Effects of Linear Versus Changes of Direction Repeated Sprints on Intermittent High Intensity Running Performance in High-level Junior Football Players over an Entire Season: A Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Test Concepts and Instruments
2.3. The Yo-Yo Intermittent Recovery Test Level 2
2.4. 10 and 20 m Sprint Test
2.5. Maximal Oxygen Uptake
2.6. Repeated Sprint Exercise Interventions
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Strengths
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgans, R.; Orme, P.; Anderson, L.; Drust, B. Principles and practices of training for soccer. J. Sport Health Sci. 2014, 3, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J. The physiology of soccer-with special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar] [PubMed]
- Helgerud, J.; Engen, L.C.; Wisloff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.A.; Edwards, A.M.; Morton, R.H.; Butterly, R.J. Season-to-Season Variations of Physiological Fitness Within a Squad of Professional Male Soccer Players. J. Sports Sci. Med. 2008, 7, 157–165. [Google Scholar] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.; Clark, N.; MacFadyen, A. Lactate and Ventilatory Thresholds Reflect the Training Status of Professional Soccer Players Where Maximum Aerobic Power is Unchanged. J. Sports Sci. Med. 2003, 2, 23–29. [Google Scholar] [PubMed]
- Wells, C.M.; Edwards, A.M.; Winter, E.M.; Fysh, M.L.; Drust, B. Sport-specific fitness testing differentiates professional from amateur soccer players where VO2max and VO2 kinetics do not. J. Sports Med. Phys. Fit. 2012, 52, 245–254. [Google Scholar]
- Bush, M.; Barnes, C.; Archer, D.T.; Hogg, B.; Bradley, P.S. Evolution of match performance parameters for various playing positions in the English Premier League. Hum. Mov. Sci. 2015, 39, 1–11. [Google Scholar] [CrossRef]
- Stone, N.M.; Kilding, A.E. Aerobic conditioning for team sport athletes. Sports Med. 2009, 39, 615–642. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Gissis, I.; Papadopoulos, C.; Kalapotharakos, V.I.; Sotiropoulos, A.; Komsis, G.; Manolopoulos, E. Strength and speed characteristics of elite, subelite, and recreational young soccer players. Res. Sports Med. 2006, 14, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Bloomfield, J.; Nelsen, L.; Reilly, T. The role of motion analysis in elite soccer: Contemporary performance measurement techniques and work rate data. Sports Med. 2008, 38, 839–862. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Nørregaard, L.; Thorsø, F. Activity profile of competition soccer. Can. J. Sport Sci. 1991, 16, 110–116. [Google Scholar] [PubMed]
- Reilly, T. A motion analysis of work-rate in different positional roles in professional football match-play. J. Hum. Mov. Stud. 1976, 2, 87–97. [Google Scholar]
- Vigne, G.; Gaudino, C.; Rogowski, I.; Alloatti, G.; Hautier, C. Activity profile in elite Italian soccer team. Int. J. Sports Med. 2010, 31, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Archer, D.; Hogg, B.; Bush, M.; Bradley, P. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Wallace, J.L.; Norton, K.I. Evolution of World Cup soccer final games 1966–2010: Game structure, speed and play patterns. J. Sci. Med. Sport 2014, 17, 223–228. [Google Scholar] [CrossRef]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Schmitz, B.; Pfeifer, C.; Kreitz, K.; Borowski, M.; Faldum, A.; Brand, S.-M. The Yo-Yo Intermittent Tests: A Systematic Review and Structured Compendium of Test Results. Front. Physiol. 2018, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The yo-yo intermittent recovery test: Physiological response, reliability, and validity. Med. Sci. Sports Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Ramsbottom, R.; Nevill, A.M.; Seager, R.D.; Hazeldine, R. Effect of training on accumulated oxygen deficit and shuttle run performance. J. Sports Med. Phys. Fit. 2001, 41, 281–290. [Google Scholar]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-sprint ability—Part II: Recommendations for training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.-L.; Chaouachi, A.; Chamari, K.; Dellal, A.; Wisloff, U. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. J. Strength Cond. Res. 2010, 24, 653–660. [Google Scholar] [CrossRef]
- Faude, O.; Roth, R.; Di Giovine, D.; Zahner, L.; Donath, L. Combined strength and power training in high-level amateur football during the competitive season: A randomised-controlled trial. J. Sports Sci. 2013, 31, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Kunz, P.; Engel, F.A.; Holmberg, H.-C.; Sperlich, B. A Meta-Comparison of the Effects of High-Intensity Interval Training to Those of Small-Sided Games and Other Training Protocols on Parameters Related to the Physiology and Performance of Youth Soccer Players. Sports Med. Open 2019, 5, 7. [Google Scholar] [CrossRef]
- Bravo, D.; Impellizzeri, F.; Rampinini, E.; Castagna, C.; Bishop, D.; Wisløff, U. Sprint vs. interval training in football. Int. J. Sports Med. 2008, 29, 668–674. [Google Scholar] [CrossRef]
- Lacome, M.; Simpson, B.M.; Cholley, Y.; Lambert, P.; Buchheit, M. Small-Sided Games in Elite Soccer: Does One Size Fit All? Int. J. Sports Physiol. Perform. 2018, 13, 568–576. [Google Scholar] [CrossRef]
- Hill-Haas, S.V.; Coutts, A.J.; Rowsell, G.J.; Dawson, B.T. Generic versus small-sided game training in soccer. Int. J. Sports Med. 2009, 30, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Eniseler, N.; Sahan, C.; Özcan, I.; Dinler, K. High-Intensity Small-Sided Games versus Repeated Sprint Training in Junior Soccer Players. J. Hum. Kinet. 2017, 60, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaia, F.M.; Fiorenza, M.; Perri, E.; Alberti, G.; Millet, G.P.; Bangsbo, J. The Effect of Two Speed Endurance Training Regimes on Performance of Soccer Players. PLoS ONE 2015, 10, e0138096. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, M.; Fiorenza, M.; Lund, A.; Christensen, M.; Rømer, T.; Piil, P.; Hostrup, M.; Christensen, P.M.; Holbek, S.; Ravnholt, T.; et al. Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Med. Sci. Sports Exerc. 2016, 48, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.M.; Fiorenza, M.; Larghi, L.; Alberti, G.; Millet, G.P.; Girard, O. Short-or long-rest intervals during repeated-sprint training in soccer? PLoS ONE 2017, 12, e0171462. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P. Comparison between two types of anaerobic speed endurance training in competitive soccer players. J. Hum. Kinet. 2016, 51, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunnarsson, T.P.; Christensen, P.M.; Holse, K.; Christiansen, D.; Bangsbo, J. Effect of additional speed endurance training on performance and muscle adaptations. Med. Sci. Sports Exerc. 2012, 44, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
- Nedrehagen, E.S.; Saeterbakken, A.H. The Effects of in-Season Repeated Sprint Training Compared to Regular Soccer Training. J. Hum. Kinet. 2015, 49, 237–244. [Google Scholar] [CrossRef] [Green Version]
- McGawley, K.; Andersson, P.I. The order of concurrent training does not affect soccer-related performance adaptations. Int. J. Sports Med. 2013, 34, 983–990. [Google Scholar] [CrossRef]
- Ingebrigtsen, J.; Shalfawi, S.A.I.; Tønnessen, E.; Krustrup, P.; Holtermann, A. Performance effects of 6 weeks of aerobic production training in junior elite soccer players. J. Strength Cond. Res. 2013, 27, 1861–1867. [Google Scholar] [CrossRef]
- Taylor, J.; MacPherson, T.; Spears, I.; Weston, M. The effects of repeated-sprint training on field-based fitness measures: A meta-analysis of controlled and non-controlled trials. Sports Med. 2015, 45, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar] [PubMed]
- Mohr, M.; Krustrup, P.; Nielsen, J.J.; Nybo, L.; Rasmussen, M.K.; Juel, C.; Bangsbo, J. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1594–R1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hostrup, M.; Gunnarsson, T.P.; Fiorenza, M.; Mørch, K.; Onslev, J.; Pedersen, K.M.; Bangsbo, J. In season adaptations to intense intermittent training and sprint interval training in sub-elite football players. Scand. J. Med. Sci. Sports 2019, 29, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding change of direction ability in sport: A review of resistance training studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef] [PubMed]
- Hader, K.; Mendez-Villanueva, A.; Ahmaidi, S.; Williams, B.K.; Buchheit, M. Changes of direction during high-intensity intermittent runs: Neuromuscular and metabolic responses. BMC Sports Sci. Med. Rehabil. 2014, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, F.Y.; Sanchez-Sanchez, J.; Ramirez-Campillo, R.; Petisco, C.; Gonzalo-Skok, O.; Rodriguez-Fernandez, A.; Miñano, J. Effects of repeated-sprints with changes of direction on youth soccer player‘s performance: Impact of initial fitness level. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hader, K.; Mendez-Villanueva, A.; Palazzi, D.; Ahmaidi, S.; Buchheit, M. Metabolic Power Requirement of Change of Direction Speed in Young Soccer Players: Not All Is What It Seems. PLoS ONE 2016, 11, e0149839. [Google Scholar] [CrossRef]
- Buchheit, M.; Bishop, D.; Haydar, B.; Nakamura, F.Y.; Ahmaidi, S. Physiological responses to shuttle repeated-sprint running. Int. J. Sports Med. 2010, 31, 402–409. [Google Scholar] [CrossRef]
- Taylor, J.M.; MacPherson, T.W.; McLaren, S.J.; Spears, I.; Weston, M. Two Weeks of Repeated-Sprint Training in Soccer: To Turn or Not to Turn? Int. J. Sports Physiol. Perform. 2016, 11, 998–1004. [Google Scholar] [CrossRef] [Green Version]
- Wells, C.; Fysh, M.; Drust, B.; Edwards, A. Effects of high-intensity running training on soccer-specific fitness in professional male players. Appl. Physiol. Nutr. Metab. 2014, 39, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Tønnessen, E.; Oksenholt, O.; Haugen, F.L.; Paulsen, G.; Enoksen, E.; Seiler, S. Sprint conditioning of junior soccer players: Effects of training intensity and technique supervision. PLoS ONE 2015, 10, e0121827. [Google Scholar] [CrossRef] [PubMed]
- Hostrup, M.; Bangsbo, J. Limitations in intense exercise performance of athletes—Effect of speed endurance training on ion handling and fatigue development. J. Physiol. 2017, 595, 2897–2913. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Shalfawi, S.A.; Haugen, T.; Enoksen, E. The effect of 40-m repeated sprint training on maximum sprinting speed, repeated sprint speed endurance, vertical jump, and aerobic capacity in young elite male soccer players. J. Strength Cond. Res. 2011, 25, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Shalfawi, S.A.; Haugen, T.; Jakobsen, T.A.; Enoksen, E.; Tønnessen, E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. J. Strength Cond. Res. 2013, 27, 2966–2972. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Santisteban, J.; Castagna, C. In-season effect of short-term sprint and power training programs on elite junior soccer players. J. Strength Cond. Res. 2009, 23, 2581–2587. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P. Yo-Yo intermittent recovery test performances within an entire football league during a full season. J. Sports Sci. 2014, 32, 315–327. [Google Scholar] [CrossRef]
- Urbaniak, G.C.; Plous, S. Research Randomizer (Version 4.0) [Computer Software]. 2013. Available online: https://www.randomizer.org (accessed on 22 April 2014).
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Foss, Ø.; Hallen, J. Validity and stability of a computerized metabolic system with mixing chamber. Int. J. Sports Med. 2005, 26, 569–575. [Google Scholar] [CrossRef]
- Howley, E.T.; Bassett, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Thomassen, M.; Christensen, P.M.; Gunnarsson, T.P.; Nybo, L.; Bangsbo, J. Effect of 2-wk intensified training and inactivity on muscle Na+-K+ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players. J. Appl. Physiol. 2010, 108, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.M.; Fiorenza, M.; Perri, E.; Alberti, G.; Millet, G.P.; Bangsbo, J. Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R966–R974. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Mendez-Villanueva, A.; Delhomel, G.; Brughelli, M.; Ahmaidi, S. Improving repeated sprint ability in young elite soccer players: Repeated shuttle sprints vs. explosive strength training. J. Strength Cond. Res. 2010, 24, 2715–2722. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Millet, G.P.; Parisy, A.; Pourchez, S.; Laursen, P.B.; Ahmaidi, S. Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med. Sci. Sports Exerc. 2008, 40, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Nebil, G.; Zouhair, F.; Hatem, B.; Hamza, M.; Zouhair, T.; Roy, S.; Ezdine, B. Effect of optimal cycling repeated-sprint combined with classical training on peak leg power in female soccer players. Isokinet. Exerc. Sci. 2014, 22, 69–76. [Google Scholar] [CrossRef]
- Haugen, T.; Buchheit, M. Sprint Running Performance Monitoring: Methodological and Practical Considerations. Sports Med. 2016, 46, 641–656. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Nybo, L.; Jensen, J.M.; Nielsen, J.J.; Bangsbo, J. The Yo-Yo IR2 test: Physiological response, reliability, and application to elite soccer. Med. Sci. Sports Exerc. 2006, 38, 1666–1673. [Google Scholar] [CrossRef]
Linear RS (n = 10) | COD RS (n = 9) | |
---|---|---|
Age (year) | 17.3 ± 0.5 | 17.4 ± 0.7 |
Weight (kg) | 70.0 ± 7.6 | 71.3 ± 6.6 |
Height (m) | 1.79 ± 0.05 | 1.80 ± 0.05 |
BMI (kg·m−2) | 21.7 ± 2.4 | 21.9 ± 1.9 |
Pre-Season | Pre-Tests | Spring Season | ||
Duration | 3 months | 2 weeks | 11 weeks | |
Exercise content | 13 h: 8 h football practice 3 h aerobic exercise 2 h resistance exercise | Week 1: VO2max Week 2: 10 m 20 m Yo-Yo IR2 | Typical week: Monday: Football practice, high intensity, low volume, 30 min Tuesday: Match Wednesday: Football practice, low intensity, 1.5 h Thursday: Football practice, high intensity, 1.5 h Friday: Large-sided simulated games, RS exercise, moderate intensity, 1.5 h Saturday: Aerobic (30 min running or bicycling) and resistance exercise (30 min body weight exercises), moderate intensity, 1 h Sunday: Small-sided games, high intensity, RS exercise, 1.5 h | |
Mid-Tests | Summer Break | Fall Season | Post-Tests | |
Duration | last week of spring season | 3 weeks | 8 weeks | 2 weeks |
Exercise content | 10 m 20 m Yo-Yo IR2 | 4 sessions: 2 resistance exercise 2 RS exercise | Typical week: Monday: Football practice, high intensity, low volume, 30 min Tuesday: Match Wednesday: Football practice, low intensity, 1.5 h Thursday: Football practice, high intensity, 1.5 h Friday: Large-sided simulated games, RS exercise, moderate intensity, 1.5 h Saturday: Aerobic (30 min running or bicycling) and resistance exercise (30 min body weight exercises), moderate intensity, 1 h Sunday: Small-sided games, high intensity, RS exercise, 1.5 h | Week 1: VO2max Week 2: 10 m 20 m Yo-Yo IR2 |
Pre-Test (Baseline) | Mid-Test (11 Weeks) | Post-Test (22 Weeks) | ||||
---|---|---|---|---|---|---|
L-RS (n = 10) | COD-RS (n = 9) | L-RS (n = 10) | COD-RS (n = 9) | L-RS (n = 10) | COD-RS (n = 9) | |
10 m (s) | 1.68 ± 0.07 | 1.70 ± 0.07 | 1.68 ± 0.06 | 1.69 ± 0.07 | 1.69 ± 0.08 | 1.69 ± 0.06 |
20 m (s) | 2.97 ± 0.10 | 3.05 ± 0.15 | 2.98 ± 0.10 | 3.05 ± 0.13 | 2.99 ± 0.11 | 3.03 ± 0.15 |
VO2max (mL·kg−1·min−1) | 62.6 ± 4.4 | 62.2 ± 6.1 | N/A | N/A | 62.4 ± 5.4 | 61.7 ± 5.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagelv, E.H.; Selnæs, I.; Pedersen, S.; Pettersen, S.A.; Randers, M.B.; Welde, B. Effects of Linear Versus Changes of Direction Repeated Sprints on Intermittent High Intensity Running Performance in High-level Junior Football Players over an Entire Season: A Randomized Trial. Sports 2019, 7, 189. https://doi.org/10.3390/sports7080189
Sagelv EH, Selnæs I, Pedersen S, Pettersen SA, Randers MB, Welde B. Effects of Linear Versus Changes of Direction Repeated Sprints on Intermittent High Intensity Running Performance in High-level Junior Football Players over an Entire Season: A Randomized Trial. Sports. 2019; 7(8):189. https://doi.org/10.3390/sports7080189
Chicago/Turabian StyleSagelv, Edvard H, Ivar Selnæs, Sigurd Pedersen, Svein Arne Pettersen, Morten B Randers, and Boye Welde. 2019. "Effects of Linear Versus Changes of Direction Repeated Sprints on Intermittent High Intensity Running Performance in High-level Junior Football Players over an Entire Season: A Randomized Trial" Sports 7, no. 8: 189. https://doi.org/10.3390/sports7080189
APA StyleSagelv, E. H., Selnæs, I., Pedersen, S., Pettersen, S. A., Randers, M. B., & Welde, B. (2019). Effects of Linear Versus Changes of Direction Repeated Sprints on Intermittent High Intensity Running Performance in High-level Junior Football Players over an Entire Season: A Randomized Trial. Sports, 7(8), 189. https://doi.org/10.3390/sports7080189