The Effect of a High-Frequency Exercise Program During the Transition Period in Young Football Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Anthropometric Measurements
2.4. Isokinetic Strength Testing
2.5. Laboratory VO2 max Measurement
2.6. Countermovement Jump (CMJ) and Squat Jump (SJ)
2.7. Transitional Phase Training Program
2.8. Exercise Protocol
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FIFA. Professional Football. 2021. Available online: https://publications.fifa.com/en/annual-report-2021/around-fifa/professional-football-2021/ (accessed on 1 January 2023).
- FIFA. Advancing Football. Available online: https://inside.fifa.com/advancing-football (accessed on 18 June 2025).
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sports Med. 2018, 48, 907–931. [Google Scholar] [CrossRef]
- Vardakis, L.; Michailidis, Y.; Topalidis, P.; Zelenitsas, C.; Mandroukas, A.; Gissis, I.; Christoulas, K.; Mavrommatis, G.; Metaxas, T. Application of a Structured Training Plan on Different-Length Microcycles in Soccer—Internal and External Load Analysis between Training Weeks and Games. Appl. Sci. 2023, 13, 6935. [Google Scholar] [CrossRef]
- Brito de Souza, D.; López-Del Campo, R.; Blanco-Pita, H.; Resta, R.; Del Coso, J. An Extensive Comparative Analysis of Successful and Unsuccessful Football Teams in LaLiga. Front. Psychol. 2019, 10, 2566. [Google Scholar] [CrossRef] [PubMed]
- Plakias, S.; Michailidis, Y. Factors Affecting the Running Performance of Soccer Teams in the Turkish Super League. Sports 2024, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Barca Innovation Hub. The Increase in Football Matches Heightens the Risk of Devaluation and Loss of Product Quality. Available online: https://barcainnovationhub.fcbarcelona.com/blog/the-increase-in-football-matches-heightens-the-risk-of-devaluation-and-loss-of-product-quality/ (accessed on 15 July 2025).
- Morgans, R.; Orme, P.; Anderson, L.; Drust, B. Principles and Practices of Training for Soccer. J. Sport Health Sci. 2014, 3, 251–257. [Google Scholar] [CrossRef]
- Silva, J.R.; Brito, J.; Akenhead, R.; Nassis, G.P. The Transition Period in Soccer: A Window of Opportunity. Sports Med. 2016, 46, 305–313. [Google Scholar] [CrossRef]
- Vassilis, S.; Yiannis, M.; Athanasios, M.; Dimitrios, M.; Ioannis, G.; Thomas, M. Effect of a 4-Week Detraining Period Followed by a 4-Week Strength Program on Isokinetic Strength in Elite Youth Soccer Players. J. Exerc. Rehabil. 2019, 15, 67–73. [Google Scholar] [CrossRef]
- Clemente, F.M.; Ramirez-Campillo, R.; Sarmento, H. Detrimental Effects of the Off-Season in Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 795–814. [Google Scholar] [CrossRef]
- Padrón-Cabo, A.; Lorenzo-Martínez, M.; De Dios-Álvarez, V.; Rey, E.; Solleiro-Durán, D. Effects of a Short-Term Detraining Period on the Physical Fitness in Elite Youth Soccer Players: A Comparison between Chronological Age Groups. J. Strength Cond. Res. 2025, 39, e149–e154. [Google Scholar] [CrossRef]
- Clemente, F.M.; Soylu, Y.; Arslan, E.; Kilit, B.; Garrett, J.; van den Hoek, D.; Badicu, G.; Silva, A.F. Can High-Intensity Interval Training and Small-Sided Games Be Effective for Improving Physical Fitness after Detraining? A Parallel Study Design in Youth Male Soccer Players. PeerJ 2022, 10, e13514. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Mandroukas, A.; Michailidis, Y.; Metaxas, T. Muscle Strength and Hamstrings to Quadriceps Ratio in Young Soccer Players: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2023, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Brink-Elfegoun, T.; Kaijser, L.; Gustafsson, T.; Ekblom, B. Maximal Oxygen Uptake Is Not Limited by Central Nervous System Governor. J. Appl. Physiol. 2007, 102, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Åstrand, P.O.; Rodahl, K. Evaluation of Physical Performance on the Basis of Tests. In Textbook of Work Physiology; McGraw-Hill: New York, NY, USA, 1986; pp. 380–381. [Google Scholar]
- Freitas, T.T.; Pereira, L.A.; Alcaraz, P.E.; Arruda, A.F.; Guerriero, A.; Azevedo, P.H.; Loturco, I. Influence of Strength and Power Capacity on Change of Direction Speed and Deficit in Elite Team-Sport Athletes. J. Hum. Kinet. 2019, 68, 167–176. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi, Version 2.6; Computer Software; The Jamovi Project: Sydney, Australia, 2025. Available online: https://www.jamovi.org (accessed on 28 July 2025).
- IBM Corporation. IBM SPSS Statistics for Windows, Version 29.0.2.0; Computer Software; IBM Corporation: Armonk, NY, USA, 2025.
- JASP Team. JASP, Version 0.19.3.0; Computer Software; JASP Team: Amsterdam, The Netherlands, 2025. Available online: https://jasp-stats.org (accessed on 28 July 2025).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Mujika, I.; Padilla, S. Detraining: Loss of Training-Induced Physiological and Performance Adaptations. Part I. Short-Term Insufficient Training Stimulus. Sports Med. 2000, 30, 79–87. [Google Scholar] [CrossRef]
- Liu, G.; Wang, X.; Xu, Q. Supervised Offseason Training Programs Are Able to Mitigate the Effects of Detraining in Youth Men Soccer Players Physical Fitness: A Randomized Parallel Controlled Study. J. Sports Sci. Med. 2024, 23, 219–227. [Google Scholar] [CrossRef]
- Aubry, A.; Hausswirth, C.; Louis, J.; Coutts, A.J.; Le Meur, Y. Functional Overreaching: The Key to Peak Performance during the Taper? Med. Sci. Sports Exerc. 2014, 46, 1769–1777. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Scientific Bases for Precompetition Tapering Strategies. Med. Sci. Sports Exerc. 2003, 35, 1182–1187. [Google Scholar] [CrossRef]
- Koundourakis, N.E.; Androulakis, N.; Dermitzaki, E.; Venihaki, M.; Margioris, A.N. Effect of a 6-Week Supervised Detraining Period on Bone Metabolism Markers and Their Association with Ergometrics and Components of the Hypothalamic-Pituitary-Gonadal (HPG) Axis in Professional Male Soccer Players. J. Bone Miner. Metab. 2019, 37, 512–519. [Google Scholar] [CrossRef]
- Joo, C.H. The Effects of Short-Term Detraining and Retraining on Physical Fitness in Elite Soccer Players. PLoS ONE 2018, 13, e0196212. [Google Scholar] [CrossRef]
- Chatzinikolaou, A.; Michaloglou, K.; Avloniti, A.; Leontsini, D.; Deli, C.K.; Vlachopoulos, D.; Gracia-Marco, L.; Arsenis, S.; Athanailidis, I.; Draganidis, D.; et al. The Trainability of Adolescent Soccer Players to Brief Periodized Complex Training. Int. J. Sports Physiol. Perform. 2018, 13, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Tsatsanis, C.; Venihaki, M.; Margioris, A.N. Discrepancy between Exercise Performance, Body Composition, and Sex Steroid Response after a Six-Week Detraining Period in Professional Soccer Players. PLoS ONE 2014, 9, e87803. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Lara-Lopez, P.; Maldonado, R.; Torreno, N.; De Hoyo, M.; Nakamura, F.Y.; Di Salvo, V.; Mendez-Villanueva, A. The Effects of Detraining and Retraining Periods on Fat-Mass and Fat-Free Mass in Elite Male Soccer Players. PeerJ 2019, 7, e7466. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, A.; Travlos, A.K.; Gissis, I.; Souglis, A.G.; Grezios, A. The Effect of a 4-Week Training Regimen on Body Fat and Aerobic Capacity of Professional Soccer Players during the Transition Period. J. Strength Cond. Res. 2009, 23, 1697–1703. [Google Scholar] [CrossRef]
- Rossi, F.E.; Landreth, A.; Beam, S.; Jones, T.; Norton, L.; Cholewa, J.M. The Effects of a Sports Nutrition Education Intervention on Nutritional Status, Sport Nutrition Knowledge, Body Composition, and Performance during Off-Season Training in NCAA Division I Baseball Players. J. Sports Sci. Med. 2017, 16, 60–68. [Google Scholar]
- Thomassen, M.; Christensen, P.M.; Gunnarsson, T.P.; Nybo, L.; Bangsbo, J. Effect of Two-Week Intensified Training and Inactivity on Muscle Na+-K+ Pump Expression, Phospholemman (FXYD1) Phosphorylation, and Performance in Soccer Players. J. Appl. Physiol. 2010, 108, 898–905. [Google Scholar] [CrossRef]
- Christensen, P.M.; Krustrup, P.; Gunnarsson, T.P.; Kiilerich, K.; Nybo, L.; Bangsbo, J. VO2 Kinetics and Performance in Soccer Players after Intense Training and Inactivity. Med. Sci. Sports Exerc. 2011, 43, 1716–1724. [Google Scholar] [CrossRef]
- Coyle, E.F.; Martin, W.H., 3rd; Sinacore, D.R.; Joyner, M.J.; Hagberg, J.M.; Holloszy, J.O. Time Course of Loss of Adaptations after Stopping Prolonged Intense Endurance Training. J. Appl. Physiol. 1984, 57, 1857–1864. [Google Scholar] [CrossRef]
- Chaouachi, A.; Ben Othman, A.; Makhlouf, I.; Young, J.D.; Granacher, U.; Behm, D.G. Global Training Effects of Trained and Untrained Muscles with Youth Can Be Maintained during Four Weeks of Detraining. J. Strength Cond. Res. 2019, 33, 2788–2800. [Google Scholar] [CrossRef]
- Joo, C.H. The Effects of Short-Term Detraining on Exercise Performance in Soccer Players. J. Exerc. Rehabil. 2016, 12, 54–59. [Google Scholar] [CrossRef]
- Lehnert, M.; Psotta, R.; Chvojka, P.; Ste Croix, M.D. Seasonal Variation in Isokinetic Peak Torque in Youth Soccer Players. Kinesiology 2014, 46, 79–87. [Google Scholar]
- Mujika, I.; Padilla, S. Detraining: Loss of Training-Induced Physiological and Performance Adaptations. Part II: Long-Term Insufficient Training Stimulus. Sports Med. 2000, 30, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth Resistance Training: Updated Position Statement Paper from the National Strength and Conditioning Association. J. Strength Cond. Res. 2009, 23 (Suppl. 5), S60–S79. [Google Scholar] [CrossRef] [PubMed]
- Marković, G.; Jukić, I.; Milanović, D.; Metikoš, D. Effects of Sprint and Plyometric Training on Muscle Function and Athletic Performance. J. Strength Cond. Res. 2007, 21, 543–549. [Google Scholar] [CrossRef]
- Marković, G.; Mikulić, P. Neuro-Musculoskeletal and Performance Adaptations to Lower-Extremity Plyometric Training. Sports Med. 2010, 40, 859–896. [Google Scholar] [CrossRef]
Variable | Pre | Post | ||||
---|---|---|---|---|---|---|
Mean ± SD (95% CI) | Mean ± SD (95% CI) | t | p | Cohen’s d | Cohen’s d 95% CI | |
Height (m) | 1.78 ± 0.07 (1.74–1.83) | 1.79 ± 0.07 (1.74–1.83) | −1.443 | 0.175 | −0.400 | −0.959–0.173 |
Body weight (kg) | 70.3 ± 8.4 (65.2–75.4) | 70.3 ± 7.6 (65.7–74.9) | 0.001 | 0.999 | 0.001 | −0.544–0.544 |
BMI | 22.0 ± 1.3 (21.3–22.8) | 22.0 ± 1.0 (21.3–22.6) | 0.546 | 0.595 | 0.151 | −0.399–0.695 |
Body Fat (%) | 8.1 ± 2.7 (6.5–9.8) | 8.2 ± 2.9 (6.4–9.9) | −0.024 | 0.981 | −0.007 | −0.550–0.537 |
Muscle mass (kg) | 61.5 ± 6.2 (57.7–65.2) | 61.3 ± 5.7 (57.8–64.8) | 0.412 | 0.688 | 0.114 | −0.434–0.657 |
Fat mass (kg) | 5.5 ± 2.6 (4.0–7.1) | 5.8 ± 2.6 (4.2–7.4) | −0.941 | 0.365 | −0.261 | −0.809–0.297 |
Variable | Pre | Post | ||||
---|---|---|---|---|---|---|
Mean ± SD (95% CI) | Mean ± SD (95% CI) | t | p | Cohen’s d | Cohen’s d 95% CI | |
Resting Heart Rate (bpm) | 65 ± 12 (58–73) | 67 ± 10 (61–73) | −0.553 | 0.590 | −0.153 | −0.697–0.397 |
Systolic (mmHg) | 122 ± 10 (116–128) | 120 ± 8 (115–125) | 0.472 | 0.646 | 0.131 | −0.418–0.674 |
Diastolic (mmHg) | 64 ± 7 (59–68) | 63 ± 6 (59–67) | 0.301 | 0.768 | 0.084 | −0.463–0.626 |
Anaerobic Threshold Time (s) | 441 ± 24 (426–455) | 448 ± 20 (436–460) | −1.589 | 0.138 | −0.441 | −1.003–0.139 |
Anaerobic Threshold HR (bpm) | 180 ± 7 (176–184) | 179 ± 6 (176–183) | 0.439 | 0.668 | 0.122 | −0.426–0.665 |
Anaerobic Threshold Velocity (km/h) | 14.9 ± 0.9 (14.4–15.4) | 15.2 ± 0.7 (14.7–15.6) | −1.620 | 0.131 | −0.449 | −1.013–0.131 |
Anaerobic Threshold VO2 max (mL/kg/min) | 50.0 ± 4.9 (47.0–53.0) | 51.1 ± 4.6 (48.4–54.0) | −1.132 | 0.280 | −0.314 | −0.865–0.250 |
Maximal Exercise Time (s) | 539 ± 30 (521–557) | 542 ± 23 (529–556) | −0.619 | 0.547 | −0.172 | −0.716–0.380 |
Maximal Heart Rate (bpm) | 195 ± 9 (189–200) | 195 ± 7 (191–200) | −0.361 | 0.724 | −0.100 | −0.643–0.447 |
Maximal Velocity (km/h) | 18.2 ± 1.0 (17.6–18.8) | 18.3 ± 0.8 (17.8–18.8) | −0.433 | 0.673 | −0.120 | −0.663–0.428 |
VO2 max (mL/kg/min) | 55.4 ± 5.1 (52.3–58.4) | 57.1 ± 4.6 (54.3–59.9) | −2.348 | 0.037 * | −0.651 | −1.242–(−0.039) |
VO2 max (mL/min) | 3871 ± 539 (3545–4197) | 4022 ± 407 (3776–4268) | −2.313 | 0.039 * | −0.641 | −1.231–(−0.031) |
Respiratory Exchange Ratio (RER) | 1.16 ± 0.03 (1.14–1.18) | 1.17 ± 0.03 (1.15–1.19) | −1.190 | 0.257 | −0.330 | −0.883–0.235 |
Variable | Pre | Post | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD (95% CI) | Mean ± SD (95% CI) | t | p | Cohen’s d | Cohen’s d 95% CI | |||||
Right Knee Extensors 60°/s (Nm) | 238.1 ± 34.2 | 217.5 | 258.8 | 224.6 ± 35.7 | 203.1 | 246.2 | 2.299 | 0.040 * | 0.638 | 0.027–1.226 |
Right Knee Extensors 180°/s (Nm) | 171.9 ± 22.7 | 158.2 | 185.6 | 174.7 ± 22.1 | 161.3 | 188.1 | −0.976 | 0.348 | −0.271 | −0.819–0.289 |
Right Knee Extensors 300°/s (Nm) | 132.7 ± 17.2 | 122.3 | 143.1 | 135.5 ± 19.3 | 123.8 | 147.1 | −1.235 | 0.240 | −0.343 | −0.896–0.224 |
Right Knee Flexors 60°/s (Nm) | 154.7 ± 29.8 | 136.7 | 172.7 | 149.2 ± 24.1 | 134.7 | 163.8 | 1.480 | 0.165 | 0.411 | −0.165–0.970 |
Right Knee Flexors 180°/s (Nm) | 117.9 ± 16.3 | 108.0 | 127.7 | 118.0 ± 15.6 | 108.6 | 127.4 | −0.043 | 0.966 | −0.012 | −0.555–0.532 |
Right Knee Flexors 300°/s (Nm) | 95.1 ± 15.5 | 85.7 | 104.4 | 96.0 ± 17.1 | 85.7 | 106.3 | −0.331 | 0.747 | −0.092 | −0.635–0.455 |
Left Knee Extensors 60°/s (Nm) | 211.5 ± 42.5 | 185.8 | 237.2 | 212.7 ± 39.3 | 189.0 | 236.4 | −0.265 | 0.795 | −0.074 | −0.616–0.472 |
Left Knee Extensors 180°/s (Nm) | 165.7 ± 29.3 | 148.0 | 183.4 | 162.3 ± 24.6 | 147.4 | 177.2 | 1.393 | 0.189 | 0.386 | −0.186–0.944 |
Left Knee Extensors 300°/s (Nm) | 127.5 ± 21.4 | 114.6 | 140.4 | 124.5 ± 18.6 | 113.2 | 135.7 | 1.327 | 0.209 | 0.368 | −0.202–0.924 |
Left Knee Flexors 60°/s (Nm) | 140.7 ± 25.5 | 125.3 | 156.1 | 139.2 ± 30.4 | 120.8 | 157.5 | 0.259 | 0.800 | 0.072 | −0.474–0.615 |
Left Knee Flexors 180°/s (Nm) | 116.9 ± 17.2 | 106.4 | 127.3 | 113.1 ± 17.6 | 102.5 | 123.7 | 1.211 | 0.249 | 0.336 | −0.230–0.889 |
Left Knee Flexors 300°/s (Nm) | 93.8 ± 13.7 | 85.5 | 102.0 | 93.2 ± 19.6 | 81.3 | 105.0 | 0.184 | 0.857 | 0.051 | −0.494–0.594 |
CMJ (cm) | 41.4 ± 5.8 | 37.9 | 44.9 | 39.2 ± 6.9 | 35.0 | 43.3 | 3.112 | 0.009 * | 0.863 | 0.208–1.492 |
SJ (cm) | 38.9 ± 6.5 | 35.0 | 42.8 | 37.2 ± 6.4 | 33.3 | 41.1 | 1.927 | 0.078 | 0.534 | −0.058–1.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidis, Y.; Stafylidis, A.; Mandroukas, A.; Semaltianou, E.; Karamousalidis, G.; Antoniou, G.; Leftheroudis, V.; Mittas, V.; Metaxas, T.I. The Effect of a High-Frequency Exercise Program During the Transition Period in Young Football Players. Sports 2025, 13, 297. https://doi.org/10.3390/sports13090297
Michailidis Y, Stafylidis A, Mandroukas A, Semaltianou E, Karamousalidis G, Antoniou G, Leftheroudis V, Mittas V, Metaxas TI. The Effect of a High-Frequency Exercise Program During the Transition Period in Young Football Players. Sports. 2025; 13(9):297. https://doi.org/10.3390/sports13090297
Chicago/Turabian StyleMichailidis, Yiannis, Andreas Stafylidis, Athanasios Mandroukas, Eleni Semaltianou, Georgios Karamousalidis, Georgios Antoniou, Vasileios Leftheroudis, Vasilios Mittas, and Thomas I. Metaxas. 2025. "The Effect of a High-Frequency Exercise Program During the Transition Period in Young Football Players" Sports 13, no. 9: 297. https://doi.org/10.3390/sports13090297
APA StyleMichailidis, Y., Stafylidis, A., Mandroukas, A., Semaltianou, E., Karamousalidis, G., Antoniou, G., Leftheroudis, V., Mittas, V., & Metaxas, T. I. (2025). The Effect of a High-Frequency Exercise Program During the Transition Period in Young Football Players. Sports, 13(9), 297. https://doi.org/10.3390/sports13090297