From Monitoring to Prediction: Velocity-Based Strength Training in Female Floorball Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Velocity Framework
2.3. Training Trend
2.4. Testing Procedure
2.5. Statistical Analysis
3. Results
3.1. Training Trend
3.2. Predictive Models
3.2.1. AVDIFF Models
- Squat: The predictor AVT1 was significantly negatively associated with AVDIFF (). Additionally, the predictor MCV_POWER showed a trend within the 10% significance threshold, suggesting potential relevance. The model fit was improved by 14% compared to the baseline model.
- Deadlift: AVT1 was significantly and negatively associated with AVDIFF , SE = 0.221, p < 0.05). Furthermore, LOAD_STRENGTH was significantly positively related , indicating that higher loads were associated with greater differences in velocity. The model fit was improved by 22% compared to the baseline model.
3.2.2. RMDIFF Models
- Squat: MCV_POWER () and MCV_STRENGTH () were significant predictors, highlighting the importance of the slope of velocity in estimating differences in 1RM. RMT1 demonstrated a strong negative relationship with RMDIFF (), emphasizing its critical role in the estimation of 1RM. The model fit was improved by 17% compared to the baseline model.
- Deadlift: Only BMT1 was significant , suggesting that body mass influenced differences in 1RM. MCV_STRENGTH showed a potential effect within the 10% significance threshold. The model fit showed marginal improvement (2%) compared to the baseline model.
3.3. Testing
4. Discussion
4.1. Training Trend
4.2. Model Performance
4.3. Neuromuscular Adaptations and Performance Outcomes
4.4. Limitations
4.5. Practical Recommendations
Potential Adjustments to the Velocity Framework
- Definition and refinement of velocity zones
- Duration between testing and prediction time frames
- Number of repetitions per set
- Threshold of repetitions outside the target velocity zone before load adjustments
- Minimum load requirements
- Exercise selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of Performance Assessments
Appendix A.1. Sprint and Stop-and-Go (SAG)
Appendix A.2. Jumps
Appendix A.3. Load-Velocity Profiles
Appendix B
Appendix B.1. Statistical Model Description
Appendix B.2. Model Results
Predictor | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
Dep. Variable | AVDIFF | RMDIFF | AVDIFF | RMDIFF |
Exercise | Squat | Squat | Deadlift | Deadlift |
Coefficients | Estimate (Standard Error) | |||
Intercept | 0.571 (0.227) * | 58.518 (24.525) * | 0.478 (0.136) ** | −52.440 (24.474) . |
MCV_POWER | 4.279 (2.165) . | −870.416 (332.681) * | 0.025 (1.831) | −397.991 (377.870) |
MCV_STRENGTH | 0.417 (1.820) | 855.997 (305.569) * | 3.214 (2.084) | 862.828 (452.609) . |
LOAD_POWER | 0.031 (0.030) | −9.88 (6.220) | 0.015 (0.018) | −5.985 (4.078) |
LOAD_STRENGTH | 0.018 (0.012) | 0.105 (2.483) | 0.036 (0.012) * | 0.914 (2.416) |
BMT1 | 0.002 (0.002) | 0.679 (0.332) | −0.0002 (0.002) | 1.030 (0.372) * |
AVT1 | −0.793 (0.223) ** | −0.541 (0.221) * | ||
RMT1 | −0.890 (0.177) *** | 0.017 (0.219) | ||
Residual SE | 0.05036 | 10.69 | 0.05147 | 10.92 |
DF Residuals | 12 | 10 | 12 | 12 |
Multiple | 0.857 | 0.792 | 0.744 | 0.696 |
Adjusted | 0.786 | 0.667 | 0.617 | 0.544 |
F-statistic (p-value) | 12.01 (0.00018) | 6.343 (0.0056) | 5.825 (0.00477) | 4.581 (0.0121) |
Adjusted (baseline) | 0.653 | 0.499 | 0.386 | 0.518 |
RMSE (LOOCV) | 0.072 | 16.817 | 0.08 | 14.034 |
References
- Makaruk, H.; Starzak, M.; Tarkowski, P.; Sadowski, J.; Winchester, J. The Effects of Resistance Training on Sport-Specific Performance of Elite Athletes: A Systematic Review with Meta-Analysis. J. Hum. Kinet. 2024, 91, 135–155. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, K.; Parkkari, J.; Pasanen, M.; Kannus, P. Effect of a neuromuscular warm-up programme on muscle power, balance, speed and agility: A randomised controlled study. Br. J. Sport. Med. 2009, 43, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Liukkonen, R.; Vaajala, M.; Tarkiainen, J.; Kuitunen, I. The incidence of floorball injuries—A systematic review and meta-analysis. Phys. Ther. Sport 2024, 67, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Zech, A.; Hollander, K.; Junge, A.; Steib, S.; Groll, A.; Heiner, J.; Nowak, F.; Pfeiffer, D.; Rahlf, A.L. Sex differences in injury rates in team-sport athletes: A systematic review and meta-regression analysis. J. Sport Health Sci. 2022, 11, 104–114. [Google Scholar] [CrossRef]
- Thompson, S.W.; Olusoga, P.; Rogerson, D.; Ruddock, A.; Barnes, A. “Is it a slow day or a go day?”: The perceptions and applications of velocity-based training within elite strength and conditioning. Int. J. Sport. Sci. Coach. 2022, 18, 1217–1228. [Google Scholar] [CrossRef]
- Helms, E.R.; Kwan, K.; Sousa, C.A.; Cronin, J.B.; Storey, A.G.; Zourdos, M.C. Methods for Regulating and Monitoring Resistance Training. J. Hum. Kinet. 2020, 74, 23–42. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef]
- Rossi, C.; Vasiljevic, I.; Manojlovic, M.; Trivic, T.; Ranisavljev, M.; Stajer, V.; Thomas, E.; Bianco, A.; Drid, P. Optimizing strength training protocols in young females: A comparative study of velocity-based and percentage-based training programs. Heliyon 2024, 10, e30644. [Google Scholar] [CrossRef]
- Zhang, M.; Liang, X.; Huang, W.; Ding, S.; Li, G.; Zhang, W.; Li, C.; Zhou, Y.; Sun, J.; Li, D. The effects of velocity-based versus percentage-based resistance training on athletic performances in sport-collegiate female basketball players. Front. Physiol. 2023, 13, 992655. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of Velocity-Based Training on Strength and Power in Elite Athletes—A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef] [PubMed]
- Nigro, F.; Bartolomei, S. A Comparison Between the Squat and the Deadlift for Lower Body Strength and Power Training. J. Hum. Kinet. 2020, 73, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D.A. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, S.; Peng, R.; Li, H. The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 9252. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sport. Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Ramos, A.G. Resistance Training Intensity Prescription Methods Based on Lifting Velocity Monitoring. Int. J. Sport. Med. 2024, 45, 257–266. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Med. Sci. Sport. Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Jovanović, M.; Flanagan, D.E.P. Researched Applications of Velocity Based Strength Training. J. Aust. Strength Cond. 2014, 21, 58–69. [Google Scholar]
- Nagatani, T.; Guppy, S.N.; Haff, G.G. Selecting Velocity Measurement Devices: Decision-Making Guidelines for Strength and Conditioning Professionals. Strength Cond. J. 2025. [Google Scholar] [CrossRef]
- LeMense, A.T.; Malone, G.T.; Kinderman, M.A.; Fedewa, M.V.; Winchester, L.J. Validity of Using the Load-Velocity Relationship to Estimate 1 Repetition Maximum in the Back Squat Exercise: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2024, 38, 612–619. [Google Scholar] [CrossRef]
- Rauch, J.T.; Loturco, I.; Cheesman, N.; Thiel, J.; Alvarez, M.; Miller, N.; Carpenter, N.; Barakat, C.; Velasquez, G.; Stanjones, A.; et al. Similar Strength and Power Adaptations between Two Different Velocity-Based Training Regimens in Collegiate Female Volleyball Players. Sports 2018, 6, 163. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Morrison, M.; García-Ramos, A.; Johnston, R.; James, L.; Cole, M.H. The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review. Sport. Med. 2021, 51, 443–502. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Gross, M.; Trösch, S.; Steiner, T.; Müller, B.; Bourban, P.; Schärer, C.; Hübner, K.; Wehrlin, J.; Tschopp, M. Manual Leistungsdiagnostik; Swiss Olympic: Bern, Switzerland, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Van Eetvelde, H.; Mendonça, L.D.; Ley, C.; Seil, R.; Tischer, T. Machine learning methods in sport injury prediction and prevention: A systematic review. J. Exp. Orthop. 2021, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Galiano, C.; Pareja-Blanco, F.; Hidalgo De Mora, J.; Sáez De Villarreal, E. Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J. Strength Cond. Res. 2022, 36, 340–345. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Castaño-Zambudio, A.; Cuadrado-Peñafiel, V.; González-Hernández, J.M.; Capelo-Ramírez, F.; Martínez-Aranda, L.M.; González-Badillo, J.J. Differences between adjusted vs. non-adjusted loads in velocity-based training: Consequences for strength training control and programming. PeerJ 2021, 9, e10942. [Google Scholar] [CrossRef]
- Riscart-López, J.; Rendeiro-Pinho, G.; Mil-Homens, P.; Soares-daCosta, R.; Loturco, I.; Pareja-Blanco, F.; León-Prados, J.A. Effects of Four Different Velocity-Based Training Programming Models on Strength Gains and Physical Performance. J. Strength Cond. Res. 2021, 35, 596–603. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Martínez-Cava, A.; Yáñez-García, J.M.; Hernández-Belmonte, A.; Mora-Custodio, R.; Morán-Navarro, R.; Pallarés, J.G.; González-Badillo, J.J. Linear programming produces greater, earlier and uninterrupted neuromuscular and functional adaptations than daily-undulating programming after velocity-based resistance training. Physiol. Behav. 2021, 233, 113337. [Google Scholar] [CrossRef]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sport. Med. 2017, 47, 975–986. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Torres-Torrelo, J.; Franco-Márquez, F.; González-Suárez, J.M.; González-Badillo, J.J. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players. J. Sci. Med. Sport 2017, 20, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B.; Mitchell, N.G.; Bibeau, W.S.; Bartholomew, J.B. Effects of a 12-Week Resistance Exercise Program on Physical Self-Perceptions in College Students. Res. Q. Exerc. Sport 2011, 82, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Morán-Navarro, R.; Martínez-Cava, A.; Escribano-Peñas, P.; Courel-Ibáñez, J. Load-velocity relationship of the deadlift exercise. Eur. J. Sport Sci. 2021, 21, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of Using Velocity to Estimate Intensity in Resistance Exercises in Men and Women. Int. J. Sport. Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef]
Variable | Unit | Description |
---|---|---|
AVDIFF | m | Velocity Difference of load–velocity profile |
RMDIFF | kg | Estimated 1RM Difference |
AVT1 | m | Average MCV of load–velocity profile at T1 |
AVT2 | m | Average MCV of load–velocity profile at T2 |
RMT1 | kg | Estimated 1RM at T1 |
RMT2 | kg | Estimated 1RM at T2 |
BMT1 | kg | Body Mass at T1 |
BMT2 | kg | Body Mass at T2 |
MCV_POWER | m /session | Training trend of MCV (Power Block) |
MCV_STRENGTH | m /session | Training trend of MCV (Strength Block) |
LOAD_POWER | Training trend of Load (Power Block) | |
LOAD_STRENGTH | Training trend of Load (Strength Block) |
Model | Variable | Exercise | RMSE | DF Residual | R-Squared | Baseline R-Squared | F-Statistic | p-Value |
---|---|---|---|---|---|---|---|---|
Model 1 | AVDIFF | Squat | 0.07 | 12 | 0.79 | 0.65 | 12.01 | <0.001 |
Model 2 | RMDIFF | Squat | 16.8 | 10 | 0.67 | 0.5 | 6.34 | 0.006 |
Model 3 | AVDIFF | Deadlift | 0.08 | 12 | 0.62 | 0.39 | 5.83 | 0.005 |
Model 4 | RMDIFF | Deadlift | 14.0 | 12 | 0.54 | 0.52 | 4.58 | 0.012 |
T1 | T2 | p Value | ES | |||
---|---|---|---|---|---|---|
Sprint | ||||||
5 m Time (s) | 1.15 ± 0.06 | 1.16 ± 0.07 | 0.01 | 1.18 | 0.593 | 0.23 |
20 m Time (s) | 3.41 ± 0.13 | 3.40 ± 0.13 | −0.01 | −0.33 | 0.13 | −0.19 |
SAG | ||||||
Time (s) | 5.01 ± 0.17 | 4.97 ± 0.19 | −0.04 | −0.7 | 0.025 | −0.36 |
CMJ | ||||||
Max Height (cm) | 30.2 ± 4.1 | 30.3 ± 3.3 | 0.2 | 0.6 | 0.464 | 0.09 |
Max Relative Power (W/BW) | 46.8 ± 5.1 | 47.7 ± 5.8 | 1.0 | 2.1 | 0.048 | 0.37 |
SJ | ||||||
Max Height (cm) | 28.3 ± 4.2 | 29.4 ± 3.5 | 1.1 | 3.9 | 0.027 | 0.47 |
Max Relative Power (W/BW) | 44.4 ± 5.6 | 46.5 ± 5.4 | 2.1 | 4.8 | <0.001 | 0.89 |
Squat | ||||||
AV (m/s) | 0.88 ± 0.10 | 0.95 ± 0.06 | 0.07 | 7.5 | 0.016 | 0.61 |
1 (kg/BW) | 1.44 ± 0.27 | 1.66 ± 0.34 | 0.22 | 15.2 | 0.001 | 0.74 |
Trap Bar Deadlift | ||||||
AV (m/s) | 0.86 ± 0.09 | 0.92 ± 0.07 | 0.06 | 7.3 | 0.002 | 0.82 |
1 (kg/BW) | 1.76 ± 0.30 | 1.87 ± 0.23 | 0.10 | 5.9 | 0.006 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achermann, B.B.; Regazzi, N.; Heynen, R.; Lüdin, D.; Suter, J.; Drewek, A.; Lorenzetti, S.R. From Monitoring to Prediction: Velocity-Based Strength Training in Female Floorball Athletes. Sports 2025, 13, 175. https://doi.org/10.3390/sports13060175
Achermann BB, Regazzi N, Heynen R, Lüdin D, Suter J, Drewek A, Lorenzetti SR. From Monitoring to Prediction: Velocity-Based Strength Training in Female Floorball Athletes. Sports. 2025; 13(6):175. https://doi.org/10.3390/sports13060175
Chicago/Turabian StyleAchermann, Basil B., Naire Regazzi, Rahel Heynen, Dennis Lüdin, Julia Suter, Anna Drewek, and Silvio R. Lorenzetti. 2025. "From Monitoring to Prediction: Velocity-Based Strength Training in Female Floorball Athletes" Sports 13, no. 6: 175. https://doi.org/10.3390/sports13060175
APA StyleAchermann, B. B., Regazzi, N., Heynen, R., Lüdin, D., Suter, J., Drewek, A., & Lorenzetti, S. R. (2025). From Monitoring to Prediction: Velocity-Based Strength Training in Female Floorball Athletes. Sports, 13(6), 175. https://doi.org/10.3390/sports13060175