Effect of New Zealand Blackcurrant Extract on Cycling Performance and Substrate Oxidation in Normobaric Hypoxia in Trained Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Screening and Familiarization Visit
2.3. Experimental Visits
2.4. Dietary and Training Restrictions
2.5. Incremental Cycling Test for Oxygen-Cycling Power Relationship
2.6. Incremental Cycling Test for Maximum Oxygen Uptake
2.7. Submaximal Cycling at 45%, 55% and 65% of O2max
2.8. Cycling Time Trial—16.1 km (i.e., 10 mile)
2.9. Statistical Analysis
3. Results
3.1. Blood Pressure and Arterial Oxygen Saturation at Rest
3.2. Responses to Submaximal Cycling
3.3. Performance of the 16.1 km Cycling Time Trial
4. Discussion
4.1. Metabolic Responses
4.2. Time-Trial Performance (16.1. km)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, V.; Kajdzanoska, M.; Gjamovski, V.; Stefova, M. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef] [PubMed]
- Crum, E.M.; Che Muhamed, A.M.; Barnes, M.; Stannard, S.R. The effects of acute pomegranate extract supplementation on oxygen uptake in highly-trained cyclists during high-intensity exercise in a high altitude environment. J. Int. Soc. Sports Nutr. 2017, 14, 14. [Google Scholar] [CrossRef]
- Keane, K.M.; Bailey, S.J.; Vanhatalo, A.; Jones, A.M.; Howatson, G. Effects of montmorency tart cherry (L. Prunus Cerasus) consumption on nitric oxide biomarkers and exercise performance. Scand. J. Med. Sci Sports 2018, 28, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Pilaczynska-Szczesniak, L.; Skarpanska-Steinborn, A.; Deskur, E.; Basta, P.; Horoszkiewicz-Hassan, M. The influence of chokeberry juice supplementation on the reduction of oxidative stress resulting from an incremental rowing ergometer exercise. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Takenami, E.; Iwasaki-Kurashige, K.; Osada, T.; Katsumura, T.; Hamaoka, T. Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. Eur. J. Appl. Physiol. 2005, 94, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Willems, M.E.T. Blackcurrant alters physiological responses and femoral artery diameter during sustained isometric contraction. Nutrients 2017, 9, 556. [Google Scholar] [CrossRef]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558 Pt 1, 5–30. [Google Scholar] [CrossRef]
- Edirisinghe, I.; Banaszewski, K.; Cappozzo, J.; McCarthy, D.; Burton-Freeman, B.M. Effect of black currant anthocyanins on the activation of endothelial nitric oxide synthase (eNOS) in vitro in human endothelial cells. J. Agric. Food Chem. 2011, 59, 8616–8624. [Google Scholar] [CrossRef]
- Nakamura, Y.; Matsumoto, H.; Todoki, K. Endothelium-dependent vasorelaxation induced by black currant concentrate in rat thoracic aorta. Jpn. J. Pharm. 2002, 89, 29–35. [Google Scholar] [CrossRef]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Edwards, V.C.; Willems, M.E.T. Dose effects of New Zealand blackcurrant on substrate oxidation and physiological responses during prolonged cycling. Eur. J. Appl. Physiol. 2017, 117, 1207–1216. [Google Scholar] [CrossRef]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Edwards, V.C.; Willems, M.E.T. Cardiovascular function during supine rest in endurance-trained males with New Zealand blackcurrant: A dose-response study. Eur. J. Appl. Physiol. 2017, 117, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Perkins, I.C.; Vine, S.A.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves high-intensity intermittent running. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 487–493. [Google Scholar] [CrossRef]
- Strauss, J.A.; Willems, M.E.T.; Shepherd, S.O. New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. Eur. J. Appl. Physiol. 2018, 118, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Willems, M.E.T.; Myers, S.D.; Gault, M.L.; Cook, M.D. Beneficial physiological effects with blackcurrant intake in endurance athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 367–374. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Fulford, J.; Bailey, S.J.; Blackwell, J.R.; Winyard, P.G.; Jones, A.M. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J. Physiol. 2011, 589 Pt 22, 5517–5528. [Google Scholar] [CrossRef] [Green Version]
- Davison, G.W.; Morgan, R.M.; Hiscock, N.; Garcia, J.M.; Grace, F.; Boisseau, N.; Davies, B.; Castell, L.; McEneny, J.; Young, I.S.; et al. Manipulation of systemic oxygen flux by acute exercise and normobaric hypoxia: Implications for reactive oxygen species generation. Clin. Sci. 2006, 110, 133–141. [Google Scholar] [CrossRef]
- Lyall, K.A.; Hurst, S.M.; Cooney, J.; Jensen, D.; Lo, K.; Hurst, R.D.; Stevenson, L.M. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R70–R81. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; Tulipani, S.; Casoli, T.; Di Stefano, G.; González-Paramás, A.M.; Santos-Buelga, C.; Busco, F.; Quiles, J.L.; Cordero, M.D.; et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem. 2014, 25, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Haro, C.; Galilea, P.A.; Drobnic, F.; Escanero, J.F. Validation of a field test to determine the maximal aerobic power in triathletes and endurance cyclists. Br. J. Sports Med. 2007, 41, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Howley, E.T.; Bassett, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Wallis, G.A. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sports Med. 2005, 26 (Suppl. 1), S28–S37. [Google Scholar] [CrossRef] [PubMed]
- Newell, J.; Higgins, D.; Madden, N.; Cruickshank, J.; Einbeck, J.; McMillan, K.; McDonald, R. Software for calculating blood lactate endurance markers. J. Sports Sci. 2007, 25, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Morishima, T.; Mori, A.; Sasaki, H.; Goto, K. Impact of exercise and moderate hypoxia on glycemic regulation and substrate oxidation pattern. PLoS ONE 2014, 9, e108629. [Google Scholar] [CrossRef] [PubMed]
- Muggeridge, D.J.; Howe, C.C.; Spendiff, O.; Pedlar, C.; James, P.E.; Easton, C. A single dose of beetroot juice enhances cycling performance in simulated altitude. Med. Sci. Sports Exerc. 2014, 46, 143–150. [Google Scholar] [CrossRef]
- MacLeod, K.E.; Nugent, S.F.; Barr, S.I.; Koehle, M.S.; Sporer, B.C.; MacInnis, M.J. Acute beetroot juice supplementation does not improve cycling performance in Normoxia or moderate Hypoxia. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 359–366. [Google Scholar] [CrossRef]
- Masschelein, E.; Van Thienen, R.; Wang, X.; Van Schepdael, A.; Thomis, M.; Hespel, P. Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. J. Appl. Physiol. 2012, 113, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Katayama, K.; Goto, K.; Ishida, K.; Ogita, F. Substrate utilization during exercise and recovery at moderate altitude. Metabolism 2010, 59, 959–966. [Google Scholar] [CrossRef]
- Casey, D.P.; Joyner, M.J. Compensatory vasodilatation during hypoxic exercise: Mechanism responsible for matching oxygen demand and supply. J. Physiol. 2012, 590, 6321–6326. [Google Scholar] [CrossRef]
- Dinenno, F.A. Skeletal muscle vasodilation during systemic hypoxia in humans. J. Appl. Physiol. 2016, 120, 216–225. [Google Scholar] [CrossRef]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef]
- Green, D.J.; Maiorana, A.; O’Driscoll, G.; Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004, 561 Pt 1, 1–25. [Google Scholar] [CrossRef] [Green Version]
Age (years) | 38 ± 11 |
Height (cm) | 179 ± 4 |
Body mass (kg) | 76 ± 8 |
O2max (mL∙kg∙min−1) | 47 ± 7 |
RERmax | 1.24 ± 0.07 |
Power (lactate 2 mmol∙L−1) (W) | 252 ± 38 |
Lactatemax (mmol∙L−1) | 7.8 ± 2.9 |
HRmax (beats∙min−1) | 174 ± 18 |
WRmax (W) | 398 ± 38 |
Body fat (%) | 15.5 ± 5.9 |
Placebo | NZBC Extract | |
---|---|---|
Carbohydrate (g) | 221 ± 52 | 232 ± 56 |
Carbohydrate (g·kg body mass−1) | 3.00 ± 0.78 | 3.18 ± 0.93 |
Fat (g) | 65 ± 27 | 73 ± 30 |
Fat (g·kg body mass−1) | 0.89 ± 0.40 | 1.00 ± 0.44 |
Protein (g) | 95 ± 35 | 91 ± 30 |
Protein (g·kg body mass−1) | 1.29 ± 0.53 | 1.24 ± 0.45 |
Parameter | Placebo | NZBC | Placebo | NZBC | Placebo | NZBC |
---|---|---|---|---|---|---|
O2 (Lmin−1) | 1.58 ± 0.18 | 1.59 ± 0.17 | 1.97 ± 0.20 | 2.00 ± 0.19 | 2.38 ± 0.21 | 2.40 ± 0.23 |
CO2 (Lmin−1) | 1.45 ± 0.19 | 1.48 ± 0.13 | 1.83 ± 0.20 | 1.88 ± 0.15 | 2.23 ± 0.23 | 2.28 ± 0.20 |
Relative intensity (O2max) | 44 ± 3 | 44 ± 4 | 54 ± 4 | 56 ± 4 | 66 ± 4 | 67 ± 4 |
Economy (mLkg−1·W−1) | 10.9 ± 1.4 | 11.1 ± 1.7 | 9.8 ± 1.1 | 10.1 ± 1.5 | 9.3 ± 1.1 | 9.4 ± 1.3 |
Heart rate (beatsmin−1) | 101 ± 9 | 103 ± 13 | 116 ± 11 | 116 ± 13 | 133 ± 12 | 132 ± 13 |
Lactate (mmolL−1) | 1.06 ± 0.36 | 1.03 ± 0.27 | 1.03 ± 0.28 | 1.04 ± 0.31 | 1.37 ± 0.45 | 1.56 ± 0.57 |
Glucose (mmolL−1) | 4.07 ± 0.50 | 4.23 ± 0.44 | 4.15 ± 0.17 | 3.84 ± 0.67 | 4.05 ± 0.34 | 4.05 ± 0.39 |
CHox (gmin−1) | 1.47 ± 0.36 | 1.55 ± 0.19 | 1.90 ± 0.34 | 2.00 ± 0.27 | 2.34 ± 0.42 | 2.48 ± 0.35 |
FATox (gmin−1) | 0.21 ± 0.11 | 0.18 ± 0.10 | 0.21 ± 0.09 | 0.19 ± 0.14 | 0.24 ± 0.12 | 0.20 ± 0.16 |
Respiratory exchange ratio | 0.92 ± 0.04 | 0.93 ± 0.03 | 0.93 ± 0.03 | 0.94 ± 0.04 | 0.94 ± 0.04 | 0.94 ±0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willems, M.E.T.; Şahin, M.A.; Berendsen, T.; Cook, M.D. Effect of New Zealand Blackcurrant Extract on Cycling Performance and Substrate Oxidation in Normobaric Hypoxia in Trained Cyclists. Sports 2019, 7, 67. https://doi.org/10.3390/sports7030067
Willems MET, Şahin MA, Berendsen T, Cook MD. Effect of New Zealand Blackcurrant Extract on Cycling Performance and Substrate Oxidation in Normobaric Hypoxia in Trained Cyclists. Sports. 2019; 7(3):67. https://doi.org/10.3390/sports7030067
Chicago/Turabian StyleWillems, Mark Elisabeth Theodorus, Mehmet Akif Şahin, Tim Berendsen, and Matthew David Cook. 2019. "Effect of New Zealand Blackcurrant Extract on Cycling Performance and Substrate Oxidation in Normobaric Hypoxia in Trained Cyclists" Sports 7, no. 3: 67. https://doi.org/10.3390/sports7030067