Handgrip Strength Asymmetry in Female Basketball Players: The Critical Role of Arm Position and the Challenge of Statistical Power
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.2.1. Anthropometric and Body Composition Measures
2.2.2. Handgrip Strength Protocol
- Shoulder at 0 deg flexion, elbow at 180 deg extension, and wrist at neutral position with the palm facing towards the body (AP1);
- Shoulder at 0 deg flexion, elbow at 90 deg flexion, and wrist at neutral position with the palm facing inwards (AP2);
- Shoulder at 180 deg flexion, elbow at 180 deg extension, and wrist at neutral position with the palm facing inwards (AP3).
2.2.3. Digit Ratio Measurement and Asymmetry Calculation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
%BF | percentage of body fat |
2D | index finger |
2D:4D | the ratio of the length of the second digit (index finger) to the length of the fourth digit (ring finger) on a hand |
4D | ring finger |
ANOVA | analysis of variance |
AP1 | 1st arm posture (shoulder at 0 deg flexion, elbow at 180 deg extension, wrist at neutral position with the palm facing towards the body) |
AP2 | 2nd arm posture (shoulder at 0 deg flexion, elbow at 90 deg flexion, wrist at neutral position with the palm facing inwards) |
AP3 | 3rd arm posture (shoulder at 180 deg flexion, elbow at 180 deg extension, wrist at neutral position with the palm facing inwards) |
BMI | body mass index |
ICC | intraclass correlation coefficient |
LBM | lean body mass |
LMM | linear mixed model |
MIVC | maximum handgrip isometric voluntary contractions |
PID | participant identification number |
REML | restricted maximum likelihood |
U16 | under 16 years old age category |
References
- Lutchmaya, S.; Baron-Cohen, S.; Raggatt, P.; Knickmeyer, R.; Manning, J.T. 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Hum. Dev. 2004, 77, 23–28. [Google Scholar] [CrossRef]
- Malas, M.A.; Dogan, S.; Evcil, E.H.; Desdicioglu, K. Fetal development of the hand, digits and digit ratio (2D:4D). Early Hum. Dev. 2006, 82, 469–475. [Google Scholar] [CrossRef]
- McIntyre, M.H.; Ellison, P.T.; Lieberman, D.E.; Demerath, E.; Towne, B. The development of sex differences in digital formula from infancy in the Fels Longitudinal Study. Proc. Biol. Sci. 2005, 272, 1473–1479. [Google Scholar] [CrossRef]
- Trivers, R.; Manning, J.; Jacobson, A. A longitudinal study of digit ratio (2D:4D) and other finger ratios in Jamaican children. Horm. Behav. 2006, 49, 150–156. [Google Scholar] [CrossRef]
- Zheng, Z.; Cohn, M.J. Developmental basis of sexually dimorphic digit ratios. Proc. Natl. Acad. Sci. USA 2011, 108, 16289–16294. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.T.; Hill, M.R. Digit ratio (2D:4D) and sprinting speed in boys. Am. J. Hum. Biol. 2009, 21, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Dyer, M.; Short, S.E.; Short, M.; Manning, J.T.; Tomkinson, G.R. Relationships between the second to fourth digit ratio (2D:4D) and game-related statistics in semi-professional female basketball players. Am. J. Hum. Biol. 2018, 30, e23070. [Google Scholar] [CrossRef] [PubMed]
- Frick, N.A.; Hull, M.J.; Manning, J.T.; Tomkinson, G.R. Relationships between digit ratio (2D:4D) and basketball performance in Australian men. Am. J. Hum. Biol. 2017, 29, e22937. [Google Scholar] [CrossRef]
- Klapprodt, K.L.; Fitzgerald, J.S.; Short, S.E.; Manning, J.T.; Tomkinson, G.R. Relationships between the digit ratio (2D:4D) and game-related statistics in professional and semi-professional male basketball players. Am. J. Hum. Biol. 2018, 30, e23182. [Google Scholar] [CrossRef]
- Nobari, H.; Alves, A.R.; Clemente, F.M.; Perez-Gomez, J. Influence of 2D:4D ratio on fitness parameters and accumulated training load in elite youth soccer players. BMC Sports Sci. Med. Rehabil. 2021, 13, 125. [Google Scholar] [CrossRef]
- Back, N.; Schaefer, K.; Windhager, S. Handgrip strength and 2D:4D in women: Homogeneous samples challenge the (apparent) gender paradox. Proc. Biol. Sci. 2021, 288, 20212328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, K.; Zhang, X.; Zheng, L. Digit ratio (2D:4D) and handgrip strength in Hani ethnicity. PLoS ONE 2013, 8, e77958. [Google Scholar] [CrossRef] [PubMed]
- Karademir, F.; Uysal, O.; Tuzen Tek, S.; Cakiryilmaz, E.M.; Firat, T. Hand Size Reduces the Reliability of K-Force(R) Grip Dynamometer. Hand Ther. 2025, 17589983251347238. [Google Scholar] [CrossRef] [PubMed]
- Horwath, O.; Apro, W.; Moberg, M.; Godhe, M.; Helge, T.; Ekblom, M.; Hirschberg, A.L.; Ekblom, B. Fiber type-specific hypertrophy and increased capillarization in skeletal muscle following testosterone administration in young women. J. Appl. Physiol. 2020, 128, 1240–1250. [Google Scholar] [CrossRef]
- Oki, K.; Law, T.D.; Loucks, A.B.; Clark, B.C. The effects of testosterone and insulin-like growth factor 1 on motor system form and function. Exp. Gerontol. 2015, 64, 81–86. [Google Scholar] [CrossRef]
- Kumar, S.; Voracek, M.; Singh, M. The effects of hand preference and sex on right-left asymmetry in dorsal digit lengths among adults and children. Early Hum. Dev. 2021, 153, 105293. [Google Scholar] [CrossRef]
- Travis, S.K.; Schwarz, A.V.; Burke, B.I. Locked and Loaded: Divergent Handgrip Tests as Surrogate Measures for One-Repetition Maximal Strength. Biomechanics 2025, 5, 16. [Google Scholar] [CrossRef]
- Schwarz, A.V.; Travis, S.K. Muscle Wins Again: Examining the Relationship Between Maximal Strength and Body Composition Metrics. Int. J. Exerc. Sci. Conf. Proc. 2024, 15, 13. [Google Scholar]
- Ferland, P.M.; Charron, J.; Brisebois-Boies, M.; Miron, F.S.; Comtois, A.S. Body Composition and Maximal Strength of Powerlifters: A Descriptive Quantitative and Longitudinal Study. Int. J. Exerc. Sci. 2023, 16, 828–845. [Google Scholar] [CrossRef]
- Russell, J.L.; Baker, B.S.; Mercer, R.A.J.; McLean, B.D. Examining the Influence of Season Phase, Age, and Anthropometrics on Body Composition Trends in National Basketball Association Athletes. J. Strength Cond. Res. 2025, 39, 227–233. [Google Scholar] [CrossRef]
- Covic, N.; Causevic, D.; Alexe, C.I.; Rani, B.; Dulceanu, C.R.; Abazovic, E.; Lupu, G.S.; Alexe, D.I. Relations between specific athleticism and morphology in young basketball players. Front. Sports Act. Living 2023, 5, 1276953. [Google Scholar] [CrossRef] [PubMed]
- Ugarkovic, D.; Matavuli, D.; Kukolj, M.; Jaric, S. Standard Anthropometric, Body Composition, and Strength Variables as Predictors of Jumping Performance in Elite Junior Athletes. J. Strength Cond. Res. 2002, 16, 227–230. [Google Scholar] [PubMed]
- Ding, L.; Lyu, M.; Chen, Z.; Wu, J.; Wang, Y.; Bishop, C.; Li, Y. Associations Between Inter-Limb Asymmetry in Lower Limb Strength and Jump Performance in 14–15-Year-Old Basketball Players. Symmetry 2024, 16, 1421. [Google Scholar] [CrossRef]
- Dukaric, V.; Rupcic, T.; Feng, L.; Cigrovski, V.; Knjaz, D. Determining Asymmetry Using Specific Unilateral Tests in Young Basketball Players. Sportlogia 2020, 16, 67–79. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Gual, G.; Romero-Rodriguez, D.; Unnitha, V. Lower Limb Neuromuscular Asymmetry in Volleyball and Basketball Players. J. Hum. Kinet. 2016, 50, 135–143. [Google Scholar] [CrossRef]
- Heishman, A.; Daub, B.; Miller, R.; Brown, B.; Freitas, E.; Bemben, M. Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players. Sports 2019, 7, 103. [Google Scholar] [CrossRef]
- Versic, S.; Pehar, M.; Modric, T.; Pavlinovic, V.; Spasic, M.; Uljevic, O.; Corluka, M.; Sattler, T.; Sekulic, D. Bilateral Symmetry of Jumping and Agility in Professional Basketball Players: Differentiating Performance Levels and Playing Positions. Symmetry 2021, 13, 1316. [Google Scholar] [CrossRef]
- Chahal, A.; Kumar, B. Relationship of Hand Anthropometry and Hand Grip Strength in Junior Basketball Boys. Int. J. Health Sci. Res. 2014, 4, 166–173. [Google Scholar]
- Gerodimos, V. Reliability of handgrip strength test in basketball players. J. Hum. Kinet. 2012, 31, 25–36. [Google Scholar] [CrossRef]
- Gledson, T.; Gantois, P.; Faro, H.K.; do Nascimento, P.H.; Paes, P.P.; de S. Fortes, L.; Batista, G.R. Vertical jump and hand-grip strength in basketball athletes by playing position and performance. J. Phys. Edu Sport 2018, 18, 132–137. [Google Scholar] [CrossRef]
- Priya, S.; Mayur, R.; Joseph, D. Comparison between handgrip strength measurement of dominant hand and non domianant hand in basketball players. Indian. J. Physiother. Occupat. Ther. 2018, 12, 126. [Google Scholar] [CrossRef]
- Hecker, A.; Aguirre, J.; Eichenberger, U.; Rosner, J.; Schubert, M.; Sutter, R.; Wieser, K.; Bouaicha, S. Deltoid muscle contribution to shoulder flexion and abduction strength: An experimental approach. J. Shoulder Elb. Surg. 2021, 30, e60–e68. [Google Scholar] [CrossRef] [PubMed]
- Izzo, R.; Sopranzetti, S.; Alatvilla, G. Biomechanical Analysis of Fundamentals in Basketball The Rebound. Sci. Mov. Health 2015, 15, 122–126. [Google Scholar]
- Abe, S.; Nozawa, T.; Kondo, T. A Proposal of EMG-Based Training Support System for Basketball Dribbling. In Human Interface and the Management of Information. Designing Information Environments. Human Interface 2009; Smith, M.J., Salvendy, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5617, pp. 459–465. [Google Scholar] [CrossRef]
- Pizzigalli, L.; Cremasco, M.M.; Torre, A.L.A.; Rainoldi, A.; Benis, R. Hand grip strength and anthropometric characteristics in Italian female National basketball teams. Sport Sci. Health 2015, 11, S33. [Google Scholar] [CrossRef]
- Visnapuu, M.; Jurimae, T. Handgrip strength and hand dimensions in young handball and basketball players. J. Strength Cond. Res. 2007, 21, 923–929. [Google Scholar] [CrossRef]
- Alkurdi, Z.D.; Dweiri, Y.M. A biomechanical assessment of isometric handgrip force and fatigue at different anatomical positions. J. Appl. Biomech. 2010, 26, 123–133. [Google Scholar] [CrossRef]
- Almashaqbeh, S.F.; Al-Momani, S.; Khader, A.; Qananwah, Q.; Marabeh, S.; Maabreh, R.; Al Badarneh, A.; Abdullah, K. The Effect of Gender and Arm Anatomical Position on the Hand Grip Strength and Fatigue Resistance during Sustained Maximal Handgrip Effort. J. Biomed. Phys. Eng. 2022, 12, 171–180. [Google Scholar] [CrossRef]
- Coury, H.J.C.G.; Kumar, S.; Rodgher, S.; Narayan, Y. Measurements of shoulder adduction strength in different postures. Int. J. Ind. Ergon. 1998, 22, 195–206. [Google Scholar] [CrossRef]
- Kattel, B.P.; Fredericks, T.K.; Fernandez, J.E.; Lee, D.C. The effect of upper-extremity posture on maximum grip strength. Int. J. Ind. Ergon. 1996, 18, 423–429. [Google Scholar] [CrossRef]
- Khan, A.A.; Khan, Z.; Mukarram, M. Effect of elbow flection on grip strength in vertical and horizontal directions. J. Hum. Ergol. 2013, 42, 13–22. [Google Scholar]
- Mathiowetz, V.; Rennells, C.; Donahoe, L. Effect of elbow position on grip and key pinch strength. J. Hand Surg. Am. 1985, 10, 694–697. [Google Scholar] [CrossRef]
- Mogk, J.P.; Keir, P.J. The effects of posture on forearm muscle loading during gripping. Ergonomics 2003, 46, 956–975. [Google Scholar] [CrossRef]
- Parvatikar, V.; Mukkannavar, P. Comparative Study of Grip Strength in Different Positions of Shoulder and Elbow with Wrist in Neutral and Extension Po-sitions. J. Exerc. Sci. Physiother. 2009, 5, 67–75. [Google Scholar]
- Shih, Y.C. Effect of a splint on measures of sustained grip exertion under different forearm and wrist postures. Appl. Ergon. 2005, 36, 293–299. [Google Scholar] [CrossRef]
- Su, C.Y.; Lin, J.H.; Chien, T.H.; Cheng, K.F.; Sung, Y.T. Grip strength in different positions of elbow and shoulder. Arch. Phys. Med. Rehabil. 1994, 75, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, J.; Lee, B.; Kim, S.; Shin, D.; Lee, Y.; Lee, J.; Han, D.; Choi, S. The effects of elbow joint angle changes on elbow flexor and extensor muscle strength and activation. J. Phys. Ther. Sci. 2014, 26, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, N.; Emmanouil, Z. The influence of the anthropometric characteristics and handgrip strength on the technical skills of young basketball players. J. Phys. Edu. Sport 2015, 15, 330–337. [Google Scholar] [CrossRef]
- Gür, S.; Soyal, M. Examining the Effects of Hand Anthropometric Measurements, Grip Strength and Balance Skills on Shot Performance in Elite Female Basketball Players. Eur. J. Edu. Sport Sci. 2021, 7, 85–100. [Google Scholar] [CrossRef]
- Kaplan, D.Ö. Evaluating the relation between dominant and non-dominant hand perimeters and handgrip strength of basketball, vol-leyball, badminton and handball athletes. Int. J. Environ. Sci. Edu 2016, 11, 3297–3309. [Google Scholar]
- Gooding, D.C.; Chambers, B.H. Age of pubertal onset and 2nd to 4th digit ratios: Preliminary findings. Early Hum. Dev. 2018, 116, 28–32. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Leon, A.S. Attenuation of Adverse Effects of Aging on Skeletal Muscle by Regular Exercise and Nutritional Support. Am. J. Lifestyle Med. 2017, 11, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Hakkinen, K.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Schiltz, M.; Lehance, C.; Maquet, D.; Bury, T.; Crielaard, J.M.; Croisier, J.L. Explosive strength imbalances in professional basketball players. J. Athl. Train. 2009, 44, 39–47. [Google Scholar] [CrossRef]
- Stastny, P.; Lehnert, M.; Tufano, J.J. Muscle Imbalances: Testing and Training Functional Eccentric Hamstring Strength in Athletic Populations. J. Vis. Exp. 2018, 135, 57508. [Google Scholar] [CrossRef]
- Vargas, V.Z.; Motta, C.; Peres, B.; Vancini, R.L.; Andre Barbosa De Lira, C.; Andrade, M.S. Knee isokinetic muscle strength and balance ratio in female soccer players of different age groups: A cross-sectional study. Phys. Sportsmed. 2020, 48, 105–109. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef]
- Wrona, H.L.; Zerega, R.; King, V.G.; Reiter, C.R.; Odum, S.; Manifold, D.; Latorre, K.; Sell, T.C. Ability of Countermovement Jumps to Detect Bilateral Asymmetry in Hip and Knee Strength in Elite Youth Soccer Players. Sports 2023, 11, 77. [Google Scholar] [CrossRef]
- Parkinson, A.O.; Apps, C.L.; Morris, J.G.; Barnett, C.T.; Lewis, M.G.C. The Calculation, Thresholds and Reporting of Inter-Limb Strength Asymmetry: A Systematic Review. J. Sports Sci. Med. 2021, 20, 594–617. [Google Scholar] [CrossRef]
- Murphy, J.; Caldwell, A.R.; Mesquida, C.; Ladell, A.J.M.; Encarnacion-Martinez, A.; Tual, A.; Denys, A.; Cameron, B.; Van Hooren, B.; Parr, B.; et al. Estimating the Replicability of Sports and Exercise Science Research. Sports Med. 2025, 1–21. [Google Scholar] [CrossRef]
- Murphy, J.; Caldwell, A.R.; Warne, J.P. Reflections on Conducting a Large Replication Project in Sports and Exercise Science. Sports Med. 2025, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Metsios, G.S.; Jackson, A.S.; Wang, J.; Thornton, J.; Gallagher, D. Can we use the Jackson and Pollock equations to predict body density/fat of obese individuals in the 21st century? Int. J. Body Compos. Res. 2008, 6, 114–121. [Google Scholar] [PubMed]
- Jackson, A.S.; Pollock, M.L. Practical Assessment of Body Composition. Phys. Sportsmed. 1985, 13, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef]
- Nikodelis, T.; Savvoulidis, S.; Athanasakis, P.; Chalitsios, C.; Loizidis, T. Comparative Study of Validity and Reliability of Two Handgrip Dynamometers: K-Force Grip and Jamar. Biomechanics 2021, 1, 73–82. [Google Scholar] [CrossRef]
- Čvorović, A. The Influence of Basketball on the Asymmetry in the Use of Limbs. Monten. J. Sports Sci. Med. 2012, 1, 5–19. [Google Scholar]
- Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 2008, 27, 622–627. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Mundo, A.I.; Tipton, J.R.; Muldoon, T.J. Generalized additive models to analyze nonlinear trends in biomedical longitudinal data using R: Beyond repeated measures ANOVA and linear mixed models. Stat. Med. 2022, 41, 4266–4283. [Google Scholar] [CrossRef]
- de Melo, M.B.; Daldegan-Bueno, D.; Menezes Oliveira, M.G.; de Souza, A.L. Beyond ANOVA and MANOVA for repeated measures: Advantages of generalized estimated equations and generalized linear mixed models and its use in neuroscience research. Eur. J. Neurosci. 2022, 56, 6089–6098. [Google Scholar] [CrossRef]
- Walker, E.A.; Redfern, A.; Oleson, J.J. Linear Mixed-Model Analysis to Examine Longitudinal Trajectories in Vocabulary Depth and Breadth in Children Who Are Hard of Hearing. J. Speech Lang. Hear. Res. 2019, 62, 525–542. [Google Scholar] [CrossRef]
- Müller, S.; Scealy, J.L.; Welsh, A.H. Model Selection in Linear Mixed Models. Stat. Sci. 2013, 28, 135–167. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2006. [Google Scholar]
- Green, P.; MacLeod, C.J. SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 2016, 7, 493–498. [Google Scholar] [CrossRef]
- Grouios, G. Motoric dominance and sporting excellence: Training versus heredity. Percept. Mot. Ski. 2004, 98, 53–66. [Google Scholar] [CrossRef]
- Priya, S.; Shetty, S.; Khan, A.K. Relationship between Upper Extremity Dynamic Balance and Hand Grip Strength in Professional Basketball Players-A Pilot study. IOSR J. Sports Phys. Edu. 2021, 8, 23–29. [Google Scholar] [CrossRef]
- Čvorović, A.; Berić, D.; Kocić, M. Disproportion of the dominant and ancillary extremities in displaying explosive power with young basketball players. Sport. Sci. Pract. Asp. 2011, 8, 5–9. [Google Scholar]
- Badau, A.; Badau, D. Identifying the Differences in Symmetry of the Anthropometric Parameters of the Upper Limbs in Relation to Manual Laterality between Athletes Who Practice Sports with and without a Ball. Symmetry 2024, 16, 558. [Google Scholar] [CrossRef]
- Demura, S.; Miyaguchi, K.; Aoki, H. The difference in output properties between dominant and nondominant limbs as measured by various muscle function tests. J. Strength Cond. Res. 2010, 24, 2816–2820. [Google Scholar] [CrossRef]
- Stockel, T.; Weigelt, M. Plasticity of human handedness: Decreased one-hand bias and inter-manual performance asymmetry in expert basketball players. J. Sports Sci. 2012, 30, 1037–1045. [Google Scholar] [CrossRef]
- Cole, B.; Panariello, R. Basketball Anatomy; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Gao, Z. The effect of application of asymmetry evaluation in competitive sports: A systematic review. Phys. Act. Health 2022, 6, 257–272. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The coefficient of determination R(2) and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef] [PubMed]
- Beitia, P.; Stamatis, A.; Amasay, T.; Papadakis, Z. Predicting Firefighters’ Physical Ability Test Scores from Anaerobic Fitness Parameters & Mental Toughness Levels. Int. J. Environ. Res. Public Health 2022, 19, 15253. [Google Scholar] [CrossRef]
- Papadakis, Z.; Stamatis, A.; Beitia, P. Personal protective equipment impacts firefighters’ anaerobic fitness. Occup. Med. 2024, 74, 342–347. [Google Scholar] [CrossRef]
- Papadakis, Z.; Stamatis, A.; Kukic, F.; Koropanovski, N. Moving Past the One-Size-Fits-All Education-Training Model of Police Academies to the Self-Prescribed Individualized Exercise Prescription Model. Int. J. Environ. Res. Public Health 2021, 18, 11676. [Google Scholar] [CrossRef]
- Buckner, S.L.; Jessee, M.B.; Mattocks, K.T.; Mouser, J.G.; Counts, B.R.; Dankel, S.J.; Loenneke, J.P. Determining Strength: A Case for Multiple Methods of Measurement. Sports Med. 2017, 47, 193–195. [Google Scholar] [CrossRef]
- Lum, D.; Barbosa, T.M. Brief Review: Effects of Isometric Strength Training on Strength and Dynamic Performance. Int. J. Sports Med. 2019, 40, 363–375. [Google Scholar] [CrossRef]
- Giles, G.; Lutton, G.; Martin, J. Scoping Review of the Isometric Mid-Thigh Pull Performance Relationship to Dynamic Sport Performance Assessments. J. Funct. Morphol. Kinesiol. 2022, 7, 114. [Google Scholar] [CrossRef]
- Braun, A.K.; Hess, M.E.; Ibarra-Moreno, U.; Salvatore, M.D.; Saunders, N.W. Handgrip strength as a screening assessment for functional limitations. Age 2018, 62, 64–67. [Google Scholar] [CrossRef]
- Pavlović, R.; Radulović, N.; Nikolić, S.; Savić, V. The Influence Of Body Height, Body Weight, Body Mass Index On Hand Grip Strength Female Volleyball Player: Pilot Study. Int. J. Early Child. Spec. Edu. 2022, 14, 104–112. [Google Scholar] [CrossRef]
- Cronin, J.; Lawton, T.; Harris, N.; Kilding, A.; McMaster, D.T. A Brief Review of Handgrip Strength and Sport Performance. J. Strength Cond. Res. 2017, 31, 3187–3217. [Google Scholar] [CrossRef]
Variable | Adult (n = 13) | Adolescent (n = 13) | t-Statistic | p-Value | Cohen’s d [95% CI] |
---|---|---|---|---|---|
Age (years) | 22.76 ± 7.42 | 13.85 ± 1.07 | 4.29 | <0.001 | 1.68 [0.77, 2.57] |
Body Height (m) | 1.72 ± 0.07 | 1.68 ± 0.06 | 1.66 | 0.110 | 0.65 [−0.15, 1.44] |
Body Mass (kg) | 68.55 ± 10.64 | 62.22 ± 10.61 | 1.52 | 0.142 | 0.60 [−0.20, 1.38] |
BMI (m/kg2) | 23.00 ± 2.79 | 21.92 ± 2.57 | 1.02 | 0.316 | 0.40 [−0.38, 1.17] |
Lean Body Mass (kg) | 48.91 ± 7.09 | 47.21 ± 6.74 | 0.63 | 0.537 | 0.25 [−0.53, 1.01] |
2D:4D Ratio | 0.97 ± 0.02 | 0.97 ± 0.03 | −0.29 | 0.771 | −0.12 [−0.88, 0.66] |
Symmetry Angle (%) | |||||
Arm Position—AP1 | 4.02 ± 2.52 | 5.51 ± 3.93 | |||
Arm Position—AP2 | 4.94 ± 3.83 | 4.30 ± 2.84 | |||
Arm Position—AP3 | 3.59 ± 2.68 | 3.37 ± 3.28 |
F | df | df (res) | p | |
---|---|---|---|---|
Age Group | 0.12 | 1 | 22.00 | 0.738 |
Arm Position | 2.81 | 2 | 48.00 | 0.070 |
Lean body mass | 0.27 | 1 | 22.00 | 0.606 |
2D:4D ratio | 0.72 | 1 | 22.00 | 0.406 |
Age Group–Arm Position | 1.81 | 2 | 48.00 | 0.174 |
95% Confidence Intervals | ||||||||
---|---|---|---|---|---|---|---|---|
Names | Effect | Estimate | SE | Lower | Upper | df | t | p |
(Intercept) | (Intercept) | 4.29 | 0.54 | 3.20 | 5.37 | 22.00 | 7.87 | <0.001 |
Age Group1 | Adult–Adolescent | −0.37 | 1.10 | −2.58 | 1.83 | 22.00 | −0.34 | 0.738 |
Arm Position1 | AP2–AP1 | −0.15 | 0.59 | −1.33 | 1.04 | 48.00 | −0.25 | 0.804 |
Arm Position2 | AP3–AP1 | −1.29 | 0.59 | −2.47 | −0.10 | 48.00 | −2.17 | 0.035 * |
Lean body mass | Lean body mass | 0.04 | 0.08 | −0.12 | 0.21 | 22.00 | 0.52 | 0.606 |
D2:4D ratio | D2:4D ratio | −18.86 | 22.28 | −63.32 | 25.60 | 22.00 | −0.85 | 0.406 |
Age Group1 Arm Position1 | (Adult–Adolescent) (AP2–AP1) | 2.14 | 1.19 | −0.23 | 4.51 | 48.00 | 1.80 | 0.078 |
Age Group1 Arm Position2 | (Adult–Adolescent) (AP3–AP1) | 1.71 | 1.19 | −0.66 | 4.08 | 48.00 | 1.44 | 0.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panoutsakopoulos, V.; Schwarz, A.V.; Merkou, E.; Savvoulidis, S.; Kotzamanidou, M.C.; Papadakis, Z. Handgrip Strength Asymmetry in Female Basketball Players: The Critical Role of Arm Position and the Challenge of Statistical Power. Sports 2025, 13, 279. https://doi.org/10.3390/sports13080279
Panoutsakopoulos V, Schwarz AV, Merkou E, Savvoulidis S, Kotzamanidou MC, Papadakis Z. Handgrip Strength Asymmetry in Female Basketball Players: The Critical Role of Arm Position and the Challenge of Statistical Power. Sports. 2025; 13(8):279. https://doi.org/10.3390/sports13080279
Chicago/Turabian StylePanoutsakopoulos, Vassilios, Antonella V. Schwarz, Evangelia Merkou, Stratos Savvoulidis, Mariana C. Kotzamanidou, and Zacharias Papadakis. 2025. "Handgrip Strength Asymmetry in Female Basketball Players: The Critical Role of Arm Position and the Challenge of Statistical Power" Sports 13, no. 8: 279. https://doi.org/10.3390/sports13080279
APA StylePanoutsakopoulos, V., Schwarz, A. V., Merkou, E., Savvoulidis, S., Kotzamanidou, M. C., & Papadakis, Z. (2025). Handgrip Strength Asymmetry in Female Basketball Players: The Critical Role of Arm Position and the Challenge of Statistical Power. Sports, 13(8), 279. https://doi.org/10.3390/sports13080279