Relationships between Resisted Sprint Performance and Different Strength and Power Measures in Rugby Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.3.1. Sprint Test for Individual Regression Equation Computation
2.3.2. Jump Tests
2.3.3. Specific Isometric Strength Test
2.3.4. Isometric Squat Strength Test
2.3.5. Squat 1RM Estimation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindsay, A.; Draper, N.; Lewis, J.; Gieseg, S.P.; Gill, N. Positional demands of professional rugby. Eur. J. Sport Sci. 2015, 15, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hoffman, J.R.; Tanigawa, S.; Miramonti, A.A.; La Monica, M.B.; Beyer, K.S.; Church, D.D.; Fukuda, D.H.; Stout, J.R. Isometric mid-thigh pull correlates with strength; sprint; and agility performance in collegiate rugby union players. J. Strength Cond. Res. 2016, 30, 3051–3056. [Google Scholar] [CrossRef] [Green Version]
- Chiwaridzo, M.; Ferguson, G.D.; Smits-Engelsman, B.C.M. A systematic review protocol investigating tests for physical or physiological qualities and game-specific skills commonly used in rugby and related sports and their psychometric properties. Syst. Rev. 2016, 5, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, M.R.; Brughelli, M.; Brown, S.R.; Samozino, P.; Gill, N.D.; Cronin, J.B.; Morin, J.B. Mechanical properties of sprinting in elite rugby union and rugby league. Int. J. Sports Physiol. Perform. 2015, 10, 695–702. [Google Scholar] [CrossRef] [PubMed]
- McMorrow, B.J.; Ditroilo, M.; Egan, B. Effect of heavy resisted sled sprint training during the competitive season on sprint and change-of-direction performance in professional soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.J.; Bourke, G. The effect of resisted sprint training on speed and strength performance in male rugby players. J. Strength Cond. Res. 2009, 23, 275–283. [Google Scholar] [CrossRef]
- Behrens, M.J.; Simonson, S.R. A comparison of the various methods used to enhance sprint speed. Strength Cond. J. 2011, 33, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Petrakos, G.; Morin, J.-B.; Egan, B. Resisted sled sprint training to improve sprint performance: A systematic review. Sport Med. 2016, 46, 381–400. [Google Scholar] [CrossRef]
- Martínez-Valencia, M.A.; Romero-Arenas, S.; Elvira, J.L.L.; González-Ravé, J.M.; Navarro-Valdivielso, F.; Alcaraz, P.E. Effects of sled towing on peak force, the rate of force development and sprint performance during the acceleration phase. J. Hum. Kinet. 2015, 46, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. The effectiveness of resisted sled training (rst) for sprint performance: A systematic review and meta-analysis. Sport Med. 2018, 48, 2143–2165. [Google Scholar] [CrossRef]
- Bachero-Mena, B.; González-Badillo, J.J. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass. J. Strength Cond. Res. 2014, 28, 2954–2960. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, P.E.; Elvira, J.L.L.; Palao, J.M. Kinematic, strength, and stiffness adaptations after a short-term sled towing training in athletes. Scand. J. Med. Sci. Sports 2014, 24, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Linthorne, N.P.; Cooper, J.E. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise. Sport Biomech. 2013, 12, 175–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, W.J.; Newton, R.U. Training for muscular power. Phys. Med. Rehabil. Clin. N. Am. 2000, 11, 341–368. [Google Scholar] [CrossRef]
- Bachero-Mena, B.; Pareja-Blanco, F.; Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; González-Badillo, J.J. Relationships between sprint, jumping and strength abilities, and 800 m performance in male athletes of national and international levels. J. Hum. Kinet. 2017, 58, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Brady, C.J.; Harrison, A.J.; Flanagan, E.P.; Haff, G.G.; Comyns, T.M. The relationship between isometric strength and sprint acceleration in sprinters. Int. J. Sports Physiol. Perform. 2019, 1, 1–8. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Brughelli, M.; Morin, J.-B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 2018, 6, e5937. [Google Scholar] [CrossRef]
- McBride, J.M.; Blow, D.; Kirby, T.J.; Haines, T.L.; Dayne, A.M.; Triplett, N.T. Relationship between maximal squat strength and five, ten, and forty-yard sprint times. J. Strength Cond. Res. 2009, 23, 1633–1636. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sport Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Pain, M.T.G.; Folland, J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J. Sports Sci. 2013, 31, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.M. A framework for the physical development of elite rugby union players. Int. J. Sports Physiol. Perform. 2006, 1, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Jalilvand, F.; Banoocy, N.K.; Rumpf, M.C.; Lockie, R.G. Relationship between body mass, peak power, and power-to-body mass ratio on sprint velocity and momentum in high-school football players. J. Strength Cond. Res. 2018, 33, 1871–1877. [Google Scholar] [CrossRef]
- Baker, D.G.; Newton, R.U. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J. Strength Cond. Res. 2008, 22, 153–158. [Google Scholar] [CrossRef]
- Loturco, I.; D’Angelo, R.A.; Fernandes, V.; Gil, S.; Kobal, R.; Abad, C.C.C.; Kitamura, K.; Nakamura, F.Y. Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters. J. Strength Cond. Res. 2015, 29, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Vivancos, A.; Zambudio, A.; Ramírez, F.; Del Águila, A.; Castrillón, F.; Pardo, P. OC14 Reliability and validity of a linear position transducer for strength assessment. Br. J. Sports Med. 2014, 48, A5. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pallarés, J.; Pérez, C.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of relative load from bar velocity in the full back squat exercise. Sport Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioural Sciences, 3rd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar]
- De Lacey, J.; Brughelli, M.E.; Mcguigan, M.R.; Hansen, K.T. Strength, speed and power characteristics of elite rugby league players. J. Strength Cond. Res. 2014, 28, 2372–2375. [Google Scholar] [CrossRef]
- Loturco, I.; Contreras, B.; Kobal, R.; Fernandes, V.; Moura, N.; Siqueira, F.; Winckler, C.; Suchomel, T.; Pereira, L.A. Vertically and horizontally directed muscle power exercises: Relationships with top-level sprint performance. PLoS ONE 2018, 13, e0201475. [Google Scholar] [CrossRef]
- Cronin, J.; Hansen, K. Strength and power predictors of sport speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar]
- Cunningham, D.; West, D.; Owen, N.; Shearer, D.; Finn, C.; Bracken, R.; Crewther, B.T.; Scott, P.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of sprinting performance in professional rugby players. J. Sports Med. Phys. Fitness 2013, 53, 105–111. [Google Scholar]
- Hansen, K.T.; Cronin, J.B.; Pickering, S.L.; Douglas, L. Do force–time and power–time measures in a loaded jump squat differentiate between speed performance and playing level in elite and elite junior rugby union players? J. Strength Cond. Res. 2011, 25, 2382–2391. [Google Scholar] [CrossRef]
- Martínez-Valencia, M.A.; González-Ravé, J.M.; Santos-García, D.J.; Alcaraz, P.E.; Navarro-Valdivielso, F. Interrelationships between different loads in resisted sprints, half-squat 1 RM and kinematic variables in trained athletes. Eur. J. Sport Sci. 2014, 14, 37–41. [Google Scholar] [CrossRef]
- Furlong, L.M.; Harrison, A.J.; Jensen, R.L. Measures of strength and jump performance can predict 30-m sprint time in rugby union players. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
CMJ (cm) | SJ (cm) | CMJ PPrel (W·kg−1) | SJ PPrel (W·kg−1) |
33.36 ± 6.28 | 30.09 ± 5.16 | 51.48 ± 6.67 | 49.65 ± 6.64 |
1RM-SQ (kg) | 1RM-SQrel (kg·kg−1) | ISQTrel (N·kg−1) | ISQT (N) |
113.90 ± 23.73 | 1.41 ± 0.19 | 20.38 ± 4.68 | 1650.49 ± 521.97 |
SISTrel (N·kg−1) | SIST (N) | T30 (s) | T30-20BM (s) |
12.70 ± 1.76 | 1017.93 ± 246.66 | 4.32 ± 0.24 | 5.32 ± 0.42 |
T30-40BM (s) | T30-60BM (s) | T30-80BM (s) | L10% (kg) |
6.45 ± 0.67 | 7.78 ± 1.00 | 10.30 ± 1.52 | 9.53 ± 1.36 |
L30% (kg) | L50% (kg) | VMax (m·s−1) | - |
31.38 ± 2.93 | 53.23 ± 4.99 | 8.19 ± 0.55 | - |
Variables | Correlations | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jumps | Strength | RST Loads | Unresisted and RST Times | |||||||||||
CMJ | SJ | 1RM-SQ | 1RM-SQrel | ISQTrel | ISQT | L10% | L30% | L50% | VMAX | T30 | T30-20BM | T30-40BM | T30-60BM | |
SJ | 0.905 ** | - | - | - | - | - | - | - | - | - | - | - | - | - |
1RM-SQ | −0.186 | −0.262 | - | - | - | - | - | - | - | - | - | - | - | - |
1RM-SQrel | 0.510 * | 0.345 | 0.501 * | - | - | - | - | - | - | - | - | - | - | - |
ISQTrel | 0.198 | −0.014 | 0.605 ** | 0.633 ** | - | - | - | - | - | - | - | - | - | - |
ISQT | 0.132 | −0.116 | 0.761 ** | 0.423 | 0.868 ** | - | - | - | - | - | - | - | - | - |
L10% | 0.362 | 0.566 ** | −0.369 | −0.043 | −0.444 | −0.553 * | - | - | - | - | - | - | - | - |
L30% | 0.370 | 0.446 * | −0.146 | 0.073 | −0.143 | −0.302 | 0.712 ** | - | - | - | - | - | - | - |
L50% | 0.336 | 0.370 | −0.159 | 0.097 | −0.128 | −0.204 | 0.564 ** | 0.981 ** | - | - | - | - | - | - |
VMAX | 0.747 ** | 0.795 ** | −0.170 | 0.447 * | −0.014 | −0.209 | 0.559 * | 0.324 | 0.228 | - | - | - | - | - |
T30 | −0.734 ** | −0.787 ** | 0.084 | −0.534 * | 0.059 | 0.168 | −0.560 * | −0.342 | −0.249 | −0.977 ** | - | - | - | - |
T30-20BM | −0.671 ** | −0.744 ** | 0.090 | −0.379 | 0.053 | 0.307 | −0.724 ** | −0.414 | −0.288 | −0.944 ** | 0.933 ** | - | - | - |
T30-40BM | −0.688 ** | -0.645 ** | 0.183 | −0.362 | 0.036 | 0.241 | −0.638 ** | −0.399 | −0.409 | −0.709 ** | 0.691 ** | 0.776 ** | - | - |
T30−60BM | −0.655 ** | −0.728 ** | 0.210 | −0.336 | −0.059 | 0.279 | −0.672 ** | −0.633 ** | −0.561 * | −0.839 ** | 0.800 ** | 0.787 ** | 0.695 ** | - |
T30-80BM | −0.833 ** | −0.689 ** | 0.153 | −0.340 | −0.028 | 0.126 | −0.482 * | −0.485 * | −0.505 * | −0.761 ** | 0.680 ** | 0.815 ** | 0.675 ** | 0.638 ** |
Variables | SISTrel | SIST | ||||
---|---|---|---|---|---|---|
Correlations | p-Value | Description | Correlations | p-Value | Description | |
CMJ (cm) | 0.211 | 0.373 | weak | −0.328 | 0.158 | weak |
SJ (cm) | 0.284 | 0.225 | weak | −0.299 | 0.200 | weak |
CMJ-PPrel (W·kg−1) | 0.290 | 0.214 | weak | −0.221 | 0.349 | weak |
SJ-PPrel (W·kg−1) | 0.293 | 0.210 | weak | −0.281 | 0.231 | weak |
1RM-SQ (kg) | 0.210 | 0.930 | weak | 0.674 | <0.001 ** | moderate |
1RM-SQrel (kg·kg−1) | −0.039 | 0.870 | weak | −0.023 | 0.925 | weak |
ISQTrel (N·kg−1) | −0.071 | 0.767 | weak | 0.349 | 0.122 | weak |
ISQT (N) | −0.027 | 0.910 | weak | 0.681 | <0.001 ** | moderate |
SISTrel (N·kg−1) | - | - | - | 0.453 | 0.045 * | moderate |
SIST (N) | 0.453 | 0.045 * | moderate | - | - | - |
L10% (kg) | 0.508 | 0.022 * | moderate | −0.302 | 0.195 | weak |
L30% (kg) | 0.675 | <0.001 ** | moderate | −0.008 | 0.975 | weak |
L50% (kg) | 0.645 | 0.002 ** | moderate | −0.021 | 0.930 | weak |
VMax (m·s−1) | 0.049 | 0.838 | weak | −0.315 | 0.176 | weak |
T30 (s) | −0.120 | 0.613 | weak | 0.269 | 0.252 | weak |
T30-20%BM (s) | 0.014 | 0.952 | weak | 0.358 | 0.121 | weak |
T30-40%BM (s) | −0.046 | 0.848 | weak | 0.453 | 0.045 * | moderate |
T30-60%BM (s) | −0.310 | 0.184 | weak | 0.239 | 0.310 | weak |
T30-80%BM (s) | −0.037 | 0.877 | weak | 0.377 | 0.101 | weak |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabaloy, S.; Carlos-Vivas, J.; Freitas, T.T.; Pareja-Blanco, F.; Pereira, L.; Loturco, I.; Comyns, T.; Gálvez-González, J.; Alcaraz, P.E. Relationships between Resisted Sprint Performance and Different Strength and Power Measures in Rugby Players. Sports 2020, 8, 34. https://doi.org/10.3390/sports8030034
Zabaloy S, Carlos-Vivas J, Freitas TT, Pareja-Blanco F, Pereira L, Loturco I, Comyns T, Gálvez-González J, Alcaraz PE. Relationships between Resisted Sprint Performance and Different Strength and Power Measures in Rugby Players. Sports. 2020; 8(3):34. https://doi.org/10.3390/sports8030034
Chicago/Turabian StyleZabaloy, Santiago, Jorge Carlos-Vivas, Tomás T. Freitas, Fernando Pareja-Blanco, Lucas Pereira, Irineu Loturco, Thomas Comyns, Javier Gálvez-González, and Pedro E. Alcaraz. 2020. "Relationships between Resisted Sprint Performance and Different Strength and Power Measures in Rugby Players" Sports 8, no. 3: 34. https://doi.org/10.3390/sports8030034
APA StyleZabaloy, S., Carlos-Vivas, J., Freitas, T. T., Pareja-Blanco, F., Pereira, L., Loturco, I., Comyns, T., Gálvez-González, J., & Alcaraz, P. E. (2020). Relationships between Resisted Sprint Performance and Different Strength and Power Measures in Rugby Players. Sports, 8(3), 34. https://doi.org/10.3390/sports8030034