Effect of Different Individualised Strength Training Approaches to Improve Physical Performance in Male Basketball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedures
2.3. Training Intervention
2.4. Physical Performance Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMJ | Countermovement jump |
COD | Change of direction |
CODD | Change of direction deficit |
DJu | Unilateral drop jump |
LS | Linear sprint |
NRs | Non-responders |
Rs | Responders |
References
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sports Med. 2018, 48, 111–135. Available online: https://pubmed.ncbi.nlm.nih.gov/29039018/ (accessed on 29 January 2021). [CrossRef] [PubMed]
- García, F.; Vázquez-Guerrero, J.; Castellano, J.; Casals, M.; Schelling, X. Differences in physical demands between game quarters and playing positions on professional basketball players during official competition. J. Sports Sci. Med. 2020, 19, 256–263. Available online: https://pubmed.ncbi.nlm.nih.gov/32390718/ (accessed on 10 December 2020). [PubMed]
- Salazar, H.; Castellano, J.; Svilar, L. Differences in External Load Variables Between Playing Positions in Elite Basketball Match-Play. J. Hum. Kinet. 2020, 75, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Svilar, L.; Castellano, J.; Jukic, I. Load monitoring system in top-level basketball team: Relationship between external and internal training load. Kinesiology 2018, 50, 25–33. [Google Scholar] [CrossRef]
- Taylor, J.B.; Wright, A.A.; Dischiavi, S.L.; Townsend, M.A.; Marmon, A.R. Activity demands during multi-directional team sports: A systematic review. Sports Med. 2017, 47, 2533–2551. Available online: https://pubmed.ncbi.nlm.nih.gov/28801751/ (accessed on 20 July 2020). [CrossRef]
- McBurnie, A.J.; Dos’Santos, T. Multidirectional Speed in Youth Soccer Players: Theoretical Underpinnings. Strength Cond. J. 2022, 44, 15–33. [Google Scholar] [CrossRef]
- Samozino, P.; Rejc, E.; Di Prampero, P.E.; Belli, A.; Morin, J.B. Optimal Force–Velocity Profile in Ballistic Movements—Altius: Citius or Fortius? Med. Sci. Sports Exerc. 2012, 44, 313–322. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21775909 (accessed on 19 February 2019). [CrossRef]
- Young, W.B.; James, R.; Montgomery, I. Is muscle power related to running speed with changes of direction? J. Sports Med. Phys. Fit. 2002, 42, 282–288. [Google Scholar]
- Barrera-Domínguez, F.J.; Almagro, B.J.; Tornero-Quiñones, I.; Sáez-Padilla, J.; Sierra-Robles, Á.; Molina-López, J. Decisive Factors for a Greater Performance in the Change of Direction and Its Angulation in Male Basketball Players. Int. J. Environ. Res. Public. Health 2020, 17, 6598. [Google Scholar] [CrossRef]
- Falch, H.N.; Guldteig Rædergård, H.; van den Tillaar, R. Effect of Different Physical Training Forms on Change of Direction Ability: A Systematic Review and Meta-analysis. Sports Med. Open 2019, 5, 53. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Young, W.B.; Sáez de Villarreal, E. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis. Int. J. Sports Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Garcia-Hermoso, A.; Moran, J.; Chaabene, H.; Negra, Y.; Scanlan, A.T. The effects of plyometric jump training on physical fitness attributes in basketball players: A meta-analysis. J. Sport. Health Sci. 2020, 11, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Domínguez, F.J.; Martínez-García, D.; Jerez-Mayorga, D.; Chirosa-Ríos, L.J.; Almagro, B.J.; Molina-López, J. Vertical Versus Horizontal Training for Improving the Change of Direction Speed in Adult Basketball Players: A Systematic Review and Meta-analysis. J. Strength. Cond. Res. 2024, 38, 791–803. [Google Scholar] [CrossRef] [PubMed]
- França, E.F.; Antunes, A.; Silva ACda Guerra, M.L.M.; Cossote, D.F.; Bonfim, J.C.O. Concepts and principles of sports training: A narrative review based on the classic literature of reference. Int. J. Phys. Educ. Sports Health 2022, 9, 214–217. [Google Scholar] [CrossRef]
- Morin, J.B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. Available online: http://journals.humankinetics.com/doi/10.1123/ijspp.2015-0638 (accessed on 3 March 2019). [CrossRef]
- Barrera-Domínguez, F.J.; Jones, P.A.; Almagro, B.J.; Molina-López, J. Determination of change of direction deficit thresholds across a spectrum of angles in basketball players. J. Sports Sci. 2024, 42, 621–628. [Google Scholar] [CrossRef]
- Samozino Edouard, P.; Sangnier, S.; Brughelli, M.; Gimenez, P.; Morin, J.B. Force-velocity profile: Imbalance determination and effect on lower limb ballistic performance. Int. J. Sports Med. 2014, 35, 505–510. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24227123 (accessed on 24 February 2020). [CrossRef]
- Freitas, T.T.; Alcaraz, P.E.; Calleja-González, J.; Arruda, A.F.S.; Guerriero, A.; Kobal, R.; Reis, V.P.; Pereira, L.A.; Pereira, I. Differences in Change of Direction Speed and Deficit Between Male and Female National Rugby Sevens Players. J. Strength. Cond. Res. 2021, 35, 3170–3176. Available online: https://pubmed.ncbi.nlm.nih.gov/31136547/ (accessed on 31 May 2021). [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping. Front. Physiol. 2016, 7, 677. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Morin, J.B. Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PLoS ONE 2019, 14, e0216681. [Google Scholar] [CrossRef]
- Weakley, J.; Wilson, K.; Till, K.; Banyard, H.; Dyson, J.; Phibbs, P.; Dale, R.; Ben, J. Show Me, Tell Me, Encourage Me: The Effect of Different Forms of Feedback on Resistance Training Performance. J. Strength. Cond. Res. 2020, 34, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Skok, O.; Bishop, C. Change of direction speed and deficit over single and multiple changes of direction: Influence of biological age in youth basketball players. J. Sports Sci. 2023, 41, 1490–1497. Available online: https://www.researchgate.net/publication/375086627_Change_of_direction_speed_and_deficit_over_single_and_multiple_changes_of_direction_Influence_of_biological_age_in_youth_basketball_players (accessed on 31 October 2023). [CrossRef]
- Pueo, B.; Penichet-Tomas, A.; Jimenez-Olmedo, J. Reliability and validity of the Chronojump open-source jump mat system. Biol. Sport. 2020, 37, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Chen, W.; Xu, H.; Zhai, F. Optimal Loading Height: A Practical Research of Drop Jump from Biomechanics. J. Healthc. Eng. 2022, 2022, 4173639. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Pérez-Castilla, A.; Jaric, S. Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sports Biomech. 2021, 20, 274–289. [Google Scholar] [CrossRef]
- Cuthbert, M.; Thomas, C.; Dos’Santos, T.; Jones, P.A. Application of Change of Direction Deficit to Evaluate Cutting Ability. J. Strength. Cond. Res. 2019, 33, 2138–2144. [Google Scholar] [CrossRef]
- Freitas, T.T.; Pereira, L.A.; Alcaraz, P.E.; Azevedo, P.H.S.M.; Bishop, C.; Loturco, I. Percentage-Based Change of Direction Deficit: A New Approach to Standardize Time- and Velocity-Derived Calculations. J. Strength. Cond. Res. 2021, 36, 3521–3526. Available online: https://pubmed.ncbi.nlm.nih.gov/34446644/ (accessed on 9 November 2021). [CrossRef]
- Lenhard, W.; Lenhard, A. Computation of Effect Sizes. Psychometrica. 2016. Available online: https://www.psychometrica.de/effect_size.html (accessed on 4 December 2023).
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. Available online: https://pubmed.ncbi.nlm.nih.gov/10907753/ (accessed on 3 January 2024). [CrossRef]
- Goodwin, J.; Cleather, D. The Biomechanical Principles Underpinning Strength and Conditioning, 1st ed.; Jeffreys, I., Moody, J., Eds.; Routledge: London, UK, 2016; pp. 78–108. Available online: https://www.taylorfrancis.com/chapters/edit/10.4324/9780203852286-16/biomechanical-principles-underpinning-strength-conditioning-jon-goodwin-daniel-cleather (accessed on 16 January 2023).
- Randell, A.D.; Cronin, J.B.; Keogh, J.W.L.; Gill, N.D. Transference of strength and power adaptation to sports performance-horizontal and vertical force production. Strength. Cond. J. 2010, 32, 100–106. [Google Scholar] [CrossRef]
- Zweifel, M. Importance of horizontally loaded movements to sports performance. Strength. Cond. J. 2017, 39, 21–26. [Google Scholar] [CrossRef]
- Junge, N.; Jørgensen, T.B.; Nybo, L. Performance Implications of Force-Vector-Specific Resistance and Plyometric Training: A Systematic Review with Meta-Analysis. Sports Med. 2023, 53, 2447–2461. Available online: https://pubmed.ncbi.nlm.nih.gov/37594654/ (accessed on 11 July 2024). [CrossRef] [PubMed]
- Moran, J.; Ramirez-Campillo, R.; Liew, B.; Chaabene, H.; Behm, D.G.; García-Hermoso, A.; Izquierdo, M.; Granacher, U. Effects of Vertically and Horizontally Orientated Plyometric Training on Physical Performance: A Meta-analytical Comparison. Sports Med. 2021, 51, 65–79. Available online: https://doi.org/10.1007/s40279-020-01340-6 (accessed on 16 January 2023). [CrossRef] [PubMed]
- Aztarain-Cardiel, K.; López-Laval, I.; Marco-Contreras, L.A.; Sánchez-Sabaté, J.; Garatachea, N.; Pareja-Blanco, F. Effects of Plyometric Training Direction on Physical Performance in Basketball Players. Int. J. Sports Physiol. Perform. 2022, 18, 135–141. Available online: https://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123-ijspp.2022-0239/article-10.1123-ijspp.2022-0239.xml (accessed on 10 January 2023). [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Gallardo, F.; Henriquez-Olguín, C.; Meylan, C.M.P.; Martínez, C.; Álvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of Vertical, Horizontal, and Combined Plyometric Training on Explosive, Balance, and Endurance Performance of Young Soccer Players. J. Strength. Cond. Res. 2015, 29, 1784–1795. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25559903 (accessed on 19 September 2019). [CrossRef]
- Loturco, I.; Contreras, B.; Kobal, R.; Fernandes, V.; Moura, N.; Siqueira, F.; Winckler, C.; Suchomel, T.; Pereira, L.A. Vertically and horizontally directed muscle power exercises: Relationships with top-level sprint performance. PLoS ONE 2018, 13, e0201475. [Google Scholar] [CrossRef]
- Sánchez-Sabaté, J.; Gutiérrez, H.; Marco-Contreras, L.A.; Younes-Egana, O.; Gonzalo-Skok, O.; Piedrafita, E. Influence of Vertical-Oriented vs. Horizontal-Oriented Combined Strength Training in Young Basketball Players. J. Strength Cond. Res. 2024, 38, 1280–1287. Available online: https://journals.lww.com/nsca-jscr/abstract/2024/07000/influence_of_vertical_oriented_vs_.12.aspx (accessed on 14 October 2024).
- Pleša, J.; Ujaković, F.; Ribič, A.; Bishop, C.; Šarabon, N.; Kozinc, Ž. Effectiveness of an Individualized Training Based on Dynamic Strength Index on Sprinting, Jumping and Change of Direction Performance in Basketball Players: A Randomized Controlled Trial. J. Sports Sci. Med. 2024, 23, 504–514. Available online: https://www.jssm.org/jssm-23-504.xml%3EFulltext (accessed on 29 June 2024). [CrossRef]
- Barrera-Domínguez, F.J.; Almagro, B.J.; Sáez de Villarreal, E.; Molina-López, J. Effect of individualised strength and plyometric training on the physical performance of basketball players. Eur. J. Sport Sci. 2023, 23, 2379–2388. Available online: https://www.tandfonline.com/doi/full/10.1080/17461391.2023.2238690 (accessed on 2 August 2023). [CrossRef]
- Keller, S.; Koob, A.; Corak, D.; von Schöning, V.; Born, D.P. How to Improve Change-of-Direction Speed in Junior Team Sport Athletes-Horizontal, Vertical, Maximal, or Explosive Strength Training? J. Strength. Cond. Res. 2020, 34, 473–482. Available online: https://pubmed.ncbi.nlm.nih.gov/30199451/ (accessed on 22 March 2021). [CrossRef]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sports Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef]
Variables | CG (n = 15) | VG (n = 15) | HG (n = 15) | ICC | CV | p Value | ES (ηp2) |
---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | |||||
Classification | |||||||
F-V Profile | 29.1 (34.4) | 29.1 (21.6) | - | - | - | 0.99 | 0.01 |
CODD180° | 53.4 (6.58) | 51.5 (8.46) | 49.6 (6.96) | - | - | 0.39 | 0.04 |
Performance | |||||||
CMJ (cm) | 33.7 (4.83) | 30.7 (3.02) | 34.9 (5.72) | 0.99 | 2.12 | 0.07 | 0.12 |
DJu (cm) | 14.2 (3.32) | 13.4 (2.88) | 16.1 (3.02) | 0.98 | 3.57 | 0.06 | 0.12 |
RSI | 0.89 (0.22) | 0.67 (0.12) * | 0.97 (0.16) * | 0.97 | 4.94 | <0.01 | 0.37 |
LS 10m (s) | 1.82 (0.08) | 1.86 (0.11) | 1.88 (0.13) | 0.92 | 1.81 | 0.23 | 0.07 |
COD45° (s) | 1.93 (0.07) | 1.97 (0.09) | 1.97 (0.09) | 0.90 | 1.12 | 0.34 | 0.05 |
COD90° (s) | 2.29 (0.12) | 2.33 (0.19) | 2.30 (0.12) | 0.98 | 1.33 | 0.74 | 0.01 |
COD180° (s) | 2.78 (0.08) | 2.81 (0.09) | 2.81 (0.14) | 0.94 | 1.65 | 0.68 | 0.02 |
Mean speed (s) | 2.20 (0.07) | 2.24 (0.10) | 2.24 (0.10) | 0.93 | 1.48 | 0.45 | 0.04 |
T1 | T2 | T3 | % Change | Time | Group × Time | |||
---|---|---|---|---|---|---|---|---|
Test | Group | Mean (SD) | Mean (SD) | Mean (SD) | T1−T2 | T1−T3 | p Value (ES) | p Value (ES) |
Classification variables | ||||||||
F-V profile | CG | 29.1 (34.4) | 33.9 (26.1) ‡ | 36.0 (25.3) ‡ | 14.2 | 19.2 | <0.01 (0.31) | <0.01 (0.25) |
VG | 29.1 (21.6) a,b | 13.5 (22.9) a‡ | 10.0 (15.7) b‡ | −53.6 | −65.6 | |||
HG | - | - | - | - | - | |||
CODD 180° | CG | 53.4 (6.58) | 55.1 (5.91) | 55.9 (6.91) † | 2.88 | 2.72 | <0.01 (0.29) | <0.01 (0.17) |
VG | 51.5 (8.46) | 54.5 (6.22) | 51.8 (7.86) * | 5.11 | −1.09 | |||
HG | 49.6 (6.96) b | 47.3 (9.18) | 44.5 (6.99) b†* | −9.57 | −13.9 | |||
Performance variables | ||||||||
CMJ (cm) | CG | 33.7 (4.83) | 32.7 (4.93) ‡† | 33.5 (5.18) ‡† | −3.37 | −0.88 | 0.09 (0.06) | <0.01 (0.51) |
VG | 30.7 (3.02) a,b | 33.2 (3.83) a,c‡ | 37.2 (4.45) b,c‡* | 7.29 | 17.0 | |||
HG | 34.9 (5.72) a,b | 36.9 (7.04) a† | 38.5 (7.17) b†* | 5.62 | 9.34 | |||
DJu (cm) | CG | 14.2 (3.32) | 14.0 (3.08) ‡ | 13.4 (2.93) ‡† | −1.61 | −5.23 | 0.56 (0.02) | <0.01 (0.38) |
VG | 13.4 (2.88) a,b | 15.0 (3.29) a,c‡ | 16.8 (4.22) b,c‡ | 10.3 | 18.9 | |||
HG | 16.1 (3.02) b | 17.3 (3.89) c | 19.0 (3.97) b,c† | 6.51 | 14.6 | |||
RSI | CG | 0.89 (0.22) | 0.78 (0.20) † | 0.77 (0.18) ‡† | −16.2 | −16.1 | 0.03 (0.09) | <0.01 (0.24) |
VG | 0.67 (0.12) | 0.73 (0.14) | 0.80 (0.14) ‡ | 6.51 | 15.4 | |||
HG | 0.97 (0.16) | 1.02 (0.14) † | 1.02 (0.22) † | 3.95 | 2.89 | |||
LS 10 m (s) | CG | 1.82 (0.08) | 1.80 (0.06) | 1.82 (0.11) | −1.05 | −0.29 | <0.01 (0.29) | 0.07 (0.10) |
VG | 1.86 (0.11) b | 1.82 (0.09) | 1.79 (0.08) b | −2.25 | −4.13 | |||
HG | 1.88 (0.13) b | 1.84 (0.09) | 1.80 (0.09) b | −2.16 | −4.58 | |||
COD 45° (s) | CG | 1.93 (0.07) | 1.94 (0.14) | 1.91 (0.12) † | 0.57 | −1.39 | 0.04 (0.07) | 0.05 (0.11) |
VG | 1.97 (0.09) b | 1.94 (0.09) c | 1.87 (0.08) b,c | −1.69 | −5.61 | |||
HG | 1.97 (0.09) b | 1.92 (0.08) c | 1.84 (0.07) b,c† | −2.18 | −6.37 | |||
COD 90° (s) | CG | 2.29 (0.12) | 2.37 (0.20) | 2.35 (0.14) † | 3.03 | 2.20 | <0.01 (0.17) | 0.03 (0.12) |
VG | 2.33 (0.19) | 2.34 (0.12) | 2.32 (0.13) | 0.37 | −0.54 | |||
HG | 2.30 (0.12) | 2.29 (0.13) | 2.24 (0.13) † | −0.97 | −3.43 | |||
COD 180° (s) | CG | 2.78 (0.08) | 2.79 (0.14) | 2.82 (0.12) † | 0.08 | 1.33 | <0.01 (0.13) | <0.01 (0.26) |
VG | 2.81 (0.09) | 2.79 (0.09) | 2.72 (0.09) | −0.85 | −3.40 | |||
HG | 2.81 (0.14) b | 2.72 (0.16) c | 2.63 (0.15) b,c† | −3.88 | −7.47 | |||
Mean speed (s) | CG | 2.20 (0.07) | 2.23 (0.13) | 2.22 (0.11) ‡† | 0.77 | 0.69 | 0.03 (0.08) | <0.01 (0.23) |
VG | 2.24 (0.10) b | 2.22 (0.08) | 2.17 (0.08) b‡ | −1.00 | −3.27 | |||
HG | 2.24 (0.10) b | 2.20 (0.09) c | 2.13 (0.09) b,c† | −2.30 | −5.49 |
Tests | Individual Response | NRs (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
CONTROL | 64% | |||||||||||||||
CMJ | ↓ | ↑ | ↔ | ↓ | ↔ | ↔ | ↓ | ↓ | ↑ | ↓ | ↓ | ↓ | ↓ | ↑ | ↔ | 80% |
DJu | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↔ | ↔ | ↔ | ↔ | 40% |
RSI | ↔ | ↑ | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↔ | ↑ | ↔ | 33% |
LS 10m | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↔ | ↓ | ↓ | ↓ | ↔ | ↑ | ↓ | ↓ | 53% |
COD 45° | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↓ | ↔ | ↓ | ↔ | ↔ | ↑ | ↔ | ↓ | 67% |
COD 90° | ↓ | ↓ | ↑ | ↓ | ↓ | ↔ | ↓ | ↓ | ↓ | ↓ | ↓ | ↔ | ↑ | ↔ | ↓ | 87% |
COD 180° | ↓ | ↔ | ↔ | ↓ | ↓ | ↔ | ↓ | ↓ | ↓ | ↓ | ↓ | ↔ | ↑ | ↑ | ↓ | 87% |
VERTICAL | 22% | |||||||||||||||
CMJ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 00% |
DJu | ↑ | ↔ | ↔ | ↑ | ↔ | ↑ | ↑ | ↔ | ↑ | ↑ | ↔ | ↔ | ↑ | ↑ | ↔ | 47% |
RSI | ↑ | ↔ | ↔ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | 26% |
LS 10m | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↑ | 07% |
COD 45° | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↑ | 07% |
COD 90° | ↓ | ↑ | ↔ | ↑ | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↓ | ↓ | ↔ | 47% |
COD 180° | ↑ | ↑ | ↔ | ↔ | ↑ | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 20% |
HORIZONTAL | 22% | |||||||||||||||
CMJ | ↑ | ↔ | ↔ | ↑ | ↑ | ↑ | ↑ | ↓ | ↓ | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | 33% |
DJu | ↑ | ↔ | ↔ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↑ | 27% |
RSI | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 07% |
LS 10m | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↑ | ↑ | 07% |
COD 45° | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↑ | ↔ | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | 27% |
COD 90° | ↑ | ↔ | ↔ | ↑ | ↑ | ↑ | ↓ | ↓ | ↑ | ↑ | ↓ | ↓ | ↑ | ↔ | ↑ | 47% |
COD 180° | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 07% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera-Domínguez, F.J.; Almagro, B.J.; Molina-López, J. Effect of Different Individualised Strength Training Approaches to Improve Physical Performance in Male Basketball Players. Sports 2025, 13, 214. https://doi.org/10.3390/sports13070214
Barrera-Domínguez FJ, Almagro BJ, Molina-López J. Effect of Different Individualised Strength Training Approaches to Improve Physical Performance in Male Basketball Players. Sports. 2025; 13(7):214. https://doi.org/10.3390/sports13070214
Chicago/Turabian StyleBarrera-Domínguez, Francisco J., Bartolomé J. Almagro, and Jorge Molina-López. 2025. "Effect of Different Individualised Strength Training Approaches to Improve Physical Performance in Male Basketball Players" Sports 13, no. 7: 214. https://doi.org/10.3390/sports13070214
APA StyleBarrera-Domínguez, F. J., Almagro, B. J., & Molina-López, J. (2025). Effect of Different Individualised Strength Training Approaches to Improve Physical Performance in Male Basketball Players. Sports, 13(7), 214. https://doi.org/10.3390/sports13070214