Supervised Machine Learning Algorithms for Fitness-Based Cardiometabolic Risk Classification in Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedure
2.3. Participants
2.4. Ethical Considerations
2.5. Procedures
2.5.1. Physical Fitness
2.5.2. Anthropometric Variables
2.5.3. Cardiometabolic Risk
2.6. Statistical Analysis
2.7. Supervised Machine Learning Models
2.7.1. Algorithm Analysis
2.7.2. Processing Models
2.7.3. Data Preprocessing
Numeric Format Normalization
Data Type Conversion
Handling Missing Data
Encoding Categorical Variables
Dataset Splitting
2.7.4. Classification Models
2.7.5. Best Algorithm Analysis
2.7.6. Performance Evaluation
3. Results
4. Discussion
4.1. Practical Applications
4.2. Limitations and Future Research Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silveira, J.; López-Gil, J.; Reuter, C.; Sehn, A.; Borfe, L.; Carvas-Junior, N.; Pfeiffer, K.; Guerra, P.; Andersen, L.; Garcia-Hermoso, A.; et al. Mediation of obesity-related variables in the association between physical fitness and cardiometabolic risk in children and adolescents: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2025, 11, e002366. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jeong, W.; Choi, Y.; Seo, Y.; Noh, H.; Song, H.; Paek, Y.; Kim, Y.; Lim, H.; Lee, H.; et al. Association between Physical Fitness and Cardiometabolic Risk of Children and Adolescents in Korea. Korean J. Fam. Med. 2019, 40, 159–164. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; García-Hermoso, A.; Agostinis-Sobrinho, C.; Agostinis-Sobrinho, C.; Mota, J.; Santos, R.; Correa-Bautista, J.E.; Amaya-Tambo, D.; Villa-González, E. Cycling to School and Body Composition, Physical Fitness, and Metabolic Syndrome in Children and Adolescents. J. Pediatr. 2017, 188, 57–63. [Google Scholar] [CrossRef]
- Nauman, J.; Nes, B.M.; Lavie, C.; Agostinis-Sobrinho, C.; Mota, J.; Santos, R.; Correa-Bautista, J.; Amaya-Tambo, D.; Villa-González, E. Prediction of cardiovascular mortality by estimated cardiorespiratory fitness independent of traditional risk factors: The HUNT Study. Mayo Clin. Proc. 2017, 92, 218–227. [Google Scholar] [CrossRef]
- de Lannoy, L.; Sui, X.; Lavie, C.; Blair, S.; Ross, R. Change in Submaximal Cardiorespiratory Fitness and All-Cause Mortality. Mayo Clin. Proc. 2018, 93, 184–190. [Google Scholar] [CrossRef]
- Ortega, F.; Ruiz, J.; Castillo, M.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grontved, A.; Ried-Larsen, M.; Moller, N.; Kristensen, P.; Froberg, K.; Brage, S.; Andersen, L. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br. J. Sports Med. 2015, 49, 90–94. [Google Scholar] [CrossRef]
- Sánchez-Delgado, A.; Pérez-Bey, A.; Izquierdo-Gómez, R.; Jimenez-Iglesias, J.; Marcos, A.; Gómez-Martínez, S.; Girela-Rejón, M.; Veiga, O.; Castro-Piñero, J. Fitness, body composition, and metabolic risk scores in children and adolescents: The UP&DOWN study. Eur. J. Pediatr. 2023, 182, 669–687. [Google Scholar] [PubMed]
- Cohen, D.; Gómez-Arbeláez, D.; Camacho, P.; Pinzon, S.; Hormiga, C.; Trejos-Suarez, J.; Duperly, J.; Lopez-Jaramillo, P. Low muscle strength is associated with metabolic risk factors in Colombian children: The ACFIES study. PLoS ONE 2014, 9, e93150. [Google Scholar] [CrossRef]
- Haapala, E.; Kuronen, E.; Ihalainen, J.; Lintu, N.; Leppänen, M.; Tompuri, T.; Atalay, M.; Schwab, U.; Lakka, T. Cross-sectional associations between physical fitness and biomarkers of inflammation in children-The PANIC study. Scand. J. Med. Sci. Sports 2023, 33, 1000–1009. [Google Scholar] [CrossRef]
- Agostinis-Sobrinho, C.; Moreira, C.; Abreu, S.; Lopes, L.; Sardinha, L.; Oliveira-Santos, J.; Oliveira, A.; Mota, J.; Santos, R. Muscular fitness and metabolic and inflammatory biomarkers in adolescents: Results from LabMed Physical Activity Study. Scand. J. Med. Sci. Sports 2017, 27, 1873–1880. [Google Scholar] [CrossRef]
- Lavie, C.; Ross, R.; Neeland, I. Physical activity and fitness vs. adiposity and weight loss for the prevention of cardiovascular disease and cancer mortality. Int. J. Obes. 2022, 46, 2065–2067. [Google Scholar] [CrossRef]
- Grgic, J.; Dumuid, D.; Bengoechea, E.; Shrestha, N.; Bauman, A.; Olds, T.; Pedisic, Z. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 69. [Google Scholar] [CrossRef]
- Després, J. Obesity and cardiovascular disease: Weight loss is not the only target. Can. J. Cardiol. 2015, 31, 216–222. [Google Scholar] [CrossRef]
- Teixeira, J.; Bragada, J.; Bragada, J.; Coelho, J.P.; Pinto, I.G.; Reis, L.P.; Fernandes, P.O.; Morais, J.E.; Magalhães, P.M. Structural Equation Modelling for Predicting the Relative Contribution of Each Component in the Metabolic Syndrome Status Change. Int. J. Environ. Res. Public Health 2022, 19, 3384. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, L.; Blanco, E.; Burrows, R.; Reyes, M.; Lozoff, B.; Gahagan, S. Early Onset Obesity and Risk of Metabolic Syndrome Among Chilean Adolescents. Prev. Chronic. Dis. 2017, 14, E93. [Google Scholar] [CrossRef]
- Bugge, A.; El-Naaman, B.; McMurray, R.G.; Froberg, K.; Andersen, L. Tracking of clustered cardiovascular disease risk factors from childhood to adolescence. Pediatr. Res. 2013, 73, 245–249. [Google Scholar] [CrossRef]
- Saland, J. Update on the metabolic syndrome in children. Curr. Opin. Pediatr. 2007, 19, 183–191. [Google Scholar] [CrossRef]
- Paul, S.; Lancaster, G.; Meikle, P. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 2019, 74, 186–195. [Google Scholar] [CrossRef]
- Luca, A.C.; David, S.G.; David, A.G.; Țarcă, V.; Pădureț, I.-A.; Mîndru, D.E.; Roșu, S.T.; Roșu, E.V.; Adumitrăchioaiei, H.; Bernic, J.; et al. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life 2023, 13, 2056. [Google Scholar] [CrossRef]
- Hayman, L. Prevention of Atherosclerotic Cardiovascular Disease in Childhood. Curr. Cardiol. Rep. 2020, 22, 86. [Google Scholar] [CrossRef]
- Hong, Y. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ. J. 2010, 40, 1–9. [Google Scholar] [CrossRef]
- Singleton, C.; Brar, S.; Robertson, N.; DiTommaso, L.; Fuchs, G., III; Schadler, A.; Radulescu, A.; Attia, S.L. Cardiometabolic risk factors in South American children: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0293865. [Google Scholar] [CrossRef]
- Weisstaub, G.; Gonzalez- Bravo, M.; García-Hermoso, A.; Salazar, G.; López-Gil, J. Cross-sectional association between physical fitness and cardiometabolic risk in Chilean schoolchildren: The fat but fit paradox. Transl. Pediatr. 2022, 11, 1085–1094. [Google Scholar] [CrossRef]
- Burrows, R.; Correa-Burrows, P.; Reyes, M.; Blanco, E.; Albala, C.; Gahagan, S. High cardiometabolic risk in healthy Chilean adolescents: Associations with anthropometric, biological and lifestyle factors. Public Health Nutr. 2016, 19, 486–493. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Lua, V.; Chua, T.; Chia, M. A Narrative Review of Screen Time and Wellbeing among Adolescents before and during the COVID-19 Pandemic: Implications for the Future. Sports 2023, 11, 38. [Google Scholar] [CrossRef]
- de Rezende, L.F.; Rodrigues-Lopes, M.; Rey-López, J.; Matsudo, V.; Luiz-Odo, C. Sedentary behavior and health outcomes: An overview of systematic reviews. PLoS ONE 2014, 9, e105620. [Google Scholar] [CrossRef]
- Martínez-Flores, R.; Castillo-Cañete, I.; Pérez-Marholz, V.; Marín Trincado, V.; Fernández Guzmán, C.; Fuentes Figueroa, R.; Carrasco Mieres, G.; González Rodríguez, M.; Rodriguez-Rodriguez, F. Sedentary Behaviour and Physical Activity Levels during Second Period of Lockdown in Chilean’s Schoolchildren: How Bad Is It? Children 2023, 10, 481. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, F.; Cristi-Montero, C.; Castro-Piñero, J. Physical Activity Levels of Chilean Children in a National School Intervention Programme. A Quasi-Experimental Study. Int. J. Environ. Res. Public Health 2020, 17, 4529. [Google Scholar] [CrossRef]
- Aubert, S.; Barnes, J.D.; Aguilar-Farias, N.; Cardon, G.; Chang, C.-K.; Nyström, C.D.; Demetriou, Y.; Edwards, L.; Emeljanovas, A.; Gába, A.; et al. Report Card on Physical Activity for Children and Youth. J. Phys. Act. Health 2016, 13 (Suppl. S2), S117–S123. [Google Scholar]
- Aguilar-Farias, N.; Miranda-Márquez, S.; Toledo-Vargas, M.; Sadarangani, K.; Ibarra-Mora, J.; Martino-Fuentealba, P.; Rodriguez-Rodriguez, F.; Cristi-Montero, C.; Henríquez, M.; Cortinez-O’Ryan, A. Results From the First Para Report Card on Physical Activity for Children and Adolescents With Disabilities in Chile. J. Phys. Act. Health 2024, 22, 132–140. [Google Scholar] [CrossRef]
- Aguilar-Farias, N.; Cortinez-O’Ryan, A.; Sadarangani, K.; Von Oetinger, A.; Leppe, J.; Valladares, M.; Balboa-Castillo, T.; Cobos, C.; Lemus, N.; Walbaum, M.; et al. Results From Chile’s 2016 Report Card on Physical Activity for Children and Youth. J. Phys. Act. Health 2016, 13 (Suppl. S2), S117–S123. [Google Scholar] [CrossRef]
- Rodríguez-Osiac, L.; Fernandes, A.; Mujica-Coopman, M. Description of Chilean food and nutrition health policies. Rev. Méd. Chile 2021, 149, 1485–1494. [Google Scholar] [CrossRef]
- Junta Nacional de Auxilio Escolar y Becas (JUNAEB). Mapa Nutricional 2023, Resultados Nacionales y Regionales. Ministerio de Educación, Gobierno de Chile. 2024. Available online: https://www.junaeb.cl/mapa-nutricional/ (accessed on 7 May 2025).
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2023 (GBD 2023) Results. Institute for Health Metrics and Evaluation (IHME). 2025. Available online: https://www.healthdata.org (accessed on 7 May 2025).
- Kerr, J.A.; Patton, G.C.; Cini, K.I.; Abate, Y.H.; Abbas, N.; Magied, A.H.A.A.; ElHafeez, S.A.; Abd-Elsalam, S.; Abdollahi, A.; Abdoun, M.; et al. Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050, a forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef]
- Salah, H.; Srinivas, S. Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents. Sci. Rep. 2022, 12, 21905. [Google Scholar] [CrossRef]
- Kakadiaris, I.; Vrigkas, M.; Yen, A.; Kuznetsova, T.; Budoff, M.; Naghavi, M. Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA. J. Am. Heart Assoc. 2018, 7, e009476. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, Y.; Kim, J.; Lee, J.; Park, D.; Kim, H. Machine Learning-Based Cardiovascular Disease Prediction Model: A Cohort Study on the Korean National Health Insurance Service Health Screening Database. Diagnostics 2021, 11, 943. [Google Scholar] [CrossRef]
- Agencia de Calidad de la Educación. Informe Nacional de Educación Física. 2015. Available online: https://archivos.agenciaeducacion.cl/Informe_Nacional_EducacionFisica2015.pdf (accessed on 15 April 2025).
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Child Growth: WHO Growth Standards; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Ashwell, M.; Hsieh, S.D. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int. J. Food Sci. Nutr. 2005, 56, 303–307. [Google Scholar] [CrossRef]
- Brambilla, P.; Bedogni, G.; Heo, M.; Pietrobelli, A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int. J. Obes. 2013, 37, 943–946. [Google Scholar] [CrossRef]
- Maffeis, C.; Banzato, C.; Talamini, G.; Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J. Pediatr. 2008, 152, 207–213. [Google Scholar] [CrossRef]
- McCarthy, H.; Ashwell, M. A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message—‘keep your waist circumference to less than half your height’. Int. J. Obes. 2006, 30, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A. Identifying adolescents with increased cardiometabolic risk-Simple, but challenging. J. Pediatr. 2025, 101, 1–3. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn. Res. 2019, 20, 1–32. [Google Scholar]
- Liu, X.-Y.; Wu, J.; Zhou, Z.-H. Exploratory Undersampling for Class-Imbalance Learning, in IEEE Transactions on Systems, Man, and Cybernetics, Part B. Cybernetics 2009, 39, 539–550. [Google Scholar]
- Delgado-Floody, P.; Caamaño-Navarrete, F.; Palomino-Devia, C.; Jerez-Mayorga, D.; Martínez-Salazar, C. Relationship in obese Chilean schoolchildren between physical fitness, physical activity levels and cardiovascular risk factors. Nutr. Hosp. 2019, 36, 13–19. [Google Scholar] [PubMed]
- Ponce-Bobadilla, A.; Schmitt, V.; Maier, C.; Mensing, S.; Stodtmann, S. Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clin. Transl. Sci. 2024, 17, e70056. [Google Scholar] [CrossRef] [PubMed]
- de Lima, T.; Martins, P.; Moreno, Y.; Chaput, J.; Tremblay, M.; Sui, X.; Silva, D. Muscular Fitness and Cardiometabolic Variables in Children and Adolescents: A Systematic Review. Sports Med. 2022, 52, 1555–1575. [Google Scholar] [CrossRef]
- Johansson, L.; Putri, R.; Danielsson, P.; Hagströmer, M.; Marcus, C. Associations between cardiorespiratory fitness and cardiometabolic risk factors in children and adolescents with obesity. Sci. Rep. 2023, 13, 7289. [Google Scholar] [CrossRef]
- Cristi-Montero, C.; Courel-Ibáñez, J.; Ortega, F.B.; Castro-Piñero, J.; Santaliestra-Pasias, A.; Polito, A.; Vanhelst, J.; Marcos, A.; Moreno, L.; Ruiz, J.; et al. Mediation role of cardiorespiratory fitness on the association between fatness and cardiometabolic risk in European adolescents: The HELENA study. J. Sport Health Sci. 2021, 10, 360–367. [Google Scholar] [CrossRef]
- Bailey, D.; Boddy, L.; Savory, L.; Denton, S.; Kerr, C. Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: The HAPPY study. Eur. J. Pediatr. 2012, 171, 1317–1323. [Google Scholar] [CrossRef]
- Artero, E.; Ruiz, J.; Ortega, F.; España-Romero, V.; Vicente-Rodríguez, G.; Molnar, D.; Gottrand, F.; González-Gross, M.; Breidenassel, C.; Moreno, L.A.; et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: The HELENA study. Pediatr. Diabetes 2011, 12, 704–712. [Google Scholar] [CrossRef]
- Moliner-Urdiales, D.; Ruiz, J.; Vicente-Rodriguez, G.; Ortega, F.; Rey-Lopez, J.; España-Romero, V.; Casajús, J.; Molnar, D.; Widhalm, K.; Dallongeville, J.; et al. Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: The HELENA study. Br. J. Sports Med. 2011, 45, 101–108. [Google Scholar] [CrossRef]
- Buchan, D.; Boddy, L.; Young, J.; Cooper, S.M.; Noakes, T.; Mahoney, C.; Shields, J.P.; Baker, J. Relationships between Cardiorespiratory and Muscular Fitness with Cardiometabolic Risk in Adolescents. Res. Sports Med. 2015, 23, 227–239. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Ramírez-Vélez, R.; Saavedra, J. Exercise, health outcomes, and pediatric obesity: A systematic review of meta-analyses. J. Sci. Med. Sport 2019, 22, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Q.; Lu, F.; Zhu, D. Effects of aerobic exercise combined with resistance training on body composition and metabolic health in children and adolescents with overweight or obesity: Systematic review and meta-analysis. Front. Public Health 2024, 12, 1409660. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.; Michallet, A.; Monneret, D.; Perrin, C.; Estève, F.; Lombard, P.; Faure, P.; Lévy, P.; Favre-Juvin, A.; Pépin, J.; et al. Impact of exercise training without caloric restriction on inflammation, insulin resistance and visceral fat mass in obese adolescents. Pediatr. Obes. 2015, 10, 311–319. [Google Scholar] [CrossRef]
- Musleh, D.; Alkhwaja, A.; Alkhwaja, I.; Alghamdi, M.; Abahussain, H.; Albugami, M.; Alfawaz, F.; El-Ashker, S.; Al-Hariri, M. Machine Learning Approaches for Predicting Risk of Cardiometabolic Disease among University Students. Big Data Cog. Comput. 2024, 8, 31. [Google Scholar] [CrossRef]
- Agredo-Zuñiga, R.; Parra, D.; Ortega-Ávila, J.; Suarez-Ortegon, M. Cardiorespiratory Fitness and Cardiometabolic Risk Factors in Children and Adolescents From Southwest Colombia: Association Patterns Considering Adiposity. Am. J. Hum. Biol. 2024, 11, e24163. [Google Scholar] [CrossRef]
- de Lima, T.; Silva, D. Muscle Strength Indexes and Its Association With Cardiometabolic Risk Factors in Adolescents: An Allometric Approach. Res. Q. Exerc. Sport 2024, 95, 289–302. [Google Scholar] [CrossRef]
Algorithm | Key Parameter | Default Value | Brief Description |
---|---|---|---|
Gradient boosting | n_estimators | 100 | Number of trees (boosting stages). |
learning_rate | 0.1 | Weighting of each tree’s contribution. | |
max_depth | 3 | Maximum depth of each tree. | |
Logistic regression | penalty | ‘l2’ | Type of regularization (Ridge). |
C | 1.0 | Inverse of the regularization strength. | |
K-nearest neighbors | n_neighbors | 5 | Number of neighbors to consider. |
weights | ‘uniform’ | All neighbors have the same weight. | |
Support vector ma-chine (linear support vector classifier) | kernel | ‘rbf’ | Radial basis kernel for nonlinear relationships. |
C | 1.0 | Regularization parameter. | |
gamma | ‘scale’ | Kernel coefficient. | |
Random forest | n_estimators | 100 | Number of trees in the forest. |
criterion | ‘gini’ | Function to measure the quality of a split. | |
max_depth | None | Nodes are expanded until they are pure. |
Variables | Males (n = 4356) | Females (n = 3498) | All (N = 7854) | |||
---|---|---|---|---|---|---|
Level 1 (n = 3417) | Level 2 (n = 939) | Level 1 (n = 2659) | Level 2 (n = 839) | Level 1 (n = 6076) | Level 2 (n = 1778) | |
VO2max (mL/kg/min) | 28.8 (27.4–30.8) | 27.4 (27.2–29.4) | 28.4 (27.4–29.4) | 27.4 (26.8–29.0) | 28.9 (27.4–29.6) | 27.4 (26.4–28.9) |
Horizontal jump (cm) | 165.5 (146–184) | 152.7 (136.5–171) | 125.8 (109.5–142.0) | 118.8 (102.0–134.5) | 147.0 (124.0–172.0) | 136.5 (115.0–158.5) |
Push-ups (reps) | 16.0 (10–22) | 13.7 (6–19.5) | 15.5 (10.0–20.0) | 13.0 (10.0–20.0) | 15.0 (10.0–21.0) | 13.0 (9.0–19.0) |
WHtR | 0.430 (0.410–0.450) | 0.530 (0.510–0.570) | 0.430 (0.410–0.460) | 0.540 (0.520–0.560) | 0.430 (0.410–0.460) | 0.530 (0.510–0.560) |
Algorithm | Accuracy | Error | Precision | Recall | F1 Score | AUC-ROC | Training Time (s) | Classification |
---|---|---|---|---|---|---|---|---|
Gradient boosting | 0.770 | 0.229 | 0.597 | 0.770 | 0.673 | 0.601 | 0.295 | Good performance |
Logistic regression | 0.773 | 0.226 | 0.598 | 0.773 | 0.674 | 0.595 | 0.012 | Good performance |
K-nearest neighbors | 0.741 | 0.258 | 0.679 | 0.741 | 0.697 | 0.548 | 0.004 | Good performance |
Support vector machine | 0.773 | 0.226 | 0.598 | 0.773 | 0.674 | 0.535 | 8.609 | Good performance |
Random forest | 0.708 | 0.291 | 0.665 | 0.708 | 0.682 | 0.529 | 0.449 | Good performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yáñez-Sepúlveda, R.; Olivares, R.; Olivares, P.; Zavala-Crichton, J.P.; Hinojosa-Torres, C.; Giakoni-Ramírez, F.; Souza-Lima, J.d.; Monsalves-Álvarez, M.; Tuesta, M.; Páez-Herrera, J.; et al. Supervised Machine Learning Algorithms for Fitness-Based Cardiometabolic Risk Classification in Adolescents. Sports 2025, 13, 273. https://doi.org/10.3390/sports13080273
Yáñez-Sepúlveda R, Olivares R, Olivares P, Zavala-Crichton JP, Hinojosa-Torres C, Giakoni-Ramírez F, Souza-Lima Jd, Monsalves-Álvarez M, Tuesta M, Páez-Herrera J, et al. Supervised Machine Learning Algorithms for Fitness-Based Cardiometabolic Risk Classification in Adolescents. Sports. 2025; 13(8):273. https://doi.org/10.3390/sports13080273
Chicago/Turabian StyleYáñez-Sepúlveda, Rodrigo, Rodrigo Olivares, Pablo Olivares, Juan Pablo Zavala-Crichton, Claudio Hinojosa-Torres, Frano Giakoni-Ramírez, Josivaldo de Souza-Lima, Matías Monsalves-Álvarez, Marcelo Tuesta, Jacqueline Páez-Herrera, and et al. 2025. "Supervised Machine Learning Algorithms for Fitness-Based Cardiometabolic Risk Classification in Adolescents" Sports 13, no. 8: 273. https://doi.org/10.3390/sports13080273
APA StyleYáñez-Sepúlveda, R., Olivares, R., Olivares, P., Zavala-Crichton, J. P., Hinojosa-Torres, C., Giakoni-Ramírez, F., Souza-Lima, J. d., Monsalves-Álvarez, M., Tuesta, M., Páez-Herrera, J., Olivares-Arancibia, J., Reyes-Amigo, T., Cortés-Roco, G., Hurtado-Almonacid, J., Guzmán-Muñoz, E., Aguilera-Martínez, N., López-Gil, J. F., & Clemente-Suárez, V. J. (2025). Supervised Machine Learning Algorithms for Fitness-Based Cardiometabolic Risk Classification in Adolescents. Sports, 13(8), 273. https://doi.org/10.3390/sports13080273