Can Conditioning Activity with Blood Flow Restriction Impact Neuromuscular Performance and Perceptual Responses to Exercise?
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Total Arterial Occlusion Protocol
2.4. Experimental Sessions
2.5. Neuromuscular Performance
2.6. Session Rating Perceived Exertion
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xenofondos, A.; Laparidis, K.; Kyranoudis, A.; Galazoulas, C.; Bassa, E.; Kotzamanidis, C. Post-Activation Potentiation: Factors Affecting it and the Effect on Performance. J. Phys. Educ. Sports 2010, 28, 1–10. [Google Scholar]
- Blazevich, A.J.; Babault, N. Post-Activation Potentiation (PAP) versus Post-Activation Performance Enhancement (PAPE) in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef]
- MacIntosh, B.R.; Robillard, M.E.; Tomaras, E.K. Should Postactivation Potentiation Be the Goal of Your Warm-Up? Appl. Physiol. Nutr. Metab. 2012, 37, 546–550. [Google Scholar] [CrossRef]
- Bishop, D. Warm-up II: Performance Changes Following Active Warm-up and How to Structure the Warm-Up. Sports Med. 2003, 33, 483–498. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-Activation Potentiation. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.R.; Brown, L.E.; Coburn, J.W.; Zinder, S.M. Acute Effects of Heavy-Load Squats on Consecutive Squat Jump Performance. J. Strength Cond. Res. 2008, 22, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.M.; Young, W.B.; Aitken, D.A. The Acute Effects of Heavy Loads on Jump Squat Performance: An Evaluation of the Complex and Contrast Methods of Power Development. J. Strength Cond. Res. 2002, 16, 530–538. [Google Scholar] [CrossRef]
- Ebben, W.P. Complex Training: A Brief Review. J. Sports Sci. Med. 2002, 1, 42–46. [Google Scholar]
- Garbisu-Hualde, A.; Santos-Concejero, J. Post-Activation Potentiation in Strength Training: A Systematic Review of the Scientific Literature. J. Hum. Kinet. 2021, 78, 141–150. [Google Scholar] [CrossRef]
- Chiu, L.Z.F.; Fry, A.C.; Weiss, L.W.; Schilling, B.K.; Brown, L.E.; Smith, S.L. Postactivation Potentiation Response in Athletic and Recreationally Trained Individuals. J. Strength Cond. Res. 2003, 17, 671. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.C.; Nunes, J.P.; Kassiano, W.; Aguiar, A.F.; Ribeiro, A.S. Acute Effect of Different Resistance Training Loads on Perceived Effort and Affectivity in Older Women: A Cross-over and Randomized Study. Aging Clin. Exp. Res. 2022, 34, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Stuart, C.; Steele, J.; Gentil, P.; Giessing, J.; Fisher, J.P. Fatigue and Perceptual Responses of Heavier- and Lighter-Load Isolated Lumbar Extension Resistance Exercise in Males and Females. PeerJ 2018, 6, e4523. [Google Scholar] [CrossRef]
- Alvarez, I.F.; Damas, F.; de Biazon, T.M.P.; Miquelini, M.; Doma, K.; Libardi, C.A. Muscle Damage Responses to Resistance Exercise Performed with High-Load versus Low-Load Associated with Partial Blood Flow Restriction in Young Women. Eur. J. Sport Sci. 2019, 20, 125–134. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training. Sports Med. 2013, 43, 179–194. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors Modulating Post-Activation Potentiation and Its Effect on Performance of Subsequent Explosive Activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Doma, K.; Leicht, A.S.; Boullosa, D.; Woods, C.T. Lunge Exercises with Blood-Flow Restriction Induces Post-Activation Potentiation and Improves Vertical Jump Performance. Eur. J. Appl. Physiol. 2020, 120, 687–695. [Google Scholar] [CrossRef]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef]
- Heckler, J.N.; Dankel, S.J. Affective, Perceptual and Physiologic Responses to Isokinetic Contractions under Blood Flow Restriction. J. Sports Med. Phys. Fitness 2024, 64. [Google Scholar] [CrossRef]
- Wong, V.; Abe, T.; Chatakondi, R.N.; Bell, Z.W.; Spitz, R.W.; Dankel, S.J.; Loenneke, J.P. The Influence of Biological Sex and Cuff Width on Muscle Swelling, Echo Intensity, and the Fatigue Response to Blood Flow Restricted Exercise. J. Sports Sci. 2019, 37, 1865–1873. [Google Scholar] [CrossRef]
- Motykie, G.D.; Zebala, L.P.; Caprini, J.A.; Lee, C.E.; Arcelus, J.I.; Reyna, J.J.; Cohen, E.B. A Guide to Venous Thromboembolism Risk Factor Assessment. J. Thromb. Thrombolysis. 2000, 9, 253–262. [Google Scholar] [CrossRef]
- Nakajima, T.; Kurano, M.; Iida, H.; Takano, H.; Oonuma, H.; Morita, T.; Meguro, K.; Sato, Y.; Nagata, T. KAATSU Training Group Use and Safety of KAATSU Training: Results of a National Survey. Int. J. KAATSU Train. Res. 2006, 2, 5–13. [Google Scholar] [CrossRef]
- Caprini, J.A. Thrombosis Risk Assessment as a Guide to Quality Patient Care. Dis. A Mon. 2005, 51, 70–78. [Google Scholar] [CrossRef]
- Beato, M.; de Keijzer, K.L.; Fleming, A.; Coates, A.; La Spina, O.; Coratella, G.; McErlain-Naylor, S.A. Post Flywheel Squat vs. Flywheel Deadlift Potentiation of Lower Limb Isokinetic Peak Torques in Male Athletes. Sports Biomech. 2020, 1–14. [Google Scholar] [CrossRef]
- Brown, L.; Weir, J.A. procedures recommendation I.A. ASEP Procedures Recommendation I: Accurate Assessment of Muscular Strength and Power. J. Exerc. Physiol. Online. 2001, 4, 1–21. [Google Scholar]
- Weir, J.P.; Evans, S.A.; Housh, M.L. The Effect of Extraneous Movements on Peak Torque and Constant Joint Angle Torque-Velocity Curves. J. Orthop. Sports Phys. Ther. 1996, 23, 302–308. [Google Scholar] [CrossRef]
- Hald, R.D.; Bottjen, E.J. Effect of Visual Feedback on Maximal and Submaximal Isokinetic Test Measurements of Normal Quadriceps and Hamstrings. J. Orthop. Sports Phys. Ther. 1987, 9, 86–93. [Google Scholar] [CrossRef]
- McNair, P.J.; Depledge, J.; Brettkelly, M.; Stanley, S.N. Verbal Encouragement: Effects on Maximum Effort Voluntary Muscle: Action. Br. J. Sports Med. 1996, 30, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kramer, J.F. Effectiveness of Visual Feedback During Isokinetic Exercise. J. Orthop. Sports Phys. Ther. 1997, 26, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Mcguigan MR, F.C. A New Approach To Monitoring Resistance Training. Strength. Cond. J. 2004, 26, 42–47. [Google Scholar] [CrossRef]
- Singh, F.; Foster, C.; Tod, D.; McGuigan, M.R. Monitoring Different Types of Resistance Training Using Session Rating of Perceived Exertion. Int. J. Sports Physiol. Perform. 2007, 2, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, J.; Wei, J.; Chen, H.; Tang, S.; Zhou, Z. The Influence on Post-Activation Potentiation Exerted by Different Degrees of Blood Flow Restriction and Multi-Levels of Activation Intensity. Int. J. Environ. Res. Public Health 2022, 19, 10597. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Fukumura, K.; Iida, H.; Nakajima, T. Effect of Low-Load Resistance Exercise with and without Blood Flow Restriction to Volitional Fatigue on Muscle Swelling. Eur. J. Appl. Physiol. 2015, 115, 919–926. [Google Scholar] [CrossRef]
- Dankel, S.; Buckner, S.; Counts, B.; Jessee, M.; Mouser, J.; Mattocks, K.; Laurentino, G.; Abe, T.; Loenneke, J. The Acute Muscular Response to Two Distinct Blood Flow Restriction Protocols. Physiol. Int. 2017, 104, 64–76. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Fahs, C.A.; Thiebaud, R.S.; Rossow, L.M.; Abe, T.; Ye, X.; Kim, D.; Bemben, M.G. The Acute Muscle Swelling Effects of Blood Flow Restriction. Acta Physiol. Hung. 2012, 99, 400–410. [Google Scholar] [CrossRef]
- Vieira, A.; Gadelha, A.B.; Ferreira-Junior, J.B.; de Melo Keene von Koenig Soares, E.; Cadores, E.L.; Wagner, D.R.; Bottaro, M. Session Rating of Perceived Exertion Following Resistance Exercise with Blood Flow Restriction. Clin. Physiol. Funct. Imaging. 2015, 35, 1–5. [Google Scholar] [CrossRef]
- Andersen, V.; Hermans, E.; Vereide, V.; Stien, N.; Paulsen, G.; Baláš, J.; Michailov, M.L.; Pedersen, H.; Saeterbakken, A.H. Comparison of Finger Flexor Resistance Training, with and without Blood Flow Restriction, on Perceptional and Physiological Responses in Advanced Climbers. Sci. Rep. 2023, 13, 3287. [Google Scholar] [CrossRef]
- Neto, G.R.; Sousa, M.S.C.; Costa e Silva, G.V.; Gil, A.L.S.; Salles, B.F.; Novaes, J.S. Acute Resistance Exercise with Blood Flow Restriction Effects on Heart Rate, Double Product, Oxygen Saturation and Perceived Exertion. Clin. Physiol. Funct. Imaging. 2016, 36, 53–59. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Kim, D.; Fahs, C.A.; Thiebaud, R.S.; Abe, T.; Larson, R.D.; Bemben, D.A.; Bemben, M.G. The Effects of Resistance Exercise with and without Different Degrees of Blood-Flow Restriction on Perceptual Responses. J. Sports. Sci. 2015, 33, 1472–1479. [Google Scholar] [CrossRef]
- Madrid, B.; Pires, F.O.; Prestes, J.; Vieira, D.C.L.; Clark, T.; Tiozzo, E.; Lewis, J.E.; Grubert Campbell, C.S.; Gustavo Simões, H. Estimation of the Maximal Lactate Steady State Intensity by the Rating of Perceived Exertion. Percept. Mot. Skills. 2016, 122, 136–149. [Google Scholar] [CrossRef]
- Vieira, D.C.L.; Madrid, B.; Pires, F.D.O.; Tajra, V.; de Farias, D.L.; Teixeira, T.G.; Tibana, R.A.; Prestes, J. Respostas Da Percepção Subjetiva de Esforço Em Teste Incremental de Mulheres Idosas Sedentárias. Rev. Bras. Cineantropometria E Desempenho Hum. 2014, 16, 106–115. [Google Scholar] [CrossRef]
- St Clair Gibson, A.; Baden, D.A.; Lambert, M.I.; Lambert, E.V.; Harley, Y.X.R.; Hampson, D.; Russell, V.A.; Noakes, T.D. The Conscious Perception of the Sensation of Fatigue. Sports Med. 2003, 33, 167–176. [Google Scholar] [CrossRef]
Session | Peak Torque (Nm) | Total Work (J) | Power (W) | ||
---|---|---|---|---|---|
Knee extensors | CON | RI7min | 175.11 ± 26.55 (162.69–187.53) | 412.68 ± 78.70 (375.85–449.51) | 291.63 ± 59.70 (263.69–319.57) |
RI10min | 176.99 ± 27.92 (163.93–190.06) | 413.35 ± 82.76 (374.62–452.08) | 301.28 ± 63.28 (271.66–330.90) | ||
50BRF | RI7min | 173.33 ± 28.12 (186.49–160.17) | 413.55 ± 72.23 (379.74–447.35) | 297.89 ± 58.14 (270.67–325.10) | |
RI10min | 178.73 ± 29.00 (165.16–192.30) | 423.62 ± 76.00 (388.05–459.19) | 302.93 ± 59.97 (274.87–330.99) | ||
75BRF | RI7min | 173.99 ± 27.12 (161.30–186.68) | 413.28 ± 74.87 (378.24–448.31) | 300.80 ± 56.49 (274.36–327.24) | |
RI10min | 179.29 ± 24.93 (167.62–190.58) | 430.42 ± 62.80 (401.02–459.81) | 313.29 ± 52.85 (268.55–338.03) | ||
Knee flexors | CON | RI7min | 97.22 ± 16.02 (89.72–104.72) | 242.67 ± 46.54 (220.88–264.45) | 168.47 ± 30.56 (154.17–182.77) |
RI10min | 96.11 ± 15.95 (88.65–103.58) | 237.07 ± 49.28 (214.00–260.13) | 161.96 ± 34.13 (152.38–182.29) | ||
50BFR | RI7min | 96.73 ± 17.03 (88.76–104.70) | 245.10 ± 47.51 (222.86–267.33) | 167.34 ± 31.96 (157.27–188.36) | |
RI10min | 95.51 ± 18.55 (86.83–104.19) | 242.44 ± 53.15 (217.56–267.31) | 164.11 ± 40.11 (145.99–177.94) | ||
75BFR | RI7min | 98.49 ± 17.48 (90.31–106.66) | 246.82 ± 47.94 (224.38–269.25) | 172.82 ± 33.21 (145.34–182.88) | |
RI10min | 97.05 ± 17.80 (88.72–105.38) | 245.41 ± 51.65 (221.27–269.58) | 172.99 ± 38.34 (155.04–190.93) |
SRPE | |
---|---|
CON | 1.4 ± 0.5 * (1.2–1.6) |
50BFR | 2.0 ± 0.8 *# (1.6–2.4) |
75BFR | 3.3 ± 1.0 # (2.8–3.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.C.; Sousa, L.L.; Correa, H.d.L.; Silva, T.F.; Martins, L.d.S.; Felix, P.; Bottaro, M.; Vieira, D.C.L.; Ernesto, C. Can Conditioning Activity with Blood Flow Restriction Impact Neuromuscular Performance and Perceptual Responses to Exercise? Sports 2025, 13, 243. https://doi.org/10.3390/sports13080243
Silva RC, Sousa LL, Correa HdL, Silva TF, Martins LdS, Felix P, Bottaro M, Vieira DCL, Ernesto C. Can Conditioning Activity with Blood Flow Restriction Impact Neuromuscular Performance and Perceptual Responses to Exercise? Sports. 2025; 13(8):243. https://doi.org/10.3390/sports13080243
Chicago/Turabian StyleSilva, Robson Conceição, Leandro Lima Sousa, Hugo de Luca Correa, Thailson Fernandes Silva, Lucas de Souza Martins, Pedro Felix, Martim Bottaro, Denis César Leite Vieira, and Carlos Ernesto. 2025. "Can Conditioning Activity with Blood Flow Restriction Impact Neuromuscular Performance and Perceptual Responses to Exercise?" Sports 13, no. 8: 243. https://doi.org/10.3390/sports13080243
APA StyleSilva, R. C., Sousa, L. L., Correa, H. d. L., Silva, T. F., Martins, L. d. S., Felix, P., Bottaro, M., Vieira, D. C. L., & Ernesto, C. (2025). Can Conditioning Activity with Blood Flow Restriction Impact Neuromuscular Performance and Perceptual Responses to Exercise? Sports, 13(8), 243. https://doi.org/10.3390/sports13080243