Binary Sex Input Has No Effect on Metabolic or Pulmonary Variables: A Within-Subjects Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BPM | Breaths per minute |
Kcal | Kilocalories |
RER | Respiration exchange ratio |
RR | Respiratory rate |
SAGER | Sex and Gender Equity in Research |
VCO2 | Carbon dioxide production |
VE | Ventilation |
VO2 | Oxygen consumption |
References
- Mtaweh, H.; Tuira, L.; Floh, A.A.; Parshuram, S.C. Indirect Calorimetry: History, Technology, and Application. Front. Pediatr. 2018, 6, 257. [Google Scholar] [CrossRef] [PubMed]
- Crouter, E.S.; Antczak, A.; Hudak, R.J.; Dellavalle, M.D.; Haas, D.J. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur. J. Appl. Physiol. 2006, 98, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Howley, E.T.; Thompson, D.L.; King, G.A.; Strath, S.J.; McLaughlin, J.E.; Parr, B.B. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J. Appl. Physiol. 2001, 91, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Woods, L.A.; Garvican-Lewis, A.L.; Rice, J.A.; Thompson, G.K. The Ventilation-Corrected ParvoMedics TrueOne 2400 Provides a Valid and Reliable Assessment of Resting Metabolic Rate (RMR) in Athletes Compared With the Douglas Bag Method. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 454–463. [Google Scholar] [CrossRef]
- Mcclung, L.H.; Tharion, J.W.; Walker, A.L.; Rome, N.M.; Hoyt, W.R.; Looney, P.D. Using a Contemporary Portable Metabolic Gas Exchange System for Assessing Energy Expenditure: A Validity and Reliability Study. Sensors 2023, 23, 2472. [Google Scholar] [CrossRef]
- Peel, C.; Utsey, C. Oxygen consumption using the K2 telemetry system and a metabolic cart. Med. Sci. Sports Exerc. 1993, 25, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, M.; Eschliman, E.; Karver, S.T. Differentiating sex and gender in health research to achieve gender equity. Bull. World Health Organ. 2023, 101, 666–671. [Google Scholar] [CrossRef]
- Navalta, J.W.; Perez, O.R.; Wong, M.W.H.; Davis, D.W. Does digital device software lead to exclusion? Investigating a portable metabolic analysis system and the input of sex data on physiological parameters. Front. Digit. Health 2025, 7, 1541083. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Wagner, D.R.; Clark, N.W. Similar results for face mask versus mouthpiece during incremental exercise to exhaustion. J. Sports Sci. 2016, 34, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Mercer, M.A.; Stone, T.M.; Young, J.C.; Mercer, J.A. Running Economy While Running in Shoes Categorized as Maximal Cushioning. Int. J. Exerc. Sci. 2018, 11, 1031–1040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Chan, Y.H. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003, 44, 614–619. [Google Scholar]
- Heidari, S.; Babor, T.F.; De Castro, P.; Tort, S.; Curno, M. Sex and Gender Equity in Research: Rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev. 2016, 1, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Overstreet, B.S.; Strohacker, K. Variability in Intensity Related to Increased Overall Bout Intensity. Am. J. Health Behav. 2018, 42, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Gasic, S.; Schneider, B.; Waldhausl, W. Indirect calorimetry: Variability of consecutive baseline determinations of carbohydrate and fat utilization from gas exchange measurements. Horm. Metab. Res. 1997, 29, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Bassett, R.D., Jr. Scientific contributions of A. V. Hill: Exercise physiology pioneer. J. Appl. Physiol. 2002, 93, 1567–1582. [Google Scholar] [CrossRef]
- Santisteban, J.K.; Lovering, T.A.; Halliwill, R.J.; Minson, T.C. Sex Differences in VO2max and the Impact on Endurance-Exercise Performance. Int. J. Environ. Res. Public Health 2022, 19, 4946. [Google Scholar] [CrossRef]
- Zwiren, L.D.; Cureton, K.J.; Hutchinson, P. Comparison of circulatory responses to submaximal exercise in equally trained men and women. Int. J. Sports Med. 1983, 4, 255–259. [Google Scholar] [CrossRef]
- Dominelli, B.P.; Molgat-Seon, Y. Sex, gender and the pulmonary physiology of exercise. Eur. Respir. Rev. 2022, 31, 210074. [Google Scholar] [CrossRef]
- Thibault, V.; Guillaume, M.; Berthelot, G.; Helou, N.E.; Schaal, K.; Quinquis, L.; Nassif, H.; Tafflet, M.; Escolano, S.; Hermine, O.; et al. Women and men in sport performance: The gender gap has not evolved since 1983. J. Sports Sci. Med. 2010, 9, 214. [Google Scholar]
- Hunter, K.S.; Stevens, A.A. Sex Differences in Marathon Running with Advanced Age. Med. Sci. Sports Exerc. 2013, 45, 148–156. [Google Scholar] [CrossRef]
- Navalta, W.J.; Montes, J.; Tanner, A.E.; Bodell, N.; Young, C.J. Sex and Age Differences in Trail Half Marathon Running. Int. J. Exerc. Sci. 2018, 11, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Garver, M.J.; Navalta, J.W.; Heijnen, M.J.H.; Davis, D.W.; Reece, J.D.; Stone, W.J.; Siegel, S.R.; Lyons, T.S. IJES Self-Study on Participants’ Sex in Exercise Science: Sex-Data Gap and Corresponding Author Survey. Int. J. Exerc. Sci. 2023, 16, 364–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costello, J.T.; Bieuzen, F.; Bleakley, C.M. Where are all the female participants in Sports and Exercise Medicine research? Eur. J. Sport Sci. 2014, 14, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Cowley, E.S.; Olenick, A.A.; McNulty, K.L.; Ross, E.Z. “Invisible Sportswomen”: The Sex Data Gap in Sport and Exercise Science Research. Women Sport Phys. Act. J. 2021, 29, 146–151. [Google Scholar] [CrossRef]
- Navalta, J.W.; Davis, D.W.; Stone, W.J. Implications for cisgender female underrepresentation, small sample sizes, and misgendering in sport and exercise science research. PLoS ONE 2023, 18, e0291526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, D.W.; Garver, M.J.; Thomas, J.D.; Navalta, J.W.; Siegel, S.R.; Reece, J.D.; Maples, J.M. How an IJES Working Group Grappled with the Complexities of Three Letters-DEI-With the Goal to Broaden Inclusion and Representation in Exercise Science Research. Int. J. Exerc. Sci. 2024, 17, 852–860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boudreaux, B.D.; Hebert, E.P.; Hollander, D.B.; Williams, B.M.; Cormier, C.L.; Naquin, M.R.; Gillan, W.W.; Gusew, E.E.; Kraemer, R.R. Validity of wearable activity monitors during cycling and resistance exercise. Med. Sci. Sports Exerc. 2018, 50, 624–633. [Google Scholar] [CrossRef]
- All of Us Research Program Investigators. The “All of Us” research program. N. Engl. J. Med. 2019, 381, 668–676. [Google Scholar] [CrossRef]
Female Condition | Male Condition | p-Value | Cohen’s d | Pearson’s r | R2 | |
---|---|---|---|---|---|---|
VO2 (mL·kg−1·min−1) | 11.13 ± 2.73 (9.8, 12.4) | 10.81 ± 2.39 (9.7, 11.9) | 0.08 | 0.408 | 0.962 | 0.9254 |
VO2 (L·min−1) | 0.76 ± 0.20 (0.66, 0.85) | 0.73 ± 0.18 (0.65, 0.82) | 0.05 | 0.479 | 0.975 | 0.9506 |
VCO2 (L·min−1) | 0.62 ± 0.17 (0.54, 0.7) | 0.60 ± 0.16 (0.53, 0.68) | 0.07 | 0.436 | 0.969 | 0.9390 |
VE (L·min−1) | 20.36 ± 5.35 (17.9, 22.9) | 19.28 ± 4.62 (17.1, 21.4) | 0.89 | 0.032 (r) | 0.908 | 0.8245 |
RER | 0.82 ± 0.08 (0.79, 0.86) | 0.82 ± 0.07 (0.79, 0.85) | 0.74 | 0.074 | 0.603 | 0.3636 |
RR (bpm) | 20.07 ± 5.58 (17.8, 22.4) | 19.74 ± 5.58 (17.1, 22.3) | 0.70 | 0.088 | 0.750 | 0.5625 |
EE (kcal) | 18.28 ± 4.74 (16.1, 20.5) | 17.86 ± 4.33 (15.8, 19.9) | 0.12 | 0.361 | 0.970 | 0.9409 |
Female Condition | Male Condition | p-Value | Cohen’s d | Pearson’s r | R2 | |
---|---|---|---|---|---|---|
VO2 (mL·kg−1·min−1) | 28.80 ± 5.89 (26.0, 31.6) | 28.82 ± 6.06 (26.0, 31.7) | 0.90 | 0.03 | 0.990 | 0.980 |
VO2 (L·min−1) | 1.96 ± 0.52 (1.72, 2.2) | 1.96 ± 0.49 (1.73, 2.19) | 0.84 | 0.05 (r) | 0.993 | 0.986 |
VCO2 (L·min−1) | 1.82 ± 0.58 (1.55, 2.09) | 1.84 ± 0.56 (1.57, 2.1) | 0.56 | 0.13 (r) | 0.984 | 0.968 |
VE (L·min−1) | 52.10 ± 19.40 (43.0, 61.2) | 53.26 ± 15.94 (45.8, 60.7) | 0.05 | 0.44 (r) | 0.970 | 0.941 |
RER | 0.92 ± 0.08 (0.88, 0.96) | 0.93 ± 0.08 (0.89, 0.97) | 0.51 | 0.15 (r) | 0.782 | 0.612 |
RR (bpm) | 31.54 ± 9.56 (27.1, 36.0) | 32.22 ± 8.46 (28.3, 36.2) | 0.53 | 0.14 | 0.870 | 0.757 |
EE (kcal) | 45.79 ± 13.08 (39.7, 51.9) | 45.55 ± 12.26 (39.8, 51.3) | 0.99 | 0.004 (r) | 0.990 | 0.980 |
Sex Aligned | Sex Not Aligned | p-Value | Cohen’s d | Pearson’s r | R2 | |
---|---|---|---|---|---|---|
VO2 (mL·kg−1·min−1) | 11.09 ± 2.60 (9.9, 12.3) | 10.85 ± 2.53 (9.7, 12.0) | 0.20 | 0.30 | 0.951 | 0.904 |
VO2 (L·min−1) | 0.75 ± 0.18 (0.67, 0.83) | 0.74 ± 0.20 (0.65, 083) | 0.34 | 0.22 | 0.973 | 0.947 |
VCO2 (L·min−1) | 0.61 ± 0.16 (0.54, 0.68) | 0.62 ± 0.18 (0.53, 0.70) | 0.67 | 0.10 | 0.968 | 0.937 |
VE (L·min−1) | 19.53 ± 4.25 (17.5, 21.5) | 20.11 ± 5.69 (17.4, 22.8) | 0.31 | 0.24 | 0.920 | 0.846 |
RER | 0.81 ± 0.07 (0.78, 0.84) | 0.83 ± 0.08 (0.80, 0.87) | 0.12 | 0.36 | 0.642 | 0.412 |
RR (bpm) | 19.56 ± 4.38 (17.8, 21.9) | 19.95 ± 6.02 (17.1, 22.8) | 0.91 | 0.02 | 0.780 | 0.608 |
EE (kcal) | 18.13 ± 4.17 (16.2, 20.1) | 18.01 ± 4.88 (15.7, 20.3) | 0.69 | 0.09 | 0.974 | 0.949 |
Sex Aligned | Sex Not Aligned | p-Value | Cohen’s d | Pearson’s r | R2 | |
---|---|---|---|---|---|---|
VO2 (mL·kg−1·min−1) | 28.75 ± 5.83 (26.0, 31.5) | 28.87 ± 6.11 (26.0, 31.7) | 0.55 | 0.14 | 0.991 | 0.982 |
VO2 (L·min−1) | 1.95 ± 0.49 (1.73, 2.18) | 1.97 ± 0.52 (1.72, 2.21) | 0.73 | 0.08 (r) | 0.995 | 0.990 |
VCO2 (L·min−1) | 1.84 ± 0.56 (1.58, 2.1) | 1.82 ± 0.58 (1.54, 2.09) | 0.54 | 0.14 (r) | 0.984 | 0.968 |
VE (L·min−1) | 52.15 ± 16.41 (44.5, 59.8) | 53.22 ± 19.01 (44.3, 62.1) | 1.00 | 0.00 (r) | 0.961 | 0.924 |
RER | 0.93 ± 0.08 (0.90, 0.97) | 0.92 ± 0.08 (0.88, 0.96) | 0.18 | 0.30 (r) | 0.793 | 0.629 |
RR (bpm) | 31.09 ± 8.87 (26.9, 35.2) | 32.67 ± 9.13 (28.4, 36.9) | 0.13 | 0.31 | 0.877 | 0.769 |
EE (kcal) | 45.48 ± 10.85 (39.8, 51.2) | 45.86 ± 12.13 (39.7, 52.0) | 0.63 | 0.11 (r) | 0.991 | 0.982 |
Walking—Sex Aligned | Running—Sex Aligned | |||
---|---|---|---|---|
Female (n = 10) | Male (n = 10) | Female (n = 10) | Male (n = 10) | |
VO2 (mL·kg−1·min−1) | 11.00 ± 3.41 | 11.17 ± 1.63 | 26.61 ± 5.63 | 30.89 ± 5.47 |
VO2 (L·min−1) | 0.68 ± 0.16 | 0.83 ± 0.16 | 1.64 ± 0.27 | 2.27 ± 0.46 |
VCO2 (L·min−1) | 0.54 ± 0.14 | 0.68 ± 0.15 | 1.47 ± 0.24 | 2.20 ± 0.55 |
VE (L·min−1) | 17.94 ± 6.32 | 21.12 ± 4.41 | 41.90 ± 7.12 | 62.40 ± 16.85 |
RER | 0.80 ± 0.08 | 0.82 ± 0.07 | 0.90 ± 0.05 | 0.97 ± 0.08 |
RR (bpm) | 20.74 ± 4.83 | 18.98 ± 3.95 | 30.01 ± 10.29 | 32.18 ± 7.58 |
EE (kcal) | 16.12 ± 3.82 | 20.24 ± 3.49 | 37.57 ± 6.48 | 53.39 ± 11.50 |
Walking—Sex Not Aligned | Running—Sex Not Aligned | |||
Female (n = 10) | Male (n = 10) | Female (n = 10) | Male (n = 10) | |
VO2 (mL·kg−1·min−1) | 10.45 ± 3.02 | 11.25 ± 2.01 | 26.57 ± 6.17 | 30.98 ± 5.56 |
VO2 (L·min−1) | 0.64 ± 0.15 | 0.84 ± 0.2 | 1.65 ± 0.31 | 2.28 ± 0.51 |
VCO2 (L·min−1) | 0.53 ± 0.15 | 0.70 ± 0.17 | 1.47 ± 0.27 | 2.16 ± 0.62 |
VE (L·min−1) | 17.45 ± 4.26 | 22.77 ± 5.86 | 44.13 ± 8.19 | 62.31 ± 22.64 |
RER | 0.82 ± 0.08 | 0.85 ± 0.07 | 0.89 ± 0.04 | 0.94 ± 0.1 |
RR (bpm) | 20.50 ± 6.98 | 19.40 ± 5.20 | 32.26 ± 9.68 | 33.07 ± 9.05 |
EE (kcal) | 15.48 ± 3.84 | 20.55 ± 4.62 | 37.70 ± 6.95 | 54.01 ± 12.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez, O.R.; Wong, M.W.H.; Davis, D.W.; Navalta, J.W. Binary Sex Input Has No Effect on Metabolic or Pulmonary Variables: A Within-Subjects Observational Study. Sports 2025, 13, 241. https://doi.org/10.3390/sports13080241
Perez OR, Wong MWH, Davis DW, Navalta JW. Binary Sex Input Has No Effect on Metabolic or Pulmonary Variables: A Within-Subjects Observational Study. Sports. 2025; 13(8):241. https://doi.org/10.3390/sports13080241
Chicago/Turabian StylePerez, Olivia R., Michael W. H. Wong, Dustin W. Davis, and James W. Navalta. 2025. "Binary Sex Input Has No Effect on Metabolic or Pulmonary Variables: A Within-Subjects Observational Study" Sports 13, no. 8: 241. https://doi.org/10.3390/sports13080241
APA StylePerez, O. R., Wong, M. W. H., Davis, D. W., & Navalta, J. W. (2025). Binary Sex Input Has No Effect on Metabolic or Pulmonary Variables: A Within-Subjects Observational Study. Sports, 13(8), 241. https://doi.org/10.3390/sports13080241