One Sprinter, Two Olympic Preparations: A Single-Athlete Longitudinal Observational Study of Training-Intensity Distribution and Implications for Future 50 m Events
Abstract
1. Introduction
2. Methods
2.1. The Swimmer
2.2. Examined Objectives
2.2.1. Training Aspects
2.2.2. Race and Kinematic Analysis
2.3. Statistical Analysis
3. Results
3.1. Comparing the 2016 and 2021 Olympic Games
3.1.1. Structure of the Macrocycles and Their Primary Focus
3.1.2. Training Intensity Distribution (TID)
3.1.3. Race Analysis Between the Two Olympic Games
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.J.; Norris, S.R.; Hogg, J.M. Performance Evaluation of Swimmers. Sports Med. 2002, 32, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, J.D.; Falenchuk, O.; Wells, G.D. Blood Lactate Concentration and Clearance in Elite Swimmers During Competition. Int. J. Sports Physiol. Perform. 2011, 6, 106–117. [Google Scholar] [CrossRef] [PubMed]
- McCarvel, N. Swimming Adds 50m Breaststroke, Butterfly, and Backstroke to the Olympic Programme for LA 2028. Available online: https://www.olympics.com/en/news/swimming-adds-50m-breaststroke-butterfly-backstroke-olympic-programme-la-2028 (accessed on 14 October 2025).
- Pollock, S.; Gaoua, N.; Johnston, M.J.; Cooke, K.; Girard, O.; Mileva, K.N. Training regimes and recovery monitoring practices of elite British swimmers. J. Sports Sci. Med. 2019, 18, 577–585. [Google Scholar]
- Barbosa, A.C.; Valadão, P.F.; Wilke, C.F.; Martins, F.d.S.; Silva, D.C.P.; Volkers, S.A.; Lima, C.O.V.; Ribeiro, J.R.C.; Bittencourt, N.F.; Barroso, R. The Road to 21 Seconds: A Case Report of a 2016 Olympic Swimming Sprinter. Int. J. Sports Sci. Coach. 2019, 14, 393–405. [Google Scholar] [CrossRef]
- Toussaint, H.M.; Hollander, A.P. Energetics of Competitive Swimming. Sports Med. 1994, 18, 384–405. [Google Scholar] [CrossRef]
- Rodríguez, F.; Mader, A. Energy Systems in Swimming. World Book Swim. Sci. Perform. 2011, 11, 225. [Google Scholar] [CrossRef]
- Seiler, K.S.; Kjerland, G.Ø. Quantifying Training Intensity Distribution in Elite Endurance Athletes: Is There Evidence for an “Optimal” Distribution? Scand. J. Med. Sci. Sports 2006, 16, 49–56. [Google Scholar] [CrossRef]
- Strepp, T.; Blumkaitis, J.C.; Sareban, M.; Stöggl, T.L.; Haller, N. Training Intensity Distribution of a 7-Day HIIT Shock Microcycle: Is Time in the “Red Zone” Crucial for Maximizing Endurance Performance? A Randomized Controlled Trial. Sports Med. Open 2024, 10, 97. [Google Scholar] [CrossRef]
- Sanders, D.; Myers, T.; Akubat, I. Training-Intensity Distribution in Road Cyclists: Objective Versus Subjective Measures. Int. J. Sports Physiol. Perform. 2017, 12, 1232–1237. [Google Scholar] [CrossRef]
- Zapico, A.G.; Calderón, F.J.; Benito, P.J.; González, C.B.; Parisi, A.; Pigozzi, F.; Di Salvo, V. Evolution of Physiological and Haematological Parameters with Training Load in Elite Male Road Cyclists: A Longitudinal Study. Age Years 2007, 20, 20–21. [Google Scholar]
- Filipas, L.; Bonato, M.; Gallo, G.; Codella, R. Effects of 16 Weeks of Pyramidal and Polarized Training Intensity Distributions in Well-Trained Endurance Runners. Scand. J. Med. Sci. Sports 2022, 32, 498–511. [Google Scholar] [CrossRef]
- Tønnessen, E.; Sandbakk, Ø.; Sandbakk, S.B.; Seiler, S.; Haugen, T. Training Session Models in Endurance Sports: A Norwegian Perspective on Best Practice Recommendations. Sports Med. 2024, 54, 2935–2953. [Google Scholar] [CrossRef] [PubMed]
- Treff, G.; Winkert, K.; Sareban, M.; Steinacker, J.M.; Sperlich, B. The Polarization-Index: A Simple Calculation to Distinguish Polarized from Non-Polarized Training Intensity Distributions. Front. Physiol. 2019, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Pla, R.; Le Meur, Y.; Aubry, A.; Toussaint, J.F.; Hellard, P. Effects of a 6-Week Period of Polarized or Threshold Training on Performance and Fatigue in Elite Swimmers. Int. J. Sports Physiol. Perform. 2019, 14, 183–189. [Google Scholar] [CrossRef]
- Selles-Perez, S.; Fernández-Sáez, J.; Cejuela, R. Polarized and Pyramidal Training Intensity Distribution: Relationship with a Half-Ironman Distance Triathlon Competition. J. Sports Sci. Med. 2019, 18, 708–715. [Google Scholar]
- González-Ravé, J.M.; Hermosilla, F.; González-Mohíno, F.; Casado, A.; Pyne, D.B. Training Intensity Distribution, Training Volume, and Periodization Models in Elite Swimmers: A Systematic Review. Int. J. Sports Physiol. Perform. 2021, 16, 913–926. [Google Scholar] [CrossRef]
- Tnønessen, E.; Sylta, Ø.; Haugen, T.A.; Hem, E.; Svendsen, I.S.; Seiler, S. The Road to Gold: Training and Peaking Characteristics in the Year Prior to a Gold Medal Endurance Performance. PLoS ONE 2014, 9, e101796. [Google Scholar] [CrossRef]
- Muñoz, I.; Seiler, S.; Bautista, J.; España, J.; Larumbe, E.; Esteve-Lanao, J. Does Polarized Training Improve Performance in Recreational Runners? Int. J. Sports Physiol. Perform. 2014, 9, 265–272. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; Foster, C.; Seiler, S.; Lucia, A. Impact of Training Intensity Distribution on Performance in Endurance Athletes. J. Strength Cond. Res. 2007, 21, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Stöggl, T.; Sperlich, B. Polarized Training Has Greater Impact on Key Endurance Variables than Threshold, High Intensity, or High Volume Training. Front. Physiol 2014, 5, 33. [Google Scholar] [CrossRef]
- Mujika, I.; Sharma, A.P.; Stellingwerff, T. Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review. Sports Med. 2019, 49, 1651–1669. [Google Scholar] [CrossRef]
- Flockhart, M.; Nilsson, L.C.; Tais, S.; Ekblom, B.; Apró, W.; Larsen, F.J. Excessive Exercise Training Causes Mitochondrial Functional Impairment and Decreases Glucose Tolerance in Healthy Volunteers. Cell Metab. 2021, 33, 957–970.e6. [Google Scholar] [CrossRef]
- Costill, D.L.; Maglischo, E.W.; Richardson, A.B. Swimming; Blackwell Scientific Publications: Oxford, UK, 1992. [Google Scholar]
- Chamorro-Viña, C.; Fernandez-del-Valle, M.; Tacón, A.M. Excessive Exercise and Immunity: The J-Shaped Curve. In The Active Female; Springer: New York, NY, USA, 2014; pp. 357–372. [Google Scholar]
- Notbohm, H.L.; Schumann, M.; Fuhrmann, S.; Klocke, J.; Theurich, S.; Bloch, W. Long-Term Physical Training in Adolescent Sprint and Middle Distance Swimmers Alters the Composition of Circulating T and NK Cells Which Correlates with Soluble ICAM-1 Serum Concentrations. Eur. J. Appl. Physiol. 2021, 121, 1773–1781. [Google Scholar] [CrossRef]
- Kolnes, K.J.; Petersen, M.H.; Lien-Iversen, T.; Højlund, K.; Jensen, J. Effect of Exercise Training on Fat Loss—Energetic Perspectives and the Role of Improved Adipose Tissue Function and Body Fat Distribution. Front. Physiol. 2021, 12, 737709. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Ruiz-Navarro, J.J.; Cuenca-Fernández, F.; Margaritelis, N.V. Training Intensity Distribution for Sprinter Swimmers: Suggestions for Swimming Coaches and Scientists. Eur. J. Appl. Physiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Navarro, J.J.; López-Belmonte, Ó.; Gay, A.; Cuenca-Fernández, F.; Arellano, R. A New Model of Performance Classification to Standardize the Research Results in Swimming. Eur. J. Sport Sci. 2023, 23, 478–488. [Google Scholar] [CrossRef]
- Ekdahl, D.; Krieger, J. The Enhanced Games: A Timely Injection for the International Olympic Committee. Front. Sports Act. Living 2024, 6, 1490651. [Google Scholar] [CrossRef]
- Hellard, P.; Avalos-Fernandes, M.; Lefort, G.; Pla, R.; Mujika, I.; Toussaint, J.F.; Pyne, D.B. Elite Swimmers’ Training Patterns in the 25 Weeks Prior to Their Season’s Best Performances: Insights into Periodization from a 20-Years Cohort. Front. Physiol. 2019, 10, 363. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Papadopoulou, S.K.; Psara, E.; Giaginis, C. A Case Study on the Development of a High-Intensity Interval Training Set for a National-Level Middle-Distance Swimmer: The Conception of the Faster-than-Race Pace Test Set. J. Funct. Morphol. Kinesiol. 2025, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Zafeiriadis, S.; Papadimitriou, N.; Tsalis, G. Case Report: Impact of Dolphin Kick Implementation During Backstroke Finishes on Swimming Performance. From Regional to Olympic-Level Swimmers. A Comparative Case Study. Front. Sports Act. Living 2025, 7, 1531427. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Papadimitriou, N. Does the Utilisation of Dolphin Kicks During Backstroke Finishes Impact Swimming Performance in Pubertal Swimmers? Int. J. Perform. Anal. Sport 2024, 24, 557–567. [Google Scholar] [CrossRef]
- Shishov, N.; Elabd, K.; Komisar, V.; Chong, H.; Robinovitch, S.N. Accuracy of Kinovea Software in Estimating Body Segment Movements During Falls Captured on Standard Video: Effects of Fall Direction, Camera Perspective and Video Calibration Technique. PLoS ONE 2021, 16, e0258923. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Navarro, J.J.; Santos Catarina, C.; Born, D.P.; López-Belmonte, Ó.; Cuenca-Fernández, F.; Sanders, R.H.; Arellano, R. Factors Relating to Sprint Swimming Performance: A Systematic Review. Sports Med. 2025, 55, 899–922. [Google Scholar] [CrossRef] [PubMed]
- Alba-Jiménez, C.; Moreno-Doutres, D.; Peña, J. Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review. Sports 2022, 10, 33. [Google Scholar] [CrossRef]
- Boccia, G.; Dardanello, D.; Brustio, P.R.; Tarperi, C.; Festa, L.; Zoppirolli, C.; Pellegrini, B.; Schena, F.; Rainoldi, A. Neuromuscular Fatigue Does Not Impair the Rate of Force Development in Ballistic Contractions of Submaximal Amplitudes. Front. Physiol. 2018, 9, 1503. [Google Scholar] [CrossRef]
- Stone, M.H.; Hornsby, W.G.; Haff, G.G.; Fry, A.C.; Suarez, D.G.; Liu, J.; Gonzalez-Rave, J.M.; Pierce, K.C. Periodization and Block Periodization in Sports: Emphasis on Strength-Power Training-A Provocative and Challenging Narrative. J. Strength Cond. Res. 2021, 35, 2351–2371. [Google Scholar] [CrossRef]
- Maglischo, E. Swimming Fastest; Human Kinetics: Champaign, IL, USA, 2003. [Google Scholar]
- Kilen, A.; Larsson, T.H.; Jørgensen, M.; Johansen, L.; Jørgensen, S.; Nordsborg, N.B. Effects of 12 Weeks High-Intensity & Reduced-Volume Training in Elite Athletes. PLoS ONE 2014, 9, e95025. [Google Scholar] [CrossRef]
- Almeida, T.A.F.; Pessôa Filho, D.M.; Espada, M.A.C.; Reis, J.F.; Simionato, A.R.; Siqueira, L.O.C.; Alves, F.B. Kinetics and Energy Contribution in Simulated Maximal Performance During Short and Middle Distance-Trials in Swimming. Eur. J. Appl. Physiol. 2020, 120, 1097–1109. [Google Scholar] [CrossRef]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef]
- Fitts, R.H.; Costill, D.L.; Gardetto, P.R. Effect of Swim Exercise Training on Human Muscle Fiber Function. J. Appl. Physiol. 1989, 66, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Affonso, H.; Silva, A.; Fernandes, R. Can Blood Lactate Concentrations Rise Significantly After Very Short Duration Swimming Bouts? Ann. Sports Med. Res. 2019, 6, 7–9. [Google Scholar]
- Sengoku, Y.; Shinno, A.; Kim, J.; Homoto, K.; Nakazono, Y.; Tsunokawa, T.; Hirai, N.; Nobue, A.; Ishikawa, M. The Relationship between Maximal Lactate Accumulation Rate and Sprint Performance Parameters in Male Competitive Swimmers. Front. Sports Act. Living 2024, 6, 1483659. [Google Scholar] [CrossRef] [PubMed]
- Avlonitou, E. Maximal Lactate Values Following Competitive Performance Varying According to Age, Sex and Swimming Style. J. Sports Med. Phys. Fit. 1996, 36, 24–30. [Google Scholar]
- Toubekis, A.; Tokmakidis, S.P. Energy system contribution during competition and high intensity swimming training. Inq. Sport Phys. Educ. 2008, 6, 136–138. [Google Scholar]



| Mesocycles | General Preparation | Specific Preparation | Pre-Competition | Taper | Total Weeks |
|---|---|---|---|---|---|
| Rio 2016 | 6 | 8 | 6 | 4 | 24 |
| Tokyo 2021 | 4 | 4 | 4 | 4 | 16 |
| Zone 1 (h/week) | Zone 2 (h/week) | Zone 3 (h/week) | Comments | ||
|---|---|---|---|---|---|
| Rio 2016 Olympic Games | General | 6 | 3 | 1 | Aerobic endurance |
| Specific | 4 | 3 | 3 | Strength and power foundation | |
| Pre competition | 3 | 2.5 | 3.5 | Specific speed development | |
| Taper | 2 | 1.5 | 3 | Speed sharpening | |
| Tokyo 2021 Olympic Games | General | 6 | 3 | 1 | Aerobic base, stroke technique |
| Specific | 4 | 3 | 2 | Dryland power, intro resisted swimming | |
| Pre competition | 2.5 | 2 | 3.5 | Max sprint power, lactate tolerance | |
| Taper | 2 | 1.5 | 3 | Race-specific speed, neural freshness |
| Segments of Analysis | RT (n) | ED (m) | FT (s) | NFK (n) | BD (m) | BT (s) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2016 Rio Olympics | 15 m | 25 m | 35 m | 45 m | 50 m | ||||||
| Splits (s) | 5.58 | 9.97 | 14.53 | 19.56 | 21.79 | 0.71 | 3.7 | 0.28 | 3 | 10.1 | 3.04 |
| Segment Time (s) | - | 4.39 | 4.56 | 5.03 | 2.23 | ||||||
| SS (m·s−1) | 2.69 | 2.27 | 2.19 | 1.98 | 1.96 | ||||||
| SR (strokes·min−1) | 63.8 | 60.6 | 59.8 | 58.8 | |||||||
| NS (n) | 38 | ||||||||||
| 2021 Tokyo Olympics | 15 m | 25 m | 35 m | 45 m | 50 m | ||||||
| Splits (s) | 5.30 | 9.78 | 14.37 | 19.26 | 21.57 | 0.64 | 3.8 | 0.33 | 3 | 10 | 3.18 |
| Segment Time (s) | - | 4.48 | 4.59 | 4.89 | 2.31 | ||||||
| SS (m·s−1) | 2.83 | 2.23 | 2.17 | 2.05 | 1.98 | ||||||
| SR (strokes·min−1) | 63.7 | 63.1 | 60.6 | 58.7 | |||||||
| NS (n) | 38 | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Papadimitriou, K.; Margaritelis, N.V.; Tsalis, G. One Sprinter, Two Olympic Preparations: A Single-Athlete Longitudinal Observational Study of Training-Intensity Distribution and Implications for Future 50 m Events. Sports 2026, 14, 23. https://doi.org/10.3390/sports14010023
Papadimitriou K, Margaritelis NV, Tsalis G. One Sprinter, Two Olympic Preparations: A Single-Athlete Longitudinal Observational Study of Training-Intensity Distribution and Implications for Future 50 m Events. Sports. 2026; 14(1):23. https://doi.org/10.3390/sports14010023
Chicago/Turabian StylePapadimitriou, Konstantinos, Nikos V. Margaritelis, and George Tsalis. 2026. "One Sprinter, Two Olympic Preparations: A Single-Athlete Longitudinal Observational Study of Training-Intensity Distribution and Implications for Future 50 m Events" Sports 14, no. 1: 23. https://doi.org/10.3390/sports14010023
APA StylePapadimitriou, K., Margaritelis, N. V., & Tsalis, G. (2026). One Sprinter, Two Olympic Preparations: A Single-Athlete Longitudinal Observational Study of Training-Intensity Distribution and Implications for Future 50 m Events. Sports, 14(1), 23. https://doi.org/10.3390/sports14010023

