The Impact of an Ice Slurry-Induced Gastrointestinal Heat Sink on Gastrointestinal and Rectal Temperatures Following Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Overview of the Study
2.3. Preliminary Visit
2.4. Pre-Experimental Protocol
2.5. Experimental Protocol
2.6. Measurements and Procedures
2.7. Statistical Analyses
3. Results
3.1. Temperature and Relative Humidity
3.2. Fluid Balance
3.3. Exercise Time, Heart Rate, and Exercise Intensity
3.4. Mean Skin Temperature
3.5. Heat Sink
3.6. Gastrointestinal and Rectal Temperatures
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Byrne, C.; Lim, C.L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. Br. J. Sports Med. 2007, 41, 126–133. [Google Scholar] [CrossRef]
- Casa, D.J.; Becker, S.M.; Ganio, M.S.; Brown, C.M.; Yeargin, S.W.; Roti, M.W.; Siegler, J.; Blowers, J.A.; Glaviano, N.R.; Huggins, R.A.; et al. Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat. J. Athl. Train. 2007, 42, 333–342. [Google Scholar] [PubMed]
- Bongers, C.C.; Hopman, M.T.; Eijsvogels, T.M. Using an Ingestible Telemetric Temperature Pill to Assess Gastrointestinal Temperature During Exercise. J. Vis. Exp. 2015, 104, e53258. [Google Scholar] [CrossRef] [PubMed]
- Savoie, F.A.; Dion, T.; Asselin, A.; Gariepy, C.; Boucher, P.M.; Berrigan, F.; Goulet, E.D.B. Intestinal temperature does not reflect rectal temperature during prolonged, intense running with cold fluid ingestion. Physiol. Meas. 2015, 36, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Easton, C.; Fudge, B.W.; Pitsiladis, Y.P. Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J. Therm. Boil. 2007, 32, 78–86. [Google Scholar] [CrossRef]
- Wilkinson, D.M.; Carter, J.M.; Richmond, V.L.; Blacker, S.D.; Rayson, M.P. The Effect of Cool Water Ingestion on Gastrointestinal Pill Temperature. Med. Sci. Sports Exerc. 2008, 40, 523–528. [Google Scholar] [CrossRef]
- Birkebaek, N.H.; Memmert, K.; Mortensen, J.; Dirksen, H.; Christensen, M.F. Fractional gastrointestinal transit time: Intra- and interindividual variation. Nucl. Med. Commun. 1990, 11, 247–252. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.; Osgood, D. Validation of a new telemetric core temperature monitor. J. Therm. Boil. 2004, 29, 605–611. [Google Scholar] [CrossRef]
- Siegel, R.; Maté, J.; Brearley, M.B.; Watson, G.; Nosaka, K.; Laursen, P.B. Ice Slurry Ingestion Increases Core Temperature Capacity and Running Time in the Heat. Med. Sci. Sports Exerc. 2010, 42, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Ihsan, M.; Landers, G.; Brearley, M.; Peeling, P. Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. Int. J. Sports Physiol. Perform. 2010, 5, 140–151. [Google Scholar] [CrossRef]
- Lee, J.K.W. Erroneous readings from ingestible temperature capsules due to ingestion of crushed ice. Int. J. Sports Physiol. Perform. 2011, 6, 5–6. [Google Scholar]
- Zimmermann, M.; Landers, G.; Wallman, K.E.; Saldaris, J. The Effects of Crushed Ice Ingestion Prior to Steady State Exercise in the Heat. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 220–227. [Google Scholar] [CrossRef]
- Stevens, C.J.; Thoseby, B.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion. Scand. J. Med. Sci. Sports 2016, 26, 1209–1216. [Google Scholar] [CrossRef]
- Aldous, J.W.F.; Chrismas, B.C.R.; Akubat, I.; Stringer, C.A.; Abt, G.; Taylor, L. Mixed-methods pre-match cooling improves simulated soccer performance in the heat. Eur. J. Sport Sci. 2019, 19, 156–165. [Google Scholar] [CrossRef]
- Siegel, R.; Maté, J.; Watson, G.; Nosaka, K.; Laursen, P.B. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J. Sports Sci. 2012, 30, 155–165. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Challis, G.G.; Kolb, J.C. Agreement Between an Ingestible Telemetric Sensor System and a Mercury Thermometer Before and After Linear Regression Correction. Clin. J. Sport Med. 2010, 20, 53–57. [Google Scholar] [CrossRef]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef] [Green Version]
- Mekjavic, I.B.; Eiken, O. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans. J. Appl. Physiol. 2006, 100, 2065–2072. [Google Scholar] [CrossRef] [Green Version]
- Costill, D.L.; Saltin, B. Factors limiting gastric emptying during rest and exercise. J. Appl. Physiol. 1974, 37, 679–683. [Google Scholar] [CrossRef]
- Kenny, G.P.; Dorman, L.E.; Webb, P.; Ducharme, M.B.; Gagnon, D.; Reardon, F.D.; Hardcastle, S.G.; Jay, O. Heat Balance and Cumulative Heat Storage during Intermittent Bouts of Exercise. Med. Sci. Sports Exerc. 2009, 41, 588–596. [Google Scholar] [CrossRef]
- Kolka, M.A.; Quigley, M.D.; Blanchard, L.A.; Toyota, D.A.; Stephenson, L.A. Validation of a temperature telemetry system during moderate and strenuous exercise. J. Therm. Boil. 1993, 18, 203–210. [Google Scholar] [CrossRef]
- Gosselin, J.; Béliveau, J.; Hamel, M.; Casa, D.; Hosokawa, Y.; Morais, J.A.; Goulet, E.D. Wireless measurement of rectal temperature during exercise: Comparing an ingestible thermometric telemetric pill used as a suppository against a conventional rectal probe. J. Therm. Boil. 2019, 83, 112–118. [Google Scholar] [CrossRef]
- Gant, N.; Atkinson, G.; Williams, C. The Validity and Reliability of Intestinal Temperature during Intermittent Running. Med. Sci. Sports Exerc. 2006, 38, 1926–1931. [Google Scholar] [CrossRef]
- Teunissen, L.P.J.; De Haan, A.; De Koning, J.J.; Daanen, H.A.M. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change. Physiol. Meas. 2012, 33, 915–924. [Google Scholar] [CrossRef]
- Goodman, D.A.; Kenefick, R.W.; Cadarette, B.S.; Cheuvront, S.N. Influence of Sensor Ingestion Timing on Consistency of Temperature Measures. Med. Sci. Sports Exerc. 2009, 41, 597–602. [Google Scholar] [CrossRef] [Green Version]
Periods | Bias (°C) [95% CI] | TEM (°C) | CV (%) | 95% LoA (°C) | r |
---|---|---|---|---|---|
Passive sitting | 0.16 [0.13–0.20] * | ±0.27 | ±0.40 | ±0.53 | 0.33 |
Exercise 1 | 0.13 [0.09–0.16] * | ±0.21 | ±0.33 | ±0.41 | 0.91 |
Water ingestion | 0.21 [0.18–0.24] * | ±0.36 | ±0.58 | ±0.70 | 0.48 |
Exercise 2 | 0.17 [0.12–0.21] * | ±0.25 | ±0.40 | ±0.50 | 0.81 |
Ice slurry ingestion | 0.18 [0.15–0.21] * | ±0.34 | ±0.60 | ±0.66 | 0.77 |
Mean | 0.18 [0.17–0.20] * | ±0.32 | ±0.52 | ±0.63 | 0.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshayes, T.A.; De La Flore, A.; Gosselin, J.; Beliveau, J.; Jeker, D.; Goulet, E.D.B. The Impact of an Ice Slurry-Induced Gastrointestinal Heat Sink on Gastrointestinal and Rectal Temperatures Following Exercise. Sports 2019, 7, 198. https://doi.org/10.3390/sports7090198
Deshayes TA, De La Flore A, Gosselin J, Beliveau J, Jeker D, Goulet EDB. The Impact of an Ice Slurry-Induced Gastrointestinal Heat Sink on Gastrointestinal and Rectal Temperatures Following Exercise. Sports. 2019; 7(9):198. https://doi.org/10.3390/sports7090198
Chicago/Turabian StyleDeshayes, Thomas A., Adrien De La Flore, Jonathan Gosselin, Jeff Beliveau, David Jeker, and Eric D.B. Goulet. 2019. "The Impact of an Ice Slurry-Induced Gastrointestinal Heat Sink on Gastrointestinal and Rectal Temperatures Following Exercise" Sports 7, no. 9: 198. https://doi.org/10.3390/sports7090198
APA StyleDeshayes, T. A., De La Flore, A., Gosselin, J., Beliveau, J., Jeker, D., & Goulet, E. D. B. (2019). The Impact of an Ice Slurry-Induced Gastrointestinal Heat Sink on Gastrointestinal and Rectal Temperatures Following Exercise. Sports, 7(9), 198. https://doi.org/10.3390/sports7090198