Neuroplasticity of Brain Networks Through Exercise: A Narrative Review About Effect of Types, Intensities, and Durations
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Criteria for Conceptual Classification
3. Results
3.1. Overview of Evidence
3.1.1. Study Description: Types of Physical Exercise and Brain Networks
3.1.2. Papers’ Subdivisions for Each of the Seven Brain Networks, White and Subcortical Gray Matter, and Corticospinal Tract
Default Mode Network, Salience Network, and Central Executive Network
Visuospatial Network and Sensorimotor Network
Language and Auditory Networks
White Matter, Subcortical Gray Matter, and Corticospinal Tract
Findings on Functional and Structural Changes
4. Discussion
4.1. Cardiovascular Exercise and Brain: General Overview
4.2. Strength Exercise and Brain: General Overview
4.3. Mixed Exercise and Brain: General Overview
5. Conclusions
6. Limitation and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sporns, O. Networks of the Brain; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Batouli, S.A.H.; Saba, V. At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behav. Brain Res. 2017, 332, 204–217. [Google Scholar] [CrossRef]
- Chen, F.T.; Hopman, R.J.; Huang, C.J.; Chu, C.H.; Hillman, C.H.; Hung, T.M.; Chang, Y.K. The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials. J. Clin. Med. 2020, 9, 914. [Google Scholar] [CrossRef]
- Domingos, C.; Pêgo, J.M.; Santos, N.C. Effects of physical activity on brain function and structure in older adults: A systematic review. Behav. Brain Res. 2021, 402, 113061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zong, B.; Zhao, W.; Li, L. Effects of Mind-Body Exercise on Brain Structure and Function: A Systematic Review on MRI Studies. Brain Sci. 2021, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Bonfanti, L.; Nacher, J. New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: The case of cortical layer II immature neurons. Prog. Neurobiol. 2012, 98, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, K.; Poo, M.M. Activity-dependent neural plasticity from bench to bedside. Neuron 2013, 80, 729–741. [Google Scholar] [CrossRef]
- Meng, F.W.; Yao, Z.F.; Chang, E.C.; Chen, Y.L. Team sport expertise shows superior stimulus-driven visual attention and motor inhibition. PLoS ONE 2019, 14, e0217056. [Google Scholar] [CrossRef]
- Yao, Z.F.; Hsieh, S.; Yang, M.H. Exercise habits and mental health: Exploring the significance of multimodal imaging markers. Prog. Brain Res. 2024, 286, 179–209. [Google Scholar]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126. [Google Scholar]
- Kleim, J.A. Neural plasticity and neurorehabilitation: Teaching the new brain old tricks. J. Commun. Disord. 2011, 44, 521–528. [Google Scholar] [CrossRef]
- Tanaka, H.; Tarumi, T.; Rittweger, J. Aging and Physiological Lessons from Master Athletes. Compr. Physiol. 2019, 10, 261–296. [Google Scholar] [CrossRef]
- Yu, Q.; Herold, F.; Becker, B.; Klugah-Brown, B.; Zhang, Y.; Perrey, S.; Veronese, N.; Müller, N.G.; Kramer, A.F.; Zou, L. Cognitive benefits of exercise interventions: An fMRI activation likelihood estimation meta-analysis. Brain Struct. Funct. 2021, 226, 601–619. [Google Scholar] [CrossRef]
- Erickson, K.I.; Gildengers, A.G.; Butters, M.A. Physical activity and brain plasticity in late adulthood. Dialogues Clin. Neurosci. 2013, 15, 99–108. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, T.; Chu, J.M.; Chen, Y.; Dunnett, S.; Ho, Y.S.; Wong, G.T.-C.; Chang, R.C.-C. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. Lab. Investig. 2019, 99, 943–957. [Google Scholar] [CrossRef]
- Lippincott Williams & Wilkins. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2019. [Google Scholar]
- Lehmann, N.; Villringer, A.; Taubert, M. Colocalized White Matter Plasticity and Increased Cerebral Blood Flow Mediate the Beneficial Effect of Cardiovascular Exercise on Long-Term Motor Learning. J. Neurosci. 2020, 40, 2416–2429. [Google Scholar] [CrossRef]
- Benedict, C.; Brooks, S.J.; Kullberg, J.; Nordenskjöld, R.; Burgos, J.; Le Grevès, M.; Kilander, L.; Larsson, E.-M.; Johansson, L.; Ahlström, H.; et al. Association between physical activity and brain health in older adults. Neurobiol. Aging. 2013, 34, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Maass, A.; Düzel, S.; Goerke, M.; Becke, A.; Sobieray, U.; Neumann, K.; Lövden, M.; Lindenberger, U.; Bäckman, L.; Braun-Dullaeus, R.; et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol. Psychiatry 2015, 20, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, N.; Villringer, A.; Taubert, M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci. Rep. 2022, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Cui, L.; Yin, H.; Lyu, S.; Shen, Q.; Wang, Y.; Li, X.; Li, J.; Li, Y.; Zhu, L. Tai Chi Chuan vs General Aerobic Exercise in Brain Plasticity: A Multimodal MRI Study. Sci. Rep. 2019, 9, 17264. [Google Scholar] [CrossRef]
- Bosch, M.B.; Bringard, A.; Logrieco, M.G.; Lauer, E.; Imobersteg, N.; Thomas, A.; Ferretti, G.; Schwartz, S.; Igloi, K. A single session of moderate intensity exercise influences memory, endocannabinoids and brain derived neurotrophic factor levels in men. Sci. Rep. 2021, 11, 14371. [Google Scholar] [CrossRef]
- Voss, M.W.; Erickson, K.I.; Prakash, R.S.; Chaddock, L.; Kim, J.S.; Alves, H.; Szabo, A.; Phillips, S.M.; Wójcicki, T.R.; Mailey, E.L.; et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 2013, 28, 90–99. [Google Scholar] [CrossRef]
- Hortobagyi, T.; Granacher, U.; Fernandez-Del-Olmo, M.; Howatson, G.; Manca, A.; Deriu, F.; Taube, W.; Gruber, M.; Márquez, G.; Lundbye-Jensen, J.; et al. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci. Biobehav. Rev. 2021, 122, 79–91. [Google Scholar] [CrossRef]
- Fukuo, M.; Kamagata, K.; Kuramochi, M.; Andica, C.; Tomita, H.; Waki, H.; Sugano, H.; Tange, Y.; Mitsuhashi, T.; Uchida, W.; et al. Regional brain gray matter volume in world-class artistic gymnasts. J. Physiol. Sci. 2020, 70, 43. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Kamagata, K.; Andica, C.; Uchida, W.; Fukuo, M.; Waki, H.; Sugano, H.; Tange, Y.; Mitsuhashi, T.; Lukies, M.; et al. Connectome analysis of male world-class gymnasts using probabilistic multishell, multitissue constrained spherical deconvolution tracking. J. Neurosci. Res. 2021, 99, 2558–2572. [Google Scholar] [CrossRef] [PubMed]
- Bar, R.J.; DeSouza, J.F. Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement. PLoS ONE 2016, 11, e0147731. [Google Scholar] [CrossRef]
- Rehfeld, K.; Lüders, A.; Hökelmann, A.; Lessmann, V.; Kaufmann, J.; Brigadski, T.; Müller, P.; Müller, N.G. Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS ONE 2018, 13, e0196636. [Google Scholar] [CrossRef] [PubMed]
- Ruscheweyh, R.; Willemer, C.; Kruger, K.; Duning, T.; Warnecke, T.; Sommer, J.; Völker, K.; Ho, H.V.; Mooren, F.; Knecht, S.; et al. Physical activity and memory functions: An interventional study. Neurobiol. Aging. 2011, 32, 1304–1319. [Google Scholar] [CrossRef]
- Sampaio-Baptista, C.; Scholz, J.; Jenkinson, M.; Thomas, A.G.; Filippini, N.; Smit, G.; Douaud, G.; Johansen-Berg, H. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention. Neuroimage 2014, 96, 158–166. [Google Scholar] [CrossRef]
- Duru, A.D.; Balcioglu, T.H. Functional and Structural Plasticity of Brain in Elite Karate Athletes. J. Healthc. Eng. 2018, 2018, 8310975. [Google Scholar] [CrossRef]
- Smitha, K.A.; Akhil Raja, K.; Arun, K.M.; Rajesh, P.G.; Thomas, B.; Kapilamoorthy, T.R.; Kesavadas, C. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 2017, 30, 305–317. [Google Scholar] [CrossRef]
- Motes, M.A.; Yezhuvath, U.S.; Aslan, S.; Spence, J.S.; Rypma, B.; Chapman, S.B. Higher-order cognitive training effects on processing speed-related neural activity: A randomized trial. Neurobiol. Aging 2018, 62, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.G.; Dennis, A.; Rawlings, N.B.; Stagg, C.J.; Matthews, L.; Morris, M.; Kolind, S.H.; Foxley, S.; Jenkinson, M.; Nichols, T.E.; et al. Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise. Neuroimage 2016, 131, 162–170. [Google Scholar] [CrossRef]
- Kleemeyer, M.M.; Kühn, S.; Prindle, J.; Bodammer, N.C.; Brechtel, L.; Garthe, A.; Kempermann, G.; Schaefer, S.; Lindenberger, U. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults. Neuroimage 2016, 131, 155–161. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Nagamatsu, L.S.; Voss, M.W.; Khan, K.M.; Handy, T.C. Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiol. Aging 2012, 33, 1690–1698. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Kramer, A.F.; Erickson, K.I.; Scalf, P.; McAuley, E.; Cohen, N.J.; Webb, A.; Jerome, G.J.; Marquez, D.X.; Elavsky, S. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. USA 2004, 101, 3316–3321. [Google Scholar] [CrossRef]
- Bozděch, M.; Agricola, A.; Zháněl, J. The Relative Age Effect at Different Age Periods in Soccer: A Meta-Analysis. Percept. Mot. Skills 2023, 130, 2632–2662. [Google Scholar] [CrossRef] [PubMed]
- Manning, K.; Wang, L.; Steffens, D. Recent advances in the use of imaging in psychiatry: Functional magnetic resonance imaging of large-scale brain networks in late-life depression. F1000Research 2019, 8, F1000. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.L.; Menon, V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn. Sci. 2010, 14, 277–290. [Google Scholar] [CrossRef]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Leroux, E.; Poirel, N.; Dollfus, S. Anatomical Connectivity of the Visuospatial Attentional Network in Schizophrenia: A Diffusion Tensor Imaging Tractography Study. J. Neuropsychiatry Clin. Neurosci. 2020, 32, 266–273. [Google Scholar] [CrossRef]
- Huang, Z.; Davis, H.I.; Wolff, A.; Northoff, G. Thalamo-Sensorimotor Functional Connectivity Correlates with World Ranking of Olympic, Elite, and High Performance Athletes. Neural Plast. 2017, 2017, 1473783. [Google Scholar] [CrossRef]
- Goodwill, A.M.; Pearce, A.J.; Kidgell, D.J. Corticomotor plasticity following unilateral strength training. Muscle Nerve 2012, 46, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B.; Homayoun, H. Divergent plasticity of prefrontal cortex networks. Neuropsychopharmacology 2008, 33, 42–55. [Google Scholar] [CrossRef]
- Sporns, O. Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 2013, 23, 162–171. [Google Scholar] [CrossRef]
- Bonilha, L.; Hillis, A.E.; Hickok, G.; den Ouden, D.B.; Rorden, C.; Fridriksson, J. Temporal lobe networks supporting the comprehension of spoken words. Brain 2017, 140, 2370–2380. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E. The restless brain: How intrinsic activity organizes brain function. Philos. Trans. R Soc. Lond. B Biol. Sci. 2015, 370, 20140172. [Google Scholar] [CrossRef] [PubMed]
- Filley, C.M.; Fields, R.D. White matter and cognition: Making the connection. J. Neurophysiol. 2016, 116, 2093–2104. [Google Scholar] [CrossRef]
- Gow, A.J.; Bastin, M.E.; Munoz Maniega, S.; Valdes Hernandez, M.C.; Morris, Z.; Murray, C.; Royle, N.A.; Starr, J.M.; Deary, I.J.; Wardlaw, J.M. Neuroprotective lifestyles and the aging brain: Activity, atrophy, and white matter integrity. Neurology 2012, 79, 1802–1808. [Google Scholar] [CrossRef]
- Rovio, S.; Spulber, G.; Nieminen, L.J.; Niskanen, E.; Winblad, B.; Tuomilehto, J.; Nissinen, A.; Soininen, H.; Kivipelto, M. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol. Aging 2010, 31, 1927–1936. [Google Scholar] [CrossRef]
- Knikou, M. Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast. 2012, 2012, 254948. [Google Scholar] [CrossRef] [PubMed]
- Welniarz, Q.; Dusart, I.; Roze, E. The corticospinal tract: Evolution, development, and human disorders. Dev. Neurobiol. 2017, 77, 810–829. [Google Scholar] [CrossRef]
- Yarkoni, T.; Poldrack, R.A.; Nichols, T.E.; Van Essen, D.C.; Wager, T.D. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 2011, 26, 665–670. [Google Scholar] [CrossRef]
- Ahlskog, J.E. Aerobic Exercise: Evidence for a Direct Brain Effect to Slow Parkinson Disease Progression. Mayo Clin. Proc. 2018, 93, 360–372. [Google Scholar] [CrossRef]
- Aghjayan, S.L.; Lesnovskaya, A.; Esteban-Cornejo, I.; Peven, J.C.; Stillman, C.M.; Erickson, K.I. Aerobic exercise, cardiorespiratory fitness, and the human hippocampus. Hippocampus 2021, 31, 817–844. [Google Scholar] [CrossRef]
- Petzinger, G.M.; Fisher, B.E.; McEwen, S.; Beeler, J.A.; Walsh, J.P.; Jakowec, M.W. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 2013, 12, 716–726. [Google Scholar] [CrossRef]
- Mak, M.K.; Wong-Yu, I.S.; Shen, X.; Chung, C.L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 2017, 13, 689–703. [Google Scholar] [CrossRef]
- Santos, P.D.G.; Vaz, J.R.; Correia, J.; Neto, T.; Pezarat-Correia, P. Long-Term Neurophysiological Adaptations to Strength Training: A Systematic Review With Cross-Sectional Studies. J. Strength Cond. Res. 2023, 37, 2091–2105. [Google Scholar] [CrossRef] [PubMed]
- Siddique, U.; Rahman, S.; Frazer, A.K.; Pearce, A.J.; Howatson, G.; Kidgell, D.J. Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 1107–1128. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-Y.; Huang, M.-M.; Li, S.-Z.; Tao, J.; Zheng, G.-H.; Chen, L.-D. The effects of aerobic exercise on the structure and function of DMN-related brain regions: A systematic review. Int. J. Neurosci. 2017, 127, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Machado, L.; Arida, R.M.; de Jesus Mari, J. Dance for neuroplasticity: A descriptive systematic review. Neurosci. Biobehav. Rev. 2019, 96, 232–240, Erratum in. Neurosci. Biobehav. Rev. 2025, 169, 105331. [Google Scholar] [CrossRef] [PubMed]
- Bray, N.W.; Pieruccini-Faria, F.; Bartha, R.; Doherty, T.J.; Nagamatsu, L.S.; Montero-Odasso, M. The effect of physical exercise on functional brain network connectivity in older adults with and without cognitive impairment. A systematic review. Mech. Ageing Dev. 2021, 196, 111493. [Google Scholar] [CrossRef]
- Yao, Z.F.; Sligte, I.G.; Moreau, D.; Hsieh, S.; Yang, C.T.; Ridderinkhof, K.R.; Muggleton, N.G.; Wang, C.-H. The brains of elite soccer players are subject to experience-dependent alterations in white matter connectivity. Cortex 2020, 132, 79–91. [Google Scholar] [CrossRef]
- Yao, Z.F.; Sligte, I.G.; Ridderinkhof, R. Olympic team rowers and team swimmers show altered functional brain activation during working memory and action inhibition. Neuropsychologia 2024, 203, 108974. [Google Scholar] [CrossRef] [PubMed]
N. | AUTHORS, YEARS | PARTICIPANT (NUMBER, AGE, GENDER) | EXERCISE CHARACTERISTICS | OBSERVED CHANGES | BRAIN NETWORKS | SUBCORTICAL GRAY MATTER | WHITE MATTER | CORTICO SPINAL TRACT | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TYPE | INTENSITY | DURATION | FREQUENCY (N/WK) | MODIFICATIONS | FUNCTIONAL | STRUCTURAL | TYPE | DMN | SN | ECN | LN | AN | VSN | SMN | ||||||
Cardiovascular Exercise | ||||||||||||||||||||
Light-to-Moderate Intensity—Short-Term Effect | ||||||||||||||||||||
1 | Bosch [23] 2021 | n= 18 Age = 23 yrs F = 0% | Cycling | MI: 65% HRmax HI: 50–75% HRmax | MI: 30 min HI: 15 min | 12 wks 1 session | ↑ Hippocampal activation | X | FMRI | X | X | X | ||||||||
2 | Colcombe [39] 2004 | n = 29 Age = 66 yrs F = 37.9% | Walking | 40–70% HRmax | 40–45 min | 3/wk | ↑ Activation | X | FMRI | X | X | X | X | X | ||||||
3 | Cui [22] 2019 | n = 12 Age = 22 yrs F = 83.3% | Walking | 60–69% HRmax | 60 min | 8 wks–3/wk | ↑ Gray Matter volume | X | SMRI | X | X | X | X | X | X | |||||
4 | Erickson [37] 2011 | n = 120 Age = 68 yrs F = 66.6% | Walking | 50–75% HRmax | 40 min | 3/wk | ↑ Forepart volume | X | SMRI | X | X | X | ||||||||
5 | Motes [34] 2018 | n = 41 Age = 63 yrs F = 71.4% | Walking Cycling | 50–75% HRmax | 60 min | 12 wks–3/wk | ↓ PFC activation | X | FMRI | X | X | X | ||||||||
Light-to-Moderate Intensity—Long-Term Effect | ||||||||||||||||||||
6 | Voss [24] 2013 | n = 65 Age = 66 yrs F = 72% | Walking | 50–75% HRmax | 40 min | 52 wks–3/wk | ↑ Connectivity ↑ Hippocampal volume | X | X | FMRI SMRI | X | X | X | |||||||
Vigorous Intensity—Short-Term Effect | ||||||||||||||||||||
7 | Kleemeyer [36] 2016 | n = 52 Age = 66 yrs F = 61.5% | Cycling | HI:80% VO2max LI: 60–90 RPM | 25 to 55 min | 3 wks 2/wk 21 wks 3/wk | ↑ Microstructural (tissue density) ↑ Volume | X | SMRI | X | X | X | ||||||||
8 | Lehmann [17] 2020 | n = 31 Age = 23 yrs F = 60% | Cycling | 60–70 RPM 120–170 BPM (59–86% HRmax) * | Week 1: 19 min Week 2: 21 min | 2 wks 7 sessions | ↑ Cerebral blood flow ↑ White Matter microstructure changes | X | FMRI SMRI | X | X | X | X | X | X | |||||
9 | Lehmann [20] 2022 | n = 31 Age = 23 yrs F = 60% | Cycling | 60–70 RPM 120–170 BPM (59–86% HRmax) * | Week 1: 19 min Week 2: 21 min | 2 wks 7 sessions | ↑ White Matter microstructure changes ↑ Gray Matter activation | X | X | FMRI SMRI | X | X | X | X | X | X | ||||
10 | Maass [19] 2015 | n = 40 Age = 69 yrs F = 55% | Walking Running | 65–80% HRmax | 30 min | 18 wks 3/wk | ↑ Blood flow (vascular plasticity) ↑ Volume | X | SMRI | X | X | X | ||||||||
11 | Thomas [35] 2016 | n = 62 Age = 34 yrs F = 56.4% | Cycling | 55–85% HRmax | 30 min | 6 wks 5/wk | ↑ Anterior hippocampus volume | X | SMRI | X | X | X | ||||||||
No Reported Intensity—Short-Term Effect | ||||||||||||||||||||
12 | Benedict [18] 2013 | n = 331 Age = 75 yrs F = 49.5% | Running Swimming Cycling Walking | n.r. | 30 min minimum | n.r. | ↑ White Matter ↑ Gray Matter Parietal lobes volume | X | SMRI | X | X | X | X | X | X | X | X | |||
No Reported Intensity—Long-Term Effect | ||||||||||||||||||||
13 | Huang [45] 2017 | n = 30 Age = 18–29 yrs F = 53.3% | Swimming | n.r. | n.r. | 15 yrs minimum | ↑ Connectivity | X | FMRI | X | ||||||||||
Strength Exercise | ||||||||||||||||||||
Vigorous Intensity—Short-Term Effect | ||||||||||||||||||||
14 | Goodwill [46] 2012 | n = 14 Age = 21 yrs F = 50% | Single right leg squats | 4X6 80–85% 1 RM | n.r. | 3 wks 3/wk | ↑ Excitability Primary Motor cortex | X | TMS + EMG | X | ||||||||||
15 | Hortobágyi [25] 2011 | n = 20 Age = 31 yrs F = 40% | Isometric right-hand first dorsal interosseous muscle contractions | 80% MVC | 15–20 min 5 blocks of 10 | 8 wks 20 sessions | ↑ Excitability Primary Motor cortex | X | TMS + EMG | X | ||||||||||
Vigorous Intensity—Long-Term Effect | ||||||||||||||||||||
16 | Liu-Ambrose [38] 2012 | n = 52 Age = 69 yrs F = 100% | Mini squats, mini lunges, lunge walk with both a Keiser Pressurized Air System and free weights | 2X6-8 7-RM method (70–85% 1 RM) *1 | n.r | 52 wks 2/wk | ↑ Functional changes | X | FMRI | X | X | X | X | |||||||
Mixed Exercise | ||||||||||||||||||||
Light-to-Moderate Intensity—Short-Term Effect | ||||||||||||||||||||
17 | Cui [22] 2019 | n = 12 Age = 22 yrs F = 83.3% | Tai Chi | 60–69% HRmax | 60 min | 8 wks 3/wk | ↑ Connectivity ↑ Gray Matter volume | X | X | FMRI SMRI | X | X | X | X | X | X | ||||
18 | Ruscheweyh [30] 2011 | n= 62 Age = 60 yrs F = 69.3% | Nordic walking/stretching exercises | Nordic walking 50–60% HRmax Stretching exercises 30–40% maximal exertion | 50 min | 24 wks 3/wk up to 5/wk | ↑ Gray Matter volume | X | SMRI | X | X | X | X | X | ||||||
Vigorous Intensity—Short-Term Effect | ||||||||||||||||||||
19 | Rehfeld [29] 2018 | n = 20 Age = 68 yrs F = 60% | Dancing | PWC130 (82–85.5% HRmax) * | 90 min | 24 wks 2/wk | ↑ White and Gray Matter volume | X | SMRI | X | X | X | X | X | X | X | X | X | X | |
20 | Rehfeld [29] 2018 | n = 18 Age = 69 yrs F = 44% | Cycling/strength endurance/flexibility | PWC130 (83–86% HRmax) * | 90 min | 24 wks 2/wk | ↑ White and Gray Matter volume | X | SMRI | X | X | X | X | X | X | X | X | X | X | |
No Reported Intensity—Short-Term Effect | ||||||||||||||||||||
21 | Bar [28] 2016 | n = 5 Age = 28 yrs F = 0% | Dancing | n.r. | n.r. | 34 wks 36 rehearsal sessions | ↑ Activation | X | FMRI | X | X | X | X | X | ||||||
22 | Duru [32] 2018 | n = 13 Age = 22 yrs F = 46% | Karate | n.r. | n.r. | 10 yrs minimum 15 h/wk | ↑ White and Gray Matter volume ↑ Connectivity | X | X | FMRI SMRI | X | X | X | X | X | X | X | X | X | |
23 | Sampaio-Baptista [31] 2014 | n = 40 Age = 24 yrs F = 55% | Juggling | n.r. | 15 or 30 min | 6 wks 5/wk | ↑ Volume | X | SMRI | X | X | X | X | X | X | X | ||||
No Reported Intensity—Long-Term Effect | ||||||||||||||||||||
24 | Fukuo [26] 2020 | n= 10 Age = 20 yrs F = 0% | Artistic gymnastic exercises | n.r. | n.r. | 13.6 ± 2.2 years of training | ↑ Gray Matter volume | X | SMRI | X | X | |||||||||
25 | Tomita [27] 2021 | n = 10 Age = 20 yrs F = 0% | Artistic gymnastic exercises | n.r. | n.r. | 13.6 ± 2.2 years of training | ↑ Connectivity | X | FMRI | X | X | X | X | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosso, C.; Brustio, P.R.; Manuello, J.; Rainoldi, A. Neuroplasticity of Brain Networks Through Exercise: A Narrative Review About Effect of Types, Intensities, and Durations. Sports 2025, 13, 280. https://doi.org/10.3390/sports13080280
Rosso C, Brustio PR, Manuello J, Rainoldi A. Neuroplasticity of Brain Networks Through Exercise: A Narrative Review About Effect of Types, Intensities, and Durations. Sports. 2025; 13(8):280. https://doi.org/10.3390/sports13080280
Chicago/Turabian StyleRosso, Carlotta, Paolo Riccardo Brustio, Jordi Manuello, and Alberto Rainoldi. 2025. "Neuroplasticity of Brain Networks Through Exercise: A Narrative Review About Effect of Types, Intensities, and Durations" Sports 13, no. 8: 280. https://doi.org/10.3390/sports13080280
APA StyleRosso, C., Brustio, P. R., Manuello, J., & Rainoldi, A. (2025). Neuroplasticity of Brain Networks Through Exercise: A Narrative Review About Effect of Types, Intensities, and Durations. Sports, 13(8), 280. https://doi.org/10.3390/sports13080280