A Field-Based Screening Protocol for Hamstring Injury Risk in Football Players: Evaluating Its Functionality Using Exploratory Factor Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurements
2.4. Data Processing and Statistical Analysis
3. Results
4. Discussion
4.1. Variables Interrelationships
4.2. Practical Implications
4.3. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. Hamstring Injury Rates Have Increased during Recent Seasons and Now Constitute 24% of All Injuries in Men’s Professional Football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2023, 57, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Hägglund, M.; Waldén, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries Affect Team Performance Negatively in Professional Football: An 11-Year Follow-up of the UEFA Champions League Injury Study. Br. J. Sports Med. 2013, 47, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Maniar, N.; Carmichael, D.S.; Hickey, J.T.; Timmins, R.G.; Jose, A.J.S.; Dickson, J.; Opar, D. Incidence and Prevalence of Hamstring Injuries in Field-Based Team Sports: A Systematic Review and Meta-Analysis of 5952 Injuries from over 7 Million Exposure Hours. Br. J. Sports Med. 2023, 57, 109–116. [Google Scholar] [CrossRef]
- Diemer, W.M.; Winters, M.; Tol, J.L.; Pas, H.I.M.F.L.; Moen, M.H. Incidence of Acute Hamstring Injuries in Soccer: A Systematic Review of 13 Studies Involving More than 3800 Athletes with 2 Million Sport Exposure Hours. J. Orthop. Sports Phys. Ther. 2021, 51, 27–36. [Google Scholar] [CrossRef]
- Gronwald, T.; Klein, C.; Hoenig, T.; Pietzonka, M.; Bloch, H.; Edouard, P.; Hollander, K. Hamstring Injury Patterns in Professional Male Football (Soccer): A Systematic Video Analysis of 52 Cases. Br. J. Sports Med. 2022, 56, 165–171. [Google Scholar] [CrossRef]
- Gudelis, M.; Pruna, R.; Trujillano, J.; Lundblad, M.; Khodaee, M. Epidemiology of Hamstring Injuries in 538 Cases from an FC Barcelona Multi Sports Club. Phys. Sportsmed. 2024, 52, 57–64. [Google Scholar] [CrossRef]
- Green, B.; Bourne, M.N.; van Dyk, N.; Pizzari, T. Recalibrating the Risk of Hamstring Strain Injury (HSI): A 2020 Systematic Review and Meta-Analysis of Risk Factors for Index and Recurrent Hamstring Strain Injury in Sport. Br. J. Sports Med. 2020, 54, 1081–1088. [Google Scholar] [CrossRef]
- Duhig, S.; Shield, A.J.; Opar, D.; Gabbett, T.J.; Ferguson, C.; Williams, M. Effect of High-Speed Running on Hamstring Strain Injury Risk. Br. J. Sports Med. 2016, 50, 1536–1540. [Google Scholar] [CrossRef]
- Ruddy, J.D.; Pollard, C.W.; Timmins, R.G.; Williams, M.D.; Shield, A.J.; Opar, D.A. Running Exposure Is Associated with the Risk of Hamstring Strain Injury in Elite Australian Footballers. Br. J. Sports Med. 2018, 52, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, J.; Danneels, L.; Van Tiggelen, D.; Palmans, T.; Witvrouw, E. Proximal Neuromuscular Control Protects Against Hamstring Injuries in Male Soccer Players: A Prospective Study with Electromyography Time-Series Analysis during Maximal Sprinting. Am. J. Sports Med. 2017, 45, 1315–1325. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Palmans, T.; Danneels, L.; Witvrouw, E. Deviating Running Kinematics and Hamstring Injury Susceptibility in Male Soccer Players: Cause or Consequence? Gait Posture 2017, 57, 270–277. [Google Scholar] [CrossRef]
- Ayala, F.; López-Valenciano, A.; Gámez Martín, J.A.; De Ste Croix, M.; Vera-Garcia, F.J.; García-Vaquero, M.D.P.; Ruiz-Pérez, I.; Myer, G.D. A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Algorithms. Int. J. Sports Med. 2019, 40, 344–353. [Google Scholar] [CrossRef]
- Liveris, N.I.; Tsarbou, C.; Papageorgiou, G.; Tsepis, E.; Fousekis, K.; Kvist, J.; Xergia, S.A. The Complex Interrelationships of the Risk Factors Leading to Hamstring Injury and Implications for Injury Prevention: A Group Model Building Approach. Appl. Sci. 2024, 14, 6316. [Google Scholar] [CrossRef]
- Fonseca, S.T.; Souza, T.R.; Verhagen, E.; van Emmerik, R.; Bittencourt, N.F.N.; Mendonça, L.D.M.; Andrade, A.G.P.; Resende, R.A.; Ocarino, J.M. Sports Injury Forecasting and Complexity: A Synergetic Approach. Sports Med. 2020, 50, 1757–1770. [Google Scholar] [CrossRef]
- Stern, B.D.; Hegedus, E.J.; Lai, Y.C. Injury Prediction as a Non-Linear System. Phys. Ther. Sport 2020, 41, 43–48. [Google Scholar] [CrossRef]
- Bahr, R.; Clarsen, B.; Derman, W.; Dvorak, J.; Emery, C.A.; Finch, C.F.; Hägglund, M.; Junge, A.; Kemp, S.; Khan, K.M.; et al. International Olympic Committee Consensus Statement: Methods for Recording and Reporting of Epidemiological Data on Injury and Illness in Sport 2020 (Including STROBE Extension for Sport Injury and Illness Surveillance (STROBE-SIIS)). Br. J. Sports Med. 2020, 54, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Markati, A.; Psychountaki, M.; Karteroliotis, K. Athlete Burnout Questionnaire: Validity and Reliability in a Greek Population. In Proceedings of the IV European Congress of Methodology, Pozdam, German, 22 July 2010; European Association of Methodology: Berlin, Germany; p. 117. [Google Scholar]
- Tsarbou, C.; Liveris, N.I.; Xergia, S.A.; Papageorgiou, G.; Sideris, V.; Giakas, G.; Tsepis, E. Evaluating the Functionality of a Field-Based Test Battery for the Identification of Risk for Anterior Cruciate Ligament Injury: An Exploratory Factor Analysis. Appl. Sci. 2025, 15, 167. [Google Scholar] [CrossRef]
- Moreno-Pérez, V.; Ayala, F.; Fernandez-Fernandez, J.; Vera-Garcia, F.J. Descriptive Profile of Hip Range of Motion in Elite Tennis Players. Phys. Ther. Sport 2016, 19, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-Held Dynamometry Correlation With the Gold Standard Isokinetic Dynamometry: A Systematic Review. PM&R 2011, 3, 472–479. [Google Scholar] [CrossRef]
- Whiteley, R.; Jacobsen, P.; Prior, S.; Skazalski, C.; Otten, R.; Johnson, A. Correlation of Isokinetic and Novel Hand-Held Dynamometry Measures of Knee Flexion and Extension Strength Testing. J. Sci. Med. Sport 2012, 15, 444–450. [Google Scholar] [CrossRef]
- Goossens, L.; Witvrouw, E.; Vanden Bossche, L.; De Clercq, D. Lower Eccentric Hamstring Strength and Single Leg Hop for Distance Predict Hamstring Injury in PETE Students. Eur. J. Sport Sci. 2015, 15, 436–442. [Google Scholar] [CrossRef]
- Lesnak, J.; Anderson, D.; Farmer, B.; Katsavelis, D.; Grindstaff, T.L. Validity of Hand-Held Dynamometry in Measuring Quadriceps Strength and Rate of Torque Development. Int. J. Sports Phys. Ther. 2019, 14, 180–187. [Google Scholar] [CrossRef]
- Thorborg, K.; Petersen, J.; Magnusson, S.P.; Hölmich, P. Clinical Assessment of Hip Strength Using a Hand-Held Dynamometer Is Reliable. Scand. J. Med. Sci. Sports 2010, 20, 493–501. [Google Scholar] [CrossRef]
- Paterno, M.V.; Huang, B.; Thomas, S.; Hewett, T.E.; Schmitt, L.C. Clinical Factors That Predict a Second ACL Injury After ACL Reconstruction and Return to Sport: Preliminary Development of a Clinical Decision Algorithm. Orthop. J. Sports Med. 2017, 5, 2325967117745279. [Google Scholar] [CrossRef]
- Hamilton, R.T.; Shultz, S.J.; Schmitz, R.J.; Perrin, D.H. Triple-Hop Distance as a Valid Predictor of Lower Limb Strength and Power. J. Athl. Train. 2008, 43, 144–151. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Królikowska, A.; Mika, A.; Kuchciak, M.; Szymczyk, D.; Rzepko, M.; Bril, G.; Prill, R.; Stolarczyk, A.; Reichert, P. A Compound Hop Index for Assessing Soccer Players’ Performance. J. Clin. Med. 2022, 11, 255. [Google Scholar] [CrossRef]
- Freckleton, G.; Cook, J.; Pizzari, T. The Predictive Validity of a Single Leg Bridge Test for Hamstring Injuries in Australian Rules Football Players. Br. J. Sports Med. 2014, 48, 713–717. [Google Scholar] [CrossRef] [PubMed]
- De Blaiser, C.; De Ridder, R.; Willems, T.; Danneels, L.; Vanden Bossche, L.; Palmans, T.; Roosen, P. Evaluating Abdominal Core Muscle Fatigue: Assessment of the Validity and Reliability of the Prone Bridging Test. Scand. J. Med. Sci. Sports 2018, 28, 391–399. [Google Scholar] [CrossRef] [PubMed]
- McGill, S.M.; Childs, A.; Liebenson, C. Endurance Times for Low Back Stabilization Exercises: Clinical Targets for Testing and Training from a Normal Database. Arch. Phys. Med. Rehabil. 1999, 80, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Coorevits, P.; Danneels, L.; Cambier, D.; Ramon, H.; Vanderstraeten, G. Assessment of the Validity of the Biering-Sørensen Test for Measuring Back Muscle Fatigue Based on EMG Median Frequency Characteristics of Back and Hip Muscles. J. Electromyogr. Kinesiol. 2008, 18, 997–1005. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Vagenas, G. Multivariate Isokinetic Strength Asymmetries of the Knee and Ankle in Professional Soccer Players. J. Sports Med. Phys. Fitness 2010, 50, 465–474. [Google Scholar]
- Watkins, M.W. Exploratory Factor Analysis: A Guide to Best Practice. J. Black Psychol. 2018, 44, 219–246. [Google Scholar] [CrossRef]
- Gaskin, C.J.; Happell, B. On Exploratory Factor Analysis: A Review of Recent Evidence, an Assessment of Current Practice, and Recommendations for Future Use. Int. J. Nurs. Stud. 2014, 51, 511–521. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J. Multivariate Data Analysis: A Global Perspective; Global Edition; Pearson Education: London, UK, 2010; ISBN 9780135153093. [Google Scholar]
- Kenneally-Dabrowski, C.; Brown, N.A.T.; Warmenhoven, J.; Serpell, B.G.; Perriman, D.; Lai, A.K.M.; Spratford, W. Late Swing Running Mechanics Influence Hamstring Injury Susceptibility in Elite Rugby Athletes: A Prospective Exploratory Analysis. J. Biomech. 2019, 92, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Bramah, C.; Mendiguchia, J.; Dos’Santos, T.; Morin, J.B. Exploring the Role of Sprint Biomechanics in Hamstring Strain Injuries: A Current Opinion on Existing Concepts and Evidence. Sports Med. 2024, 54, 783–793. [Google Scholar] [CrossRef]
- Liveris, N.I. Applying Systems Thinking Approaches to Investigate the Complex Interrelationships of Risk Factors Affecting Acute Non-Contact Lower Limb Injuries in Team Sports (PhD Academy Award). Br. J. Sports Med. 2025, 59, 683–684. [Google Scholar] [CrossRef] [PubMed]
- De Blaiser, C.; De Ridder, R.; Willems, T.; Vanden Bossche, L.; Danneels, L.; Roosen, P. Impaired Core Stability as a Risk Factor for the Development of Lower Extremity Overuse Injuries: A Prospective Cohort Study. Am. J. Sports Med. 2019, 47, 1713–1721. [Google Scholar] [CrossRef]
- Modric, T.; Versic, S.; Alexe, D.I.; Gilic, B.; Mihai, I.; Drid, P.; Radulovic, N.; Saavedra, J.M.; Menjibar, R.B. Decline in Running Performance in Highest-Level Soccer: Analysis of the UEFA Champions League Matches. Biology 2022, 11, 1441. [Google Scholar] [CrossRef]
- Akgül, M.Ş.; Tohănean, D.I.; Akçay, N.; Păun, L.I.; Çetin, T.; Uysal, H.Ş.; Alexe, C.I. Effects of Different Intensities of Post-Activation Performance Enhancement Protocols on Repeated Sprint Ability in Male Soccer Players: A Randomized Crossover Trial. Appl. Sci. 2024, 14, 11269. [Google Scholar] [CrossRef]
- Hajek, M.; Williams, M.D.; Bourne, M.N.; Roberts, L.A.; Morris, N.R.; Shield, A.J.; Headrick, J.; Duhig, S.J. Hamstring and Knee Injuries Are Associated with Isometric Hip and Trunk Muscle Strength in Elite Australian Rules and Rugby League Players. J. Sci. Med. Sport 2024, 27, 172–178. [Google Scholar] [CrossRef]
- Wan, X.; Qu, F.; Garrett, W.E.; Liu, H.; Yu, B. The Effect of Hamstring Flexibility on Peak Hamstring Muscle Strain in Sprinting. J. Sport Health Sci. 2017, 6, 283–289. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Ayala, F.; Puerta, J.M.; De Ste Croix, M.B.A.; Vera-Garcia, F.J.; Hernandez-Sanchez, S.; Ruiz-Perez, I.; Myer, G.D. A Preventive Model for Muscle Injuries: A Novel Approach Based on Learning Algorithms. Med. Sci. Sports Exerc. 2018, 50, 915–927. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Finch, C.F.; Pruna, R.; McCall, A. A New Model for Injury Prevention in Team Sports: The Team-Sport Injury Prevention (TIP) Cycle. Sci. Med. Footb. 2019, 3, 77–80. [Google Scholar] [CrossRef]
- Bramah, C.; Tawiah-Dodoo, J.; Rhodes, S.; Elliott, J.D.; Dos’Santos, T. The Sprint Mechanics Assessment Score: A Qualitative Screening Tool for the In-Field Assessment of Sprint Running Mechanics. Am. J. Sports Med. 2024, 52, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
Professional (n = 52) (Mean ± SD) | Semi-Professional (n = 47) (Mean ± SD) | Total (n = 99) (Mean ± SD) | |
---|---|---|---|
Age | 22.50 ± 4.53 | 21.79 ± 5.55 | 22.16 ± 5.03 |
Weight (kg) | 75.42 ± 7.77 | 73.36 ± 7.58 | 74.44 ± 7.71 |
Height (cm) | 179.89 ± 6.65 | 177.64 ± 5.67 | 178.82 ± 6.27 |
BMI | 23.27 ± 1.69 | 23.22 ± 1.85 | 23.25 ± 1.76 |
Football Start Age | 7.77 ± 2.77 | 7.72 ± 3.14 | 7.75 ± 2.94 |
Years Playing at Professional Level | 3.87 ± 4.05 | 3.70 ± 4.11 | 3.79 ± 4.06 |
Games Participation Previous Year | 20.27 ± 11.14 | 18.15 ± 7.17 | 19.26 ± 9.48 |
Hours of Training per Day in the Previous Year | 2.40 ± 0.63 | 2.24 ± 0.65 | 2.33 ± 0.64 |
Days Training per Week in the Previous Year | 5.76 ± 0.43 | 5.27 ± 0.66 | 5.53 ± 0.60 |
Variables Category | Variables (Unit of Measurement) | Mean | SD | Skewness | Kurtosis | ||
---|---|---|---|---|---|---|---|
Statistic | Std. Error | Statistic | Std. Error | ||||
Previous Injuries | Number of Previous Injuries | 0.90 | 0.83 | 0.52 | 0.24 | −0.51 | 0.48 |
Time Loss of the Most Recent Injury (5-linked scale, 0 = no injury, 4 = greater than 3 months’ time loss) | 1.47 | 1.34 | 0.29 | 0.24 | −1.22 | 0.48 | |
ABQ | Emotional Physical Exhaustion (5-linked scale) | 1.65 | 0.48 | 0.89 | 0.24 | 0.48 | 0.48 |
Reduced Sense of Accomplishment (5-linked scale) | 2.45 | 0.56 | −0.37 | 0.24 | 0.39 | 0.48 | |
Devaluation (5-linked scale) | 1.34 | 0.63 | 2.67 | 0.24 | 7.84 | 0.48 | |
LL Neuromuscular Characteristics | SLR (°) | 77.18 | 8.66 | −0.03 | 0.24 | −0.14 | 0.48 |
Strength Abductors (Nm/kg) | 2.28 | 0.28 | 0.00 | 0.24 | −0.44 | 0.48 | |
Strength HS (brake test) (Nm/kg) | 1.61 | 0.24 | 0.53 | 0.24 | 0.34 | 0.48 | |
Strength HS (make test) (Nm/kg) | 1.49 | 0.21 | 0.47 | 0.24 | 0.98 | 0.48 | |
Strength Quadriceps (Nm/kg) | 3.04 | 0.46 | 0.01 | 0.24 | −0.18 | 0.48 | |
THD (cm/body height) | 3.23 | 0.31 | 0.28 | 0.24 | 0.97 | 0.48 | |
SLHB (maximum repetitions) | 32.77 | 9.99 | 0.13 | 0.24 | −0.10 | 0.48 | |
LS | Strength Abductors LS (%) | 8.12 | 6.33 | 0.94 | 0.24 | 1.47 | 0.48 |
Strength HS (brake test) LS (%) | 6.90 | 5.16 | 0.68 | 0.24 | −0.30 | 0.48 | |
Strength HS (make test) LS (%) | 5.65 | 4.43 | 1.10 | 0.24 | 1.17 | 0.48 | |
Strength Quadriceps LS (%) | 7.30 | 6.01 | 1.12 | 0.24 | 0.69 | 0.48 | |
SLR LS (%) | 5.55 | 4.22 | 1.08 | 0.24 | 0.52 | 0.48 | |
SLHB LS (%) | 13.68 | 10.42 | 0.55 | 0.24 | −0.55 | 0.48 | |
THD LS (%) | 4.90 | 4.04 | 1.07 | 0.24 | 0.90 | 0.48 | |
Core Endurance | Prone Bridge (seconds) | 175.40 | 76.12 | 0.84 | 0.24 | 0.11 | 0.48 |
Side Bridge D (seconds) | 90.10 | 28.71 | 0.98 | 0.24 | 1.03 | 0.48 | |
Side Bridge ND (seconds) | 89.61 | 27.73 | 0.57 | 0.24 | −0.55 | 0.48 | |
Biering–Sørensen Test (seconds) | 100.30 | 36.95 | 0.57 | 0.24 | 0.33 | 0.48 |
Measured Items | Factor (% of Explained Variance) | |||||
---|---|---|---|---|---|---|
F1 (20.24%) HS and Core Endurance | F2 (12.81%) HS Strength | F3 (8.93%) Previous Injuries | F4 (5.75%) ABQ | F5 (4.10%) LL Strength | F6 (3.79%) Strength LS | |
Side Bridge D | 0.873 | |||||
Side Bridge ND | 0.865 | |||||
Prone Bridge | 0.731 | 0.215 | ||||
SLHB D | 0.558 | 0.246 | ||||
Strength HS (brake test) | 0.925 | |||||
Strength HS (make test) | 0.727 | |||||
Number of Previous Injuries | 0.994 | |||||
Time Loss of the Most Recent Injury | 0.706 | |||||
Emotional Physical Exhaustion | 0.866 | |||||
Devaluation | 0.624 | |||||
Reduced Sense of Accomplishment | 0.454 | |||||
Strength Quadriceps | 0.647 | |||||
THD | 0.427 | −0.297 | ||||
Strength Abductors | 0.230 | 0.419 | ||||
THD LS | 0.672 | |||||
Strength HS (make test) LS | −0.200 | 0.442 |
Measured Items | Communalities | Extracted Factor | Cronbach’s Alpha |
---|---|---|---|
Side Bridge D | 0.750 | HS and core Endurance | 0.68 |
Side Bridge ND | 0.743 | ||
Prone Bridge | 0.652 | ||
SLHB D | 0.377 | ||
Strength HS (brake test) | 0.942 | HS Strength | 0.835 |
Strength HS (make test) | 0.563 | ||
Number of Previous Injuries | 0.908 | Previous Injuries | 0.767 |
Time Loss of the Most Recent Injury | 0.606 | ||
Emotional Physical Exhaustion | 0.754 | ABQ | 0.655 |
Devaluation | 0.365 | ||
Reduced Sense of Accomplishment | 0.327 | ||
Strength Quadriceps | 0.451 | LL Strength | 0.525 |
THD | 0.343 | ||
Strength Abductors | 0.345 | ||
THD LS | 0.445 | Strength LS | 0.489 |
Strength HS (make test) LS | 0.336 |
Factor | HS and Core Endurance | HS Strength | Previous Injuries | ABQ | LL Strength | Strength LS | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HS and Core Endurance | 1.000 | 0.283 | −0.087 | 0.139 | 0.288 | −0.297 | |||||||||||||||||||
HS Strength | 1.000 | 0.173 | 0.065 | 0.323 | −0.216 | ||||||||||||||||||||
Previous Injuries | 1.000 | 0.335 | 0.023 | 0.029 | |||||||||||||||||||||
ABQ | 1.000 | 0.121 | 0.006 | ||||||||||||||||||||||
LL Strength | 1.000 | −0.156 | |||||||||||||||||||||||
Strength LS | 1.000 | ||||||||||||||||||||||||
1 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0 | −0.1 | −0.2 | −0.3 | −0.4 | −0.5 | −0.6 | −0.7 | −0.8 | −0.9 | −1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liveris, N.I.; Tsarbou, C.; Papageorgiou, G.; Tsepis, E.; Fousekis, K.; Xergia, S.A. A Field-Based Screening Protocol for Hamstring Injury Risk in Football Players: Evaluating Its Functionality Using Exploratory Factor Analysis. Sports 2025, 13, 295. https://doi.org/10.3390/sports13090295
Liveris NI, Tsarbou C, Papageorgiou G, Tsepis E, Fousekis K, Xergia SA. A Field-Based Screening Protocol for Hamstring Injury Risk in Football Players: Evaluating Its Functionality Using Exploratory Factor Analysis. Sports. 2025; 13(9):295. https://doi.org/10.3390/sports13090295
Chicago/Turabian StyleLiveris, Nikolaos I., Charis Tsarbou, George Papageorgiou, Elias Tsepis, Konstantinos Fousekis, and Sofia A. Xergia. 2025. "A Field-Based Screening Protocol for Hamstring Injury Risk in Football Players: Evaluating Its Functionality Using Exploratory Factor Analysis" Sports 13, no. 9: 295. https://doi.org/10.3390/sports13090295
APA StyleLiveris, N. I., Tsarbou, C., Papageorgiou, G., Tsepis, E., Fousekis, K., & Xergia, S. A. (2025). A Field-Based Screening Protocol for Hamstring Injury Risk in Football Players: Evaluating Its Functionality Using Exploratory Factor Analysis. Sports, 13(9), 295. https://doi.org/10.3390/sports13090295