catalase IL-6: interleukin 6 ASA: arylsulfatase CK: creatine kinase sAA: salivary α-amylase | AcP: acid phosphatase SOD: superoxide dismutase TBARS: thiobarbituric acid reactive substance CD: conjugated dienes GPx: glutathione peroxidase CMJ: countermovement jump |
4. Discussion
4.1. Quality and Risk of Bias
4.2. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouzigon, R.; Grappe, F.; Ravier, G.; Dugue, B. Whole and partial-body cryostimulation/cryotherapy: Current technologies and practical applications. J. Therm. Biol. 2016, 61, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, H.E.; Mikkelsson, M.K.; Kautiainen, H.; Pohjolainen, T.H.; Leirisalo-Repo, M. Effectiveness of different cryotherapies on pain and disease activity in active rheumatoid arthritis. A randomised single blinded controlled trial. Clin. Exp. Rheumatol. 2006, 24, 295–301. [Google Scholar] [PubMed]
- Wilson, L.; Dimitriou, L.; Hills, F.; Gondek, M.; Cockburn, E. Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: A case of mind over matter? Eur. J. Appl. Physiol. 2019, 119, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.; Willoughby, D.S. The effectiveness of whole-body cryotherapy compared to cold water immersion: Implications for sport and exercise recovery. Int. J. Kinesio Sport Sci. 2016, 4, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Wujek-Krajewska, E.; Cudnoch-Jędrzejewska, A.; Puchalska, L.; Chybowska, B.; Janiszewski, M.; Klimczak, D.; Kuch, M. The influence of systemic cryotherapy on selected hemodynamic parameters and the assessment of the safety of its use in patients with successfully treated hypertension. Cryobiology 2017, 78, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Hohenauer, E.; Costello, J.T.; Deliens, T.; Clarys, P.; Stoop, R.; Clijsen, R. Partial-body cryotherapy (−135 °C) and cold-water immersion (10 °C) after muscle-damage in females. Scand. J. Med. Sci. Sports 2019, 30, 485–495. [Google Scholar] [CrossRef]
- Banfi, G.; Lombardi, G.; Colombini, A.; Melegati, G. Whole-body cryotherapy in athletes. Sports Med. 2010, 40, 509–517. [Google Scholar] [CrossRef]
- Zalewski, P.; Bitner, A.; Słomko, J.; Szrajda, J.; Klawe, J.J.; Tafil-Klawe, M.; Newton, J.L. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature. J. Therm. Biol. 2014, 45, 75–80. [Google Scholar] [CrossRef]
- Kwiecien, S.Y.; McHugh, M.P. The cold truth: The role of cryotherapy in the treatment of injury and recovery from exercise. Eur J. Appl. Physiol. 2021, 121, 2125–2142. [Google Scholar] [CrossRef]
- Hausswirth, C.; Louis, J.; Bieuzen, F.; Pournot, H.; Fournier, J.; Filliard, J.R.; Brisswalter, J. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS ONE 2011, 6, e27749. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.J.; Kouw, I.W.K.; Churchward-Venne, T.A.; Smeets, J.S.J.; Senden, J.M.; Lichtenbelt, W.; Verdijk, L.B.; van Loon, L.J.C. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J. Physiol. 2020, 598, 755–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.M.; Birch, M.J.; Love, P.T.; Cook, P.C.; Bracken, P.R.; Taylor, P.T.; Swift, P.E.; Cockburn, P.E.; Finn, P.C.; Cunningham, P.D.; et al. The effects of a single whole-body cryotherapy exposure on physiological, performance, and perceptual responses of professional academy soccer players after repeated sprint exercise. J. Strength Cond. Res. 2017, 31, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christophe, H.; Karine, S.; Yann Le, M.; François, B.; Jean-Robert, F.; Marielle, V.; Julien, L. Parasympathetic activity and blood catecholamine responses following a single partial-body cryostimulation and a whole-body cryostimulation. PLoS ONE 2013, 8, e72658. [Google Scholar] [CrossRef] [Green Version]
- Schaal, K.; Le Meur, Y.; Louis, J.; Filliard, J.-R.; Hellard, P.; Casazza, G.; Hausswirth, C. Whole-body cryostimulation limits overreaching in elite synchronized swimmers. Med. Sci. Sports Exerc. 2015, 47, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Stanek, A.; Romuk, E.; Wielkoszynski, T.; Bartus, S.; Cieslar, G.; Cholewka, A. Decreased lipid profile and oxidative stress in healthy subjects who underwent whole-body cryotherapy in closed cryochamber with subsequent kinesiotherapy. Oxid. Med. Cell Longev. 2019, 2019, 7524878. [Google Scholar] [CrossRef] [Green Version]
- Stanek, A.; Sieroń-Stołtny, K.; Romuk, E.; Cholewka, A.; Wielkoszyński, T.; Cieślar, G.; Kwiatek, S.; Sieroń, A.; Kawczyk-Krupka, A. Whole-body cryostimulation as an effective method of reducing oxidative stress in healthy men. Adv. Clin. Exp. Med. 2016, 25, 1281–1291. [Google Scholar] [CrossRef] [Green Version]
- Pournot, H.; Bieuzen, F.; Louis, J.; Fillard, J.-R.; Barbiche, E.; Hausswirth, C. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise (inflammatory response after whole-body cryotherapy). PLoS ONE 2011, 6, e22748. [Google Scholar] [CrossRef]
- Westerlund, T.; Uusitalo, A.; Smolander, J.; Mikkelsson, M. Heart rate variability in women exposed to very cold air (−110 °C) during whole-body cryotherapy. J. Therm. Biol. 2006, 31, 342–346. [Google Scholar] [CrossRef]
- Zalewski, P.; Klawe, J.J.; Pawlak, J.; Tafil-Klawe, M.; Newton, J. Thermal and hemodynamic response to whole-body cryostimulation in healthy subjects. Cryobiology 2013, 66, 295–302. [Google Scholar] [CrossRef]
- Douzi, W.; Dupuy, O.; Tanneau, M.; Boucard, G.; Bouzigon, R.; Dugué, B. 3-min whole body cryotherapy/cryostimulation after training in the evening improves sleep quality in physically active men. Eur. J. Sport Sci. 2019, 19, 860–867. [Google Scholar] [CrossRef]
- Kojima, C.; Kasai, N.; Kondo, C.; Ebi, K.; Goto, K. Post-exercise whole-body cryotherapy (−140 °C) increases energy intake in athletes. Nutrients 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Partridge, E.M.; Cooke, J.; McKune, A.; Pyne, D.B. Whole-body cryotherapy: Potential to enhance athlete preparation for competition? Front. Physiol. 2019, 10, 1007. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, W.M. PRISMA statement and PROSPERO. Int. Braz. J. Urol. 2017, 43, 383–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 372, 89. [Google Scholar] [CrossRef] [PubMed]
- Black, N.; Downs, S. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar]
- O’Connor, S.R.; Tully, M.A.; Ryan, B.; Bradley, J.M.; Baxter, G.D.; McDonough, S.M. Failure of a numerical quality assessment scale to identify potential risk of bias in a systematic review: A comparison study. BMC Res. Notes 2015, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- De Nardi, M.; La Torre, A.; Benis, R.; Sarabon, N.; Fonda, B. Acute effects of whole-body cryotherapy on sit-and-reach amplitude in women and men. Cryobiology 2015, 71, 511–513. [Google Scholar] [CrossRef]
- De Nardi, M.; Pizzigalli, L.; Benis, R.; Caffaro, F.; Micheletti Cremasco, M. Acute effects of partial-body cryotherapy on isometric strength: Maximum handgrip strength evaluation. J. Strength Cond. Res. 2017, 31, 3497–3502. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.T.; Algar, L.A.; Donnelly, A.E. Effects of whole-body cryotherapy (−110 °C) on proprioception and indices of muscle damage. Scand. J. Med. Sci. Sports 2012, 22, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Junior, J.B.; Vieira, C.A.; Soares, S.R.; Guedes, R.; Rocha Junior, V.A.; Simoes, H.G.; Brown, L.E.; Bottaro, M. Effects of a single whole body cryotherapy (−110 °C) bout on neuromuscular performance of the elbow flexors during isokinetic exercise. Int. J. Sports Med. 2014, 35, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- De Nardi, M.; Facheris, C.; Ruggeri, P.; La Torre, A.; Codella, R. High-impact routines to ameliorate trunk and lower limbs flexibility in women. Int. J. Sports Med. 2020, 41, 1039–1046. [Google Scholar] [CrossRef]
- Partridge, E.M.; Cooke, J.; McKune, A.; Pyne, D.B. Application of acute pre-exercise partial-body cryotherapy promotes jump performance, salivary α-amylase and athlete readiness. Biol. Sport 2021, 39, 563–569. [Google Scholar] [CrossRef]
- Mila-Kierzenkowska, C.; Wozniak, A.; Wozniak, B.; Drewa, G.; Rakowski, A.; Jurecka, A.; Rajewski, R. Whole-body cryostimulation in kayaker women: A study of the effect of cryogenic temperatures on oxidative stress after the exercise. J. Sports Med. Phys. Fit. 2009, 49, 201–207. [Google Scholar]
- Wozniak, A.; Mila-Kierzenkowska, C.; Szpinda, M.; Chwalbinska-Moneta, J.; Augustynska, B.; Jurecka, A. Whole-body cryostimulation and oxidative stress in rowers: The preliminary results. Arch. Med. Sci. 2013, 9, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, A.; Wozniak, B.; Drewa, G.; Mila-Kierzenkowska, C. The effect of whole-body cryostimulation on the prooxidant-antioxidant balance in blood of elite kayakers after training. Eur. J. Appl. Physiol. 2007, 101, 533–537. [Google Scholar] [CrossRef]
- Mila-Kierzenkowska, C.; Jurecka, A.; Wozniak, A.; Szpinda, M.; Augustynska, B.; Wozniak, B. The effect of submaximal exercise preceded by single whole-body cryotherapy on the markers of oxidative stress and inflammation in blood of volleyball players. Oxid. Med. Cell Longev. 2013, 2013, 409567. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, A.; Wozniak, B.; Drewa, G.; Mila-Kierzenkowska, C.; Rakowski, A. The effect of whole-body cryostimulation on lysosomal enzyme activity in kayakers during training. Eur. J. Appl. Physiol. 2007, 100, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Mila-Kierzenkowska, C.; Woźniak, A.; Boraczyński, T.; Jurecka, A.; Augustyńska, B.; Woźniak, B. The effect of whole-body cryostimulation on the activity of lysosomal enzymes in kayaker women after intense exercise. J. Therm. Biol. 2011, 36, 29–33. [Google Scholar] [CrossRef]
- Thain, P.K.; Bleakley, C.M.; Mitchell, A.C. Muscle reaction time during a simulated lateral ankle sprain after wet-ice application or cold-water immersion. J. Athl. Train. 2015, 50, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Douzi, W.; Dugué, B.; Vinches, L.; Al Sayed, C.; Hallé, S.; Bosquet, L.; Dupuy, O. Cooling during exercise enhances performances, but the cooled body areas matter: A systematic review with meta-analyses. Scand. J. Med. Sci. Sports 2019, 29, 1660–1676. [Google Scholar] [CrossRef]
- Vassalle, C.; Del Turco, S.; Sabatino, L.; Basta, G.; Maltinti, M.; Sbrana, F.; Ndreu, R.; Mastorci, F.; Pingitore, A. New inflammatory and oxidative stress-based biomarker changes in response to a half-marathon in recreational athletes. J. Sports Med. Phys. Fit. 2020, 60, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Apor, P.; Rádi, A. Physical exercise, oxidative stress and damage. Orv. Hetil. 2006, 147, 1025–1031. [Google Scholar]
- Tanskanen, M.; Atalay, M.; Uusitalo, A. Altered oxidative stress in overtrained athletes. J. Sports Sci. 2010, 28, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.A.; Simpkin, A.J.; Moseley, S.; Turner, G.; Homer, M.; Redgrave, A.; Pedlar, C.R.; Burden, R. Increased oxidative stress in injured and ill elite international olympic rowers. Int. J. Sports Physiol. Perform. 2020, 15, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Córdova Martínez, A.; Martorell Pons, M.; Sureda Gomila, A.; Tur Marí, J.A.; Pons Biescas, A. Changes in circulating cytokines and markers of muscle damage in elite cyclists during a multi-stage competition. Clin. Physiol. Funct Imaging 2015, 35, 351–358. [Google Scholar] [CrossRef]
- Slattery, K.; Bentley, D.; Coutts, A.J. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: Implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med. 2015, 45, 453–471. [Google Scholar] [CrossRef]
- Pastor, R.; Tur, J.A. Antioxidant supplementation and adaptive response to training: A systematic review. Curr. Pharm. Des. 2019, 25, 1889–1912. [Google Scholar] [CrossRef]
- Bakońska-Pacoń, E.; Jethon, Z.; Podhorska-Okołów, M.; Dziegiel, P. Changes of lysosomal enzymes activity in the skeletal muscle fibers exposed to endurance exercise. Rocz. Akad. Med. Bialymst 2005, 50 (Suppl. 1), 284–287. [Google Scholar]
- Schott, L.H.; Terjung, R.L. The influence of exercise on muscle lysosomal enzymes. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 175–182. [Google Scholar] [CrossRef]
Study (Year Published) | Reporting | External Validity | Internal Validity (Bias) | Internal Validity (Confounding) | Power | Total Score | Quality of Study | |
---|---|---|---|---|---|---|---|---|
Total (28) | % | |||||||
Costello et al. (2012) | 8 | 3 | 5 | 4 | 0 | 20 | 71 | Good |
De Nardi et al. (2020) | 7 | 3 | 5 | 4 | 1 | 20 | 71 | Good |
De Nardi et al. (2017) | 7 | 3 | 4 | 4 | 0 | 18 | 64 | Fair |
De Nardi et al. (2015) | 7 | 2 | 5 | 4 | 0 | 18 | 64 | Fair |
Ferreira-Junior et al. (2014) | 9 | 2 | 5 | 3 | 1 | 20 | 71 | Good |
Mila-Kierzenkowska et al. (2013) | 7 | 3 | 5 | 4 | 0 | 19 | 67 | Fair |
Mila-Kierzenkowska et al. (2011) | 6 | 2 | 4 | 2 | 0 | 14 | 50 | Poor |
Mila-Kierzenkowska et al. (2009) | 5 | 2 | 4 | 3 | 0 | 14 | 50 | Poor |
Partridge et al. (2021) | 9 | 3 | 5 | 5 | 1 | 23 | 82 | Good |
Wozniak et al. (2013) | 6 | 3 | 4 | 3 | 0 | 16 | 57 | Fair |
Wozniak et al. (2007) | 5 | 2 | 4 | 4 | 0 | 15 | 53 | Fair |
Wozniak et al. (2007) | 6 | 2 | 4 | 4 | 0 | 16 | 57 | Fair |
Total for studies | 82 | 30 | 54 | 44 | 3 | |||
% for studies | 68.3 | 83.3 | 64.3 | 61.1 | 25.0 | |||
Average | 6.8 | 2.5 | 4.5 | 3.7 | 0.3 | 17.8 | 63.1 | Fair |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partridge, E.M.; Cooke, J.; McKune, A.J.; Pyne, D.B. Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review. Sports 2021, 9, 135. https://doi.org/10.3390/sports9100135
Partridge EM, Cooke J, McKune AJ, Pyne DB. Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review. Sports. 2021; 9(10):135. https://doi.org/10.3390/sports9100135
Chicago/Turabian StylePartridge, Emily M., Julie Cooke, Andrew J. McKune, and David B. Pyne. 2021. "Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review" Sports 9, no. 10: 135. https://doi.org/10.3390/sports9100135
APA StylePartridge, E. M., Cooke, J., McKune, A. J., & Pyne, D. B. (2021). Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review. Sports, 9(10), 135. https://doi.org/10.3390/sports9100135