Relating Anthropometric Profile to Countermovement Jump Performance and External Match Load in Mexican National Team Soccer Players: An Exploratory Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Assessments
2.4.1. Anthropometric Measurements
2.4.2. Body Composition
2.4.3. Countermovement Jump
2.4.4. Locomotor and Neuromuscular Data
2.5. Study Size
2.6. Statistical Methods
3. Results
3.1. Anthropometric Profile
3.2. Anthropometric Profile and CMJ Performance
3.3. Anthropometric Profile and Players’ Locomotor and Neuromuscular Data
4. Discussion
4.1. Characteristics of the Anthropometric Profile
4.2. Associations Between Anthropometric Profile and Neuromuscular Performance
4.3. Associations Between the Anthropometric Profile and Locomotor Performance
4.4. Relevance of the Mathematical Model and Comparison with Other Approaches
4.5. Strengths and Limitations
4.6. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ISAK | International Society for the Advancement of Kinanthropometry |
CMJ | Countermovement Jump |
GPS | Global Positioning System |
DXA | Dual-Energy X-ray Absorptiometry |
GLM | Generalized Linear Model |
%BF | Percent Body Fat |
MM | Muscle Mass |
HSR | High-Speed Running |
HMLD | High Metabolic Load Distance |
TD | Total Distance |
References
- Rodríguez-Rodríguez, F.; López-Fuenzalida, A.; Holway, F.; Jorquera-Aguilera, C. Diferencias antropométricas por posición de juego en futbolistas profesionales chilenos [Anthropometric differences per playing position in Chilean professional footballers]. Nutr. Hosp. 2019, 36, 846–853. [Google Scholar] [PubMed]
- Junior, E.V.S.; Cavalcanti, I.F.; Santos, C.F.; Prazeres, T.M.P.; Gomes, W.S.; de Sousa Fernandes, M.S.; da Silva, J.F.; Gonçalves, J.G.; Santos, M.A.M.D.; Henrique, R.D.A. Anthropometry and Body Composition of Elite Brazilian Soccer Players according to the Playing Position. Health Sci. J. 2021, 15, 819. [Google Scholar]
- Holway, F.; Campa, F.; Petri, C.; Pincella, M.; Ortega-Gallo, P.; Forchino, F.; Kirkendall, D. Kinanthropometry and Anatomical Body Composition of Elite Soccer Players in Argentina: The FUTREF Project. Int. J. Kinanthrop. 2024, 4, 62–71. [Google Scholar] [CrossRef]
- Gutiérrez, C.R.; Monroy, S.E. Anthropometric and physiological characteristics in elite soccer players. Arch. Med. Deporte 2005, 22, 33–37. [Google Scholar]
- Toselli, S.; Grigoletto, A.; Mauro, M. Anthropometric, body composition and physical performance of elite young Italian football players and differences between selected and unselected talents. Heliyon 2024, 10, e35992. [Google Scholar] [CrossRef]
- Radzimiński, Ł.; Szwarc, A.; Padrón-Cabo, A.; Jastrzębski, Z. Correlations between body composition, aerobic capacity, speed and distance covered among professional soccer players during official matches. J. Sports Med. Phys. Fit. 2020, 60, 257–262. [Google Scholar] [CrossRef]
- Petri, C.; Campa, F.; Holway, F.; Pengue, L.; Arrones, L.S. ISAK-Based Anthropometric Standards for Elite Male and Female Soccer Players. Sports 2024, 12, 69. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Trecroci, A.; Cavaggioni, L.; Rossi, A.; Perri, E.; Pasta, G.; Iaia, F.M.; Alberti, G. Importance of anthropometric features to predict physical performance in elite youth soccer: A machine learning approach. Res. Sports Med. 2021, 29, 213–224. [Google Scholar] [CrossRef]
- Bustamante-Garrido, A.; Aedo-Muñoz, E.; Brito, C.; Silva-Esparza, D.; Pérez-Contreras, J.; Izquierdo-Redin, M.; Cerda-Kohler, H. Anthropometric and mechanical factors determining sprint in young soccer players: A brief report. Front. Sports Act. Living 2024, 6, 1480973. [Google Scholar] [CrossRef]
- Pérez-López, A.; Sinovas, M.C.; Álvarez-Valverde, I.; Valades, D. Relationship between body composition and vertical jump performance in young Spanish soccer players. J. Sport Hum. Perf. 2015, 3, 1–12. [Google Scholar]
- Toro-Román, V.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M.; Clemente-Gil, S.; Robles-Gil, M.C. Anthropometry, Body Composition, and Physical Fitness in Semi-Professional Soccer Players: Differences between Sexes and Playing Position. Appl. Sci. 2023, 13, 1249. [Google Scholar] [CrossRef]
- Ishida, A.; Travis, S.K.; Stone, M.H. Associations of Body Composition, Maximum Strength, Power Characteristics with Sprinting, Jumping, and Intermittent Endurance Performance in Male Intercollegiate Soccer Players. J. Funct. Morphol. Kinesiol. 2021, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Munera, M.; Arcusa, R.; López-Román, F.J.; Ávila-Gandía, V.; Pérez-Piñero, S.; Muñoz-Carrillo, J.C.; Luque-Rubia, A.J.; Marhuenda, J. Relationship Between Anthropometric Profile, Body Composition, and Physical Performance in Spanish Professional Female Soccer Players at Pre-Season Onset: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2025, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- McEwan, G.P.; Drobnic, F.; Lizarraga, A.; Gómez-Díaz, A.; Pons, E.; Dello Iacon, A.; Unnithan, V. Changes in markers of body composition of professional male soccer players during pre-season. Sports Med. Health Sci. 2020, 2, 166–171. [Google Scholar] [CrossRef]
- Austin, A.B.; Collins, S.M.; Huggins, R.A.; Smith, B.A.; Bowman, T.G. The Impact of Environmental Conditions on Player Loads During Preseason Training Sessions in Women’s Soccer Athletes. J. Strength Cond. Res. 2021, 35, 2775–2782. [Google Scholar] [CrossRef]
- Díez, A.; Lozano, D.; Arjol-Serrano, J.L.; Mainer-Pardos, E.; Castillo, D.; Torrontegui-Duarte, M.; Nobari, H.; Jaén-Carrillo, D.; Lampre, M. Influence of contextual factors on physical demands and technical-tactical actions regarding playing position in professional soccer players. BMC Sports Sci. Med. Rehabil. 2021, 13, 157. [Google Scholar] [CrossRef]
- Carlos-Vivas, J.; Franco-García, J.M.; Mendoza-Muñoz, D.M.; Gómez-Pomares, S.; Pérez-Gómez, J. High-Intensity GPS-Derived Parameters in Semi-Professional Soccer: Home vs. Away Roles of the Team and Their Relationship with the Match’s Final Score. Sensors 2024, 24, 4891. [Google Scholar] [CrossRef]
- Michailidis, Y.; Vardakis, L.; Mikikis, D.; Mandroukas, A.; Metaxas, A. Match Running Performance of Elite Soccer Players and Correlations with Anthropometric and Power Indexes. J. Sports Res. 2019, 6, 44–51. [Google Scholar] [CrossRef]
- Ju, W.; Cost, R.; Oliva-Lozano, J.M. Analysis of match performance of elite soccer players across confederations during the Men’s and Women’s World Cup. Sci. Med. Footb. 2024, 1–13. [Google Scholar] [CrossRef]
- Bernal-Orozco, M.F.; Posada-Falomir, M.; Quiñónez-Gastélum, C.M.; Plascencia-Aguilera, L.P.; Arana-Nuño, J.R.; Badillo-Camacho, N.; Márquez-Sandoval, F.; Holway, F.E.; Vizmanos-Lamotte, B. Anthropometric and Body Composition Profile of Young Professional Soccer Players. J. Strength Cond. Res. 2020, 34, 1911–1923. [Google Scholar] [CrossRef]
- Osorio-Gutiérrez, A.; Zúñiga-Galaviz, U.; Gómez-Llanes, A.; Ortiz-Real, J.J.; Toledo-Domínguez, I.J.; Favela-Ramirez, C.A.; Coelho-e-Silva, M.J. Scaling corrected lower limb girths in professional male soccer players from different divisions. JHSE 2025, 20, 620–632. [Google Scholar] [CrossRef]
- Elm, E.V.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2008, 335, 806–808. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; STROBE Initiative. Strengthening the reporting of observational studies in epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef]
- Dolins, K.R. Nutrition assessment. In Sports Nutrition: A Handbook for Professionals, 6th ed.; Kapinski, C., Rosenbloom, C.A., Eds.; Academy of Nutrition and Dietetics: Chicago, IL, USA, 2017; pp. 156–158. [Google Scholar]
- Winter, E.M.; Maughan, R.J. Requirements for ethics approvals. J. Sports Sci. 2009, 27, 985. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human participants. JAMA 2025, 333, 71–74. [Google Scholar] [CrossRef]
- Esparza Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry (ISAK): Murcia, Spain, 2019; 114p. [Google Scholar]
- Yuhasz, M.S. The Effects of Sports Training on Body Fat Man with Predictions of Optimal Body Weight. Ph.D. Dissertation, University of Illinois Urbana-Champaign, Champaign, IL, USA, 1962. [Google Scholar]
- Sloan, A.W. Estimation of body fat in young men. J. Appl. Physiol. 1962, 23, 311–315. [Google Scholar] [CrossRef]
- Wilmore, J.H.; Behnke, A.R. An anthropometric estimation of body density and lean body weight in young men. J. Appl. Physiol. 1969, 27, 25–31. [Google Scholar] [CrossRef]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Practical assessment of body composition. Phys. Sportsmed. 1985, 13, 76–90. [Google Scholar] [CrossRef]
- Ross, W.D.; Kerr, D.A. Fraccionamiento de La Masa Corporal: Un Nuevo Método Para Utilizar en Nutrición Clínica y Medicina Deportiva. Apunts 1991, 18, 175–187. [Google Scholar]
- Martin, A.D.; Spenst, L.F.; Drinkwater, D.T.; Clarys, J.P. Anthropometric estimation of muscle mass in men. Med. Sci. Sports Exerc. 1990, 22, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, D.; Ross, W.D. Anthropometric fractionation of body mass. In Kinanthropometry II; Ostyn, G., Beunen, G., Simons, J., Eds.; University Park Press: Baltimore, MD, USA, 1984; pp. 177–178. [Google Scholar]
- Collings, T.J.; Lima, Y.L.; Dutaillis, B.; Bourne, M.N. Concurrent validity and test-retest reliability of VALD ForceDecks’ strength, balance, and movement assessment tests. J. Sci. Med. Sport 2024, 27, 572–580. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Ripley, N.J.; Comfort, P. Force plate-derived countermovement jump normative data and benchmarks for professional rugby league players. Sensors 2022, 22, 8669. [Google Scholar] [CrossRef]
- Bastida Castillo, A.; Gómez Carmona, C.D.; De la Cruz Sánchez, E.; Pino Ortega, J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. Eur. J. Sport Sci. 2018, 18, 450–457. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using GPS devices in sport. Int. J. Sports Physiol. Perform. 2017, 12 (Suppl. S2), S218–S226. [Google Scholar] [CrossRef]
- Rico-González, M.; Los Arcos, A.; Clemente, F.M.; Rojas-Valverde, D.; Pino-Ortega, J. Accuracy and reliability of local positioning systems for measuring sport movement patterns in stadium-scale: A systematic review. Appl. Sci. 2020, 10, 5994. [Google Scholar] [CrossRef]
- Pituch, K.A.; Stevens, J.P. Applied Multivariate Statistics for the Social Sciences: Analyses with SAS and IBM’s SPSS, 6th ed.; Routledge: Abingdon-on-Thames, UK, 2015. [Google Scholar]
- Leko, B.J.; Adefisan, I.E.; Aboyewa, K.O. Anthropometric Characteristics and Somatotype Differences among Nigerian Soccer Players, in Relation to Playing Level and Playing Position. Int. J. Kinanthrop. 2024, 4, 32–43. [Google Scholar] [CrossRef]
- Alvarado Domínguez, N.; Gutiérrez-Cruz, M. Anthropometric Characteristics, Body Composition, and Somatotype by Position in Professional Ecuadoran Soccer Players. Cienc. Deporte 2023, 8, e4310. [Google Scholar]
- Wood, R. Anthropometry of the Players at the 2018 World Cup. Topend Sports Webside. Available online: https://www.topendsports.com/sport/soccer/anthropometry-worldcup2018.htm (accessed on 6 April 2025).
- Zaric, I.; Kukic, F.; Jovicevic, N.; Zaric, M.; Markovic, M.; Toskic, L.; Dopsaj, M. Body Height of Elite Basketball Players: Do Taller Basketball Teams Rank Better at the FIBA World Cup? Int. J. Environ. Res. Public Health 2020, 17, 3141. [Google Scholar] [CrossRef]
- López-Taylor, J.R.; González-Mendoza, R.G.; Gaytán-González, A.; Jiménez-Alvarado, J.A.; Villegas-Balcázar, M.; Jáuregui-Ulloa, E.E.; Torres-Naranjo, F. Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. J. Sports Med. 2018, 7, 6843792. [Google Scholar] [CrossRef]
- Kammerer-López, M.; Ceballos-Feria, N.C.; Mayor-Rengifo, M.C.; Hoyos-García, H.H.; Gómez-Velásquez, S. Evaluación de la exactitud de distintas fórmulas de predicción de la composición corporal, comparadas con la absorciometría de energía dual de rayos X, en futbolistas de equipos profesionales colombianos. Nutr. Hosp. 2021, 38, 298–305. [Google Scholar]
- Martinez-Ferran, M.; Rafei, E.; Romero-Morales, C.; Pérez-Ruiz, M.; Lam-Meléndez, A.; Munguia-Izquierdo, D.; Pareja-Galeano, H. Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players. Appl. Sci. 2022, 12, 727. [Google Scholar] [CrossRef]
- Enes, A.; Oneda, G.; Alves, D.L.; Palumbo, D.P.; Cruz, R.; Moiano-Junior, J.V.M.; Novack, L.F.; Osiecki, R. Determinant Factors of the Match-Based Internal Load in Elite Soccer Players. Res. Q. Exerc. Sport 2021, 92, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Daly, L.S.; Catháin, C.Ó.; Kelly, D.T. Do players with superior physiological attributes outwork their less-conditioned counterparts? A study in Gaelic football. Biol. Sport 2024, 41, 163–174. [Google Scholar] [CrossRef]
- Fields, J.B.; Lameira, D.M.; Short, J.L.; Merrigan, J.M.; Gallo, S.; White, J.B.; Jones, M.T. Relationship Between External Load and Self-Reported Wellness Measures Across a Men’s Collegiate Soccer Preseason. J. Strength Cond. Res. 2021, 35, 1182–1186. [Google Scholar] [CrossRef]
- Varley, I.; Ward, M.; Thorpe, C.; Beardsley, N.; Greeves, J.; Sale, C.; Saward, C. External training load is associated with adaptation in bone and body composition over the course of a season in elite male footballers. Bone Rep. 2022, 18, 101643. [Google Scholar] [CrossRef]
- Şahin, I.H.; Sanioğlu, A. The examination of the relationship between body composition and acceleration. Turk. J. Kinesiol. 2021, 9, 106–114. [Google Scholar] [CrossRef]
- Kapteijns, J.A.; Caen, K.; Lievens, M.; Bourgois, J.G.; Boone, J. Positional Match Running Performance and Performance Profiles of Elite Female Field Hockey. Int. J. Sports Physiol. Perform. 2021, 16, 1295–1302. [Google Scholar] [CrossRef]
Variables | Goalkeepers (n = 4) | Lateral (Outside) Defenders (n = 5) | Central Defenders (n = 6) | Offensive Midfielders (n = 7) | Defensive Midfielders (n = 6) | Forwards (n = 8) | Overall Sample (n = 36) |
---|---|---|---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | |
Age (y) | 26.6 (24.2–31.0) | 27.3 (27.2–27.9) | 25.7 (23.6–27.2) | 26.5 (24.8–27.7) | 27.0 (24.2–29.4) | 29.1 (24.2–32.8) | 27.3 (24.2–28.4) |
Basics | |||||||
Body Mass (kg) | 83.9 * (83.5–84.9) | 75.0 (72.7–76.3) | 82.8 † (79.2–83.9) | 69.7 *† (63.8–70.9) | 74.0 (72.4–78.0) | 79.5 (76.5–81.7) | 77.9 (71.3–82.9) |
Stretch stature (cm) | 186.2 * (182.6–189.7) | 177.5 (176.5–177.9) | 185.7 † (183.0–189.0) | 174 *† (169.5–175.1) | 181.7 (177.8–184) | 179.1 (176.0–184.9) | 179.4 (175.4–184) |
Skinfolds (mm) | |||||||
Triceps | 7.1 (5.9–8.8) | 6.0 (4.0–9.0) | 6.0 (5.0–7.0) | 5.0 (4.0–5.2) | 6.5 (5.8–7.0) | 5.5 (4.8–6.3) | 5.6 (5.0–7.0) |
Subscapular | 7.1 (6.8–8.9) | 8.0 (7.0–9.0) | 7.5 (6.3–8.0) | 7.2 (6.2–8.0) | 8.5 (7.5–9.3) | 8.0 (7.0–9.0) | 8.0 (6.8–8.3) |
Biceps | 4.0 (3.8–4.0) | 3.0 (3.0–4.0) | 3.5 (3.0–4.0) | 3.0 (3.0–3.0) | 4.0 (3.8–4.3) | 3.0 (3.0–3.0) | 3.0 (3.0–4.0) |
Iliac crest | 15.0 (10.3–19.3) | 8.0 (7.0–9.0) | 9.5 (6.8–10.8) | 8.0 (7.0–11.0) | 10.0 (8.8–11.0) | 9.0 (6.8–11.5) | 9.0 (7.0–11.0) |
Supraspinal | 7.0 (6.6–8.0) | 5.0 (4.0–6.0) | 4.0 (3.3–5.5) | 5.0 (4.0–6.0) | 5.0 (4.0–5.3) | 5.0 (4.8–5.2) | 5.0 (4.0–6.0) |
Abdominal | 15.0 (11.1–18.3) | 8.0 (5.8–11.0) | 7.5 (6.3–8.8) | 8.0 (7.0–10.2) | 10.0 (9.5–11.3) | 9.0 (8.0–11.0) | 8.7 (7.0–11.0) |
Thigh | 6.2 (5.8–7.1) | 6.0 (4.4–6.0) | 6.0 (5.3–6.8) | 5.0 (4.0–6.0) | 5.5 (4.8–6.3) | 5.0 (4.8–5.3) | 6.0 (5.0–6.3) |
Calf | 4.0 (3.8–4.2) | 3.2 (3.0–6.0) | 5.0 (3.5–5.0) | 3.2 (3.0–4.0) | 6.3 (5.5–6.3) | 8.5 (7.1–11.0) | 4.0 (3.0–5.0) |
Chest | 8.7 (6.3–11.5) | 5.0 (5.0–6.8) | 5.0 (5.0–5.8) | 6.0 (4.0–8.0) | 5.5 (4.8–6.3) | 6.0 (5.8–7.0) | 6.0 (5.0–7.0) |
Girths (cm) | |||||||
Arm (relaxed) | 33.3 (32.1–34.3) | 32.0 (31.5–32.5) | 32.8 (32.1–33.8) | 31.0 (30.5–32.0) | 27.0 (26.9–27.5) | 32.5 (32.0–33.1) | 32.0 (31.0–33.0) |
Forearm | 28.8 * (28.4–29.0) | 28.0 (27.5–28.2) | 28.0 (27.6–28.4) | 26.5 * (26.0–27.0) | 27.0 (26.9–27.5) | 27.8 (26.9–28.1) | 27.5 (27.0–28.3) |
Chest | 104.0 (101.3–106.3) | 100.0 (100.0–100.0) | 102.8 (101.5–104.8) | 98.0 (95.0–100.5) | 95.3 (94.4–98.1) | 103.5 (101.5–104.0) | 100.8 (98.0–104.0) |
Thigh (middle) | 55.0 (54.9–55.4) | 54.2 (53.5–55.5) | 56.8 (54.9–58.6) | 53.5 (52.5–54.0) | 55.5 (54.3–56.4) | 55.8 (55.2–58.3) | 55.0 (53.9–56.1) |
Calf | 36.7 (36.4–37.2) | 34.5 (34.5–37.0) | 37.9 † (37.1–39.2) | 35.2 †‡ (34.5–36.0) | 36.0 (35.4–37.0) | 39.0 ‡ (37.8–39.0) | 37.0 (35.5–38.3) |
Indexes | |||||||
BMI (kg/m2) | 24.4 (23.9–24.9) | 24.1 (23.1–24.2) | 23.3 (23.3–24.0) | 22.4 (22.2–23.0) | 23.5 (22.7–24.3) | 23.9 (23.9–24.8) | 23.8 (23.0–24.6) |
HWR | 42.6 (42.0–43.2) | 42 (41.8–42.6) | 43.2 (42.4–43.4) | 42.4 (42.3–42.9) | 42.2 (41.7–43.1) | 42.4 (41.6–42.7) | 42.4 (41.8–43.0) |
Sum of skinfolds (mm) | |||||||
Σ 6 skinfolds § | 48.0 (38.8–57.8) | 37 (29.6–44.0) | 36.5 (31.3–41.0) | 37 (28.4–40.0) | 40 (37.3–42.8) | 37 (33.3–44.2) | 38.5 (30.8–43.4) |
Σ 8 skinfolds # | 67.5 (52.8–81.5) | 48.0 (39.6–57.0) | 50.0 (41.3–55.0) | 48.0 (38.0–54.2) | 53.5 (50.8–56.5) | 49 (43.0–59.7) | 50.5 (39.9–59.1) |
Body fat lipid tissue mass (%) | |||||||
Durnin and Womersley, 1974 | 15.4 (12.3–18.7) | 10.4 (9.9–14.6) | 12.1 (10.1–13.5) | 11.0 (9.1–12.4) | 13.4 (12.1–14.4) | 11.5 (9.5–14.4) | 12.3 (9.8–14.2) |
Sloan, Burt, and Blyth, 1962 | 6.9 (6.3–7.8) | 6.4 (5.7–7.2) | 6.5 (5.8–6.7) | 6.2 (5.1–6.7) | 6.7 (6.3–7.0) | 6.5 (5.9–7.9) | 6.5 (5.5–7.2) |
Wilmore and Behnke, 1969 | 12.7 (11.1–14.1) | 10.1 (9.0–11.2) | 10.1 (9.3–10.6) | 10.1 (9.3–10.9) | 10.7 (10.4–11.3) | 10.3 (9.6–11.4) | 10.5 (9.5–11.3) |
Jackson and Pollock, 1980 | 8.4 (6.1–11.2) | 5.3 (4.2–6.6) | 5.5 (4.2–6.2) | 6.3 (3.9–6.3) | 6.3 (5.4–7.0) | 5.4 (5.3–7.1) | 5.9 (4.6–6.7) |
Yuhasz, 1961 | 10.9 (9.5–12.3) | 9.2 (8.5–10.0) | 9.4 (8.6–9.9) | 9.1 (8.3–9.8) | 9.8 (9.5–10.0) | 9.4 (8.8–10.4) | 9.6 (8.5–10.3) |
Adipose tissue mass (%) | |||||||
Ross and Kerr, 1991 | 20.5 (19.3–22.0) | 17.9 (16.9–19.1) | 18.2 (17.0–19.7) | 18.4 (17.1–20.0) | 19.4 (19.0–19.5) | 18.0 (16.3–20.0) | 18.8 (17.0–20.0) |
Corrected girths (cm) | |||||||
Arm C.G | 31.2 (30.1–31.8) | 30.0 (29.7–30.2) | 31.4 (30.5–31.8) | 29.4 (28.6–30.7) | 29.4 (28.8–30.2) | 30.4 (29.8–32.0) | 30.2 (29.5–31.3) |
Chest C.G | 100.7 (99.1–102.5) | 97.8 (97.2–98.1) | 100.6 (99.2–102.5) | 95.7 (93.1–98.3) | 92.8 (92.0–95.5) | 101.2 (98.3–101.6) | 98.4 (95.7–101.4) |
Thigh C.G | 53.3 (52.9–53.5) | 52.9 (52.1–53.6) | 54.9 (53.0–56.7) | 51.6 (49.8–52.7) | 53.8 (52.4–54.7) | 54.1 (53.7–55.5) | 53.5 (52.3–54.2) |
Calf C.G | 35.3 (35.2–35.9) | 33.5 (33.1–36.1) | 36.6 † (35.5–38.1) | 33.9 †‡ (33.7–34.6) | 35.7 (35.6–36.2) | 37.7 ‡ (36.4–37.8) | 35.4 (34.3–37.2) |
Σ4 C.G | 221.3 (217.8–224.0) | 216.3 (214.5–217.4) | 223.2 † (220.5–225.6) | 209.5 †‡ (207.2–214.7) | 211.4 (209.8–215.4) | 222.2 ‡ (219.4–227.3) | 217.8 (212.0–222.6) |
Muscle mass (kg) | |||||||
Martin, et al., 1990 | 49.4 (49.2–49.8) | 45.0 (43.6–47.5) | 52.4 † (49.4–53.4) | 42.6 †‡ (39.1–43.4) | 45.5 (44.8–47.7) | 49.4 ‡ (46.7–51.7) | 47.5 (43.6–50.0) |
Lee, et al., 2000 | 37.6 (36.8–37.9) | 34.2 (34.0–35.0) | 39.2 † (37.1–39.8) | 32.6 †‡ (32.4–34.7) | 34.7 (34.2–36.0) | 38.2 ‡ (36.5–38.7) | 35.1 (34.0–38.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rios-Limas, I.; Herrera-Amante, C.A.; Carvajal-Veitía, W.; Yáñez-Sepúlveda, R.; Ayala-Guzmán, C.I.; Ortiz-Hernández, L.; López-Sagarra, A.; Lorente-Solá, P.; López-Gil, J.F. Relating Anthropometric Profile to Countermovement Jump Performance and External Match Load in Mexican National Team Soccer Players: An Exploratory Study. Sports 2025, 13, 236. https://doi.org/10.3390/sports13070236
Rios-Limas I, Herrera-Amante CA, Carvajal-Veitía W, Yáñez-Sepúlveda R, Ayala-Guzmán CI, Ortiz-Hernández L, López-Sagarra A, Lorente-Solá P, López-Gil JF. Relating Anthropometric Profile to Countermovement Jump Performance and External Match Load in Mexican National Team Soccer Players: An Exploratory Study. Sports. 2025; 13(7):236. https://doi.org/10.3390/sports13070236
Chicago/Turabian StyleRios-Limas, Israel, Carlos Abraham Herrera-Amante, Wiliam Carvajal-Veitía, Rodrigo Yáñez-Sepúlveda, César Iván Ayala-Guzmán, Luis Ortiz-Hernández, Andrés López-Sagarra, Pol Lorente-Solá, and José Francisco López-Gil. 2025. "Relating Anthropometric Profile to Countermovement Jump Performance and External Match Load in Mexican National Team Soccer Players: An Exploratory Study" Sports 13, no. 7: 236. https://doi.org/10.3390/sports13070236
APA StyleRios-Limas, I., Herrera-Amante, C. A., Carvajal-Veitía, W., Yáñez-Sepúlveda, R., Ayala-Guzmán, C. I., Ortiz-Hernández, L., López-Sagarra, A., Lorente-Solá, P., & López-Gil, J. F. (2025). Relating Anthropometric Profile to Countermovement Jump Performance and External Match Load in Mexican National Team Soccer Players: An Exploratory Study. Sports, 13(7), 236. https://doi.org/10.3390/sports13070236