Anthropometric Characteristics, Age, Sex, Drop Height, and Visual Feedback as Predictors of Dynamic Knee Valgus During Single-Leg Drop Landing
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures and Instruments
2.3. Anthropometric Measurements
2.4. Single-Leg Drop Landing—Dynamic Knee Valgus Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DKV | Dynamic knee valgus |
F | Feedback |
BMI | Body mass index |
References
- Flandry, F.; Hommel, G. Normal anatomy and biomechanics of the knee. Sports Med. Arthrosc. Rev. 2011, 19, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, B.; Zorena, K.; Ślęzak, D. Dynamic Knee Valgus in Single-Leg Movement Tasks. Potentially Modifiable Factors and Exercise Training Options. A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 8208. [Google Scholar] [CrossRef] [PubMed]
- Yung, K.K.; Ardern, C.L.; Serpiello, F.R.; Robertson, S. Characteristics of Complex Systems in Sports Injury Rehabilitation: Examples and Implications for Practice. Sports Med. Open 2022, 8, 24. [Google Scholar] [CrossRef]
- Schweizer, N.; Strutzenberger, G.; Franchi, M.V.; Farshad, M.; Scherr, J.; Spörri, J. Screening Tests for Assessing Athletes at Risk of ACL Injury or Reinjury-A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 2864. [Google Scholar] [CrossRef]
- Grassi, A.; Smiley, S.P.; Roberti di Sarsina, T.; Signorelli, C.; Marcheggiani Muccioli, G.M.; Bondi, A.; Romagnoli, M.; Agostini, A.; Zaffagnini, S. Mechanisms and situations of anterior cruciate ligament injuries in professional male soccer players: A YouTube-based video analysis. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Dinis, R.; Vaz, J.R.; Silva, L.; Marta, S.; Pezarat-Correia, P. Electromyographic and kinematic analysis of females with excessive medial knee displacement in the overhead squat. J. Electromyogr. Kinesiol. 2021, 57, 102530. [Google Scholar] [CrossRef]
- Holden, S.; Boreham, C.; Delahunt, E. Sex Differences in Landing Biomechanics and Postural Stability During Adolescence: A Systematic Review with Meta-Analyses. Sports Med. 2016, 46, 241–253. [Google Scholar] [CrossRef]
- Waldén, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef]
- Nilstad, A.; Petushek, E.; Mok, K.M.; Bahr, R.; Krosshaug, T. Kiss goodbye to the ‘kissing knees’: No association between frontal plane inward knee motion and risk of future non-contact ACL injury in elite female athletes. Sports Biomech. 2023, 22, 65–79. [Google Scholar] [CrossRef]
- Numata, H.; Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Takata, Y.; Shimozaki, K.; Tsuchiya, H. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 442–447. [Google Scholar] [CrossRef]
- Norasteh, A.A.; Fadaei Dehcheshmeh, M.; Shamlou Kazemi, A. The Role of Dynamic Knee Valgus in Occurrence of Knee Injuries: A Review Study. Sci. J. Rehabil. Med. 2023, 12, 186–201. [Google Scholar] [CrossRef]
- Yalfani, A.; Ahmadi, M.; Asgarpoor, A. The effect of kinetic factors of dynamic knee valgus on patellofemoral pain: A systematic review and meta-analysis. J. Bodyw. Mov. Ther. 2024, 37, 246–253. [Google Scholar] [CrossRef]
- Boyer, K.A.; Andriacchi, T.P. The Nature of Age-Related Differences in Knee Function during Walking: Implication for the Development of Knee Osteoarthritis. PLoS ONE 2016, 11, e0167352. [Google Scholar] [CrossRef]
- Asaeda, M.; Nakamae, A.; Hirata, K.; Kono, Y.; Uenishi, H.; Adachi, N. Factors associated with dynamic knee valgus angle during single-leg forward landing in patients after anterior cruciate ligament reconstruction. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2020, 22, 56–61. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.A.; Palmieri, R.M.; Zinder, S.M.; Ingersoll, C.D. Sex differences in valgus knee angle during a single-leg drop jump. J. Athl. Train. 2006, 41, 166–171. [Google Scholar]
- Schmitz, R.J.; Shultz, S.J.; Nguyen, A.D. Dynamic valgus alignment and functional strength in males and females during maturation. J. Athl. Train. 2009, 44, 26–32. [Google Scholar] [CrossRef]
- Claiborne, T.L.; Armstrong, C.W.; Gandhi, V.; Pincivero, D.M. Relationship between hip and knee strength and knee valgus during a single leg squat. J. Appl. Biomech. 2006, 22, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; Ginos, B.E.; Kozuchowski, J.; Vaughn, A.S.; Krause, D.A.; Youdas, J.W. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J. Sport Rehabil. 2009, 18, 104–117. [Google Scholar] [CrossRef]
- Stickler, L.; Finley, M.; Gulgin, H. Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys. Ther. Sport 2015, 16, 66–71. [Google Scholar] [CrossRef]
- Suzuki, H.; Omori, G.; Uematsu, D.; Nishino, K.; Endo, N. The influence of hip strength on knee kinematics during a single-legged medial drop landing among competitive collegiate basketball players. Int. J. Sports Phys. Ther. 2015, 10, 592–601. [Google Scholar] [PubMed]
- Cashman, G.E. The effect of weak hip abductors or external rotators on knee valgus kinematics in healthy subjects: A systematic review. J. Sport Rehabil. 2012, 21, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Dix, J.; Marsh, S.; Dingenen, B.; Malliaras, P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: A systematic review. Phys. Ther. Sport 2019, 37, 197–209. [Google Scholar] [CrossRef]
- Lima, Y.L.; Ferreira, V.; de Paula Lima, P.O.; Bezerra, M.A.; de Oliveira, R.R.; Almeida, G.P.L. The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Phys. Ther. Sport 2018, 29, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, O.; Simon, S.; Piret, J.; Becker, S.; Marschall, F. Differences in the Dominant and Non-Dominant Knee Valgus Angle in Junior Elite and Amateur Soccer Players after Unilateral Landing. Sports 2017, 5, 14. [Google Scholar] [CrossRef]
- Munro, A.; Herrington, L.; Comfort, P. The Relationship Between 2-Dimensional Knee-Valgus Angles During Single-Leg Squat, Single-Leg-Land, and Drop-Jump Screening Tests. J. Sport Rehabil. 2017, 26, 72–77. [Google Scholar] [CrossRef]
- Mödinger, M.; Woll, A.; Wagner, I. Video-based visual feedback to enhance motor learning in physical education—A systematic review. Ger. J. Exerc. Sport Res. 2022, 52, 447–460. [Google Scholar] [CrossRef]
- Marshall, A.N.; Hertel, J.; Hart, J.M.; Russell, S.; Saliba, S.A. Visual Biofeedback and Changes in Lower Extremity Kinematics in Individuals with Medial Knee Displacement. J. Athl. Train. 2020, 55, 255–264. [Google Scholar] [CrossRef]
- Shams, F.; Hadadnezhad, M.; Letafatkar, A.; Hogg, J. Valgus Control Feedback and Taping Improves the Effects of Plyometric Exercises in Women with Dynamic Knee Valgus. Sports Health 2022, 14, 747–757. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014, 81, 14–18.
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage Publications Ltd.: New York, NY, USA, 2013. [Google Scholar]
- Sahabuddin, F.N.A.; Jamaludin, N.I.; Amir, N.H.; Shaharudin, S. The effects of hip- and ankle-focused exercise intervention on dynamic knee valgus: A systematic review. PeerJ 2021, 9, e11731. [Google Scholar] [CrossRef] [PubMed]
- Virgile, A.; Bishop, C. A Narrative Review of Limb Dominance: Task Specificity and the Importance of Fitness Testing. J. Strength Cond. Res. 2021, 35, 846–858. [Google Scholar] [CrossRef]
- Alfuth, M.; Fichter, P.; Knicker, A. Leg length discrepancy: A systematic review on the validity and reliability of clinical assessments and imaging diagnostics used in clinical practice. PLoS ONE 2021, 16, e0261457. [Google Scholar] [CrossRef] [PubMed]
- Hansford, K.J.; Baker, D.H.; McKenzie, K.J.; Preston, C.E.J. Multisensory processing and proprioceptive plasticity during resizing illusions. Exp. Brain Res. 2024, 242, 451–462. [Google Scholar] [CrossRef]
- Bi, G.; Hua, L.; Sun, J.; Xu, Q.; Li, G. Impact of different landing heights on the contact force in the medial tibiofemoral compartment and the surrounding muscle force characteristics in drop jumps. PLoS ONE 2024, 19, e0307538. [Google Scholar] [CrossRef]
- Bout-Tabaku, S.; Shults, J.; Zemel, B.S.; Leonard, M.B.; Berkowitz, R.I.; Stettler, N.; Burnham, J.M. Obesity is associated with greater valgus knee alignment in pubertal children, and higher body mass index is associated with greater variability in knee alignment in girls. J. Rheumatol. 2015, 42, 126–133. [Google Scholar] [CrossRef]
- Soheilipour, F.; Pazouki, A.; Mazaherinezhad, A.; Yagoubzadeh, K.; Dadgostar, H.; Rouhani, F. The Prevalence of Genu Varum and Genu Valgum in Overweight and Obese Patients: Assessing the Relationship between Body Mass Index and Knee Angular Deformities. Acta Biomed. 2020, 91, ahead of print. [Google Scholar] [CrossRef]
- Taylor, E.D.; Theim, K.R.; Mirch, M.C.; Ghorbani, S.; Tanofsky-Kraff, M.; Adler-Wailes, D.C.; Brady, S.; Reynolds, J.C.; Calis, K.A.; Yanovski, J.A. Orthopedic complications of overweight in children and adolescents. Pediatrics 2006, 117, 2167–2174. [Google Scholar] [CrossRef]
- Capodaglio, P.; Gobbi, M.; Donno, L.; Fumagalli, A.; Buratto, C.; Galli, M.; Cimolin, V. Effect of Obesity on Knee and Ankle Biomechanics during Walking. Sensors 2021, 21, 7114. [Google Scholar] [CrossRef]
Variables | Total (n = 40) | Male (n = 19) | Female (n = 21) | p-Value |
---|---|---|---|---|
Age (years) | 28.5 ± 7.6 | 30.7 ± 8.5 | 26.6 ± 6.3 | 0.100 |
Body mass (kg) | 67.0 ± 10.0 | 74.3 ± 6.8 | 60.0 ± 7.6 | <0.001 * |
Height (m) | 1.68 ± 0.08 | 1.76 ± 0.04 | 1.62 ± 0.05 | <0.001 * |
Body mass index (kg/m2) | 23.5 ± 2.4 | 24.1 ± 2.1 | 22.9 ± 2.6 | 0.142 |
Left lower leg cm) | 38.8 ± 2.2 | 40.3 ± 1.5 | 37.4 ± 1.9 | <0.001 * |
Left thigh (cm) | 49.2 ± 2.9 | 50.9 ± 2.8 | 47.7 ± 2.1 | <0.001 * |
Left lower limb (cm) | 87.7 ± 4.8 | 91.0 ± 3.6 | 84.7 ± 3.7 | <0.001 * |
Right lower leg (cm) | 38.4 ± 2.5 | 40.2 ± 1.7 | 36.8 ± 1.8 | <0.001 * |
Right thigh (cm) | 49.3 ± 3.0 | 51.2 ± 2.6 | 47.6 ± 2.2 | <0.001 * |
Right lower limb (cm) | 87.5 ± 4.9 | 90.9 ± 3.5 | 84.4 ± 3.9 | <0.001 * |
Variables | Total (n = 40) | Male (n = 19) | Female (n = 21) | p-Value |
---|---|---|---|---|
Right—20 cm without F | 180.6 ± 8.1 | 179.1 ± 6.2 | 184.6 ± 5.1 | <0.001 * |
Right—30 cm without F | 180.4 ± 8.2 | 176.6 ± 7.0 | 183.8 ± 7.8 | 0.004 * |
Left—20 cm without F | 182.7 ± 6.1 | 179.5 ± 5.1 | 185.6 ± 5.6 | 0.001 * |
Left—30 cm without F | 184.0 ± 7.6 | 179.7 ± 7.3 | 188.0 ± 5.5 | <0.001 * |
Right—20 cm with F | 180.2 ± 7.1 | 178.7 ± 7.3 | 181.4 ± 6.9 | 0.240 |
Right—30 cm with F | 180.1 ± 7.0 | 176.6 ± 6.4 | 183.3 ± 6.1 | 0.002 * |
Left—20 cm with F | 181.7 ± 6.6 | 179.4 ± 5.5 | 183.7 ± 7.0 | 0.036 * |
Left—30 cm with F | 180.2 ± 6.1 | 178.5 ± 6.5 | 181.8 ± 5.4 | 0.084 |
Variables | Right Leg | Left Leg | p-Value |
---|---|---|---|
20 cm without feedback | 180.6 ± 8.1 | 182.7 ± 6.1 | 0.014 * |
30 cm without feedback | 180.4 ± 8.2 | 184.0 ± 7.6 | 0.001 * |
20 cm with feedback | 180.2 ± 7.1 | 181.7 ± 6.6 | 0.154 |
30 cm with feedback | 180.1 ± 7.0 | 180.2 ± 6.1 | 0.938 |
Variables | 20 cm | 30 cm | p-Value |
---|---|---|---|
Right without feedback | 180.6 ± 8.1 | 180.4 ± 8.2 | 0.858 |
Left without feedback | 182.7 ± 6.1 | 184.0 ± 7.6 | 0.146 |
Right with feedback | 180.2 ± 7.1 | 180.1 ± 7.0 | 0.993 |
Left with feedback | 181.7 ± 6.6 | 180.2 ± 6.1 | 0.116 |
With Feedback | Without Feedback | p-Value | |
---|---|---|---|
Right 20 cm | 180.2 ± 7.1 | 180.6 ± 8.1 | 0.715 |
Right 30 cm | 180.1 ± 7.0 | 180.4 ± 8.2 | 0.821 |
Leg 20 cm | 181.7 ± 6.6 | 182.7 ± 6.1 | 0.221 |
Left 30 cm | 180.2 ± 6.1 | 184.0 ± 7.6 | 0.001 * |
Variables | 20 cm Without F | 20 cm with F | 30 cm Without F | 30 cm with F | ||
---|---|---|---|---|---|---|
Right Limb | Age | R | −0.223 | 0.094 | −0.376 * | −0.100 |
p-value | 0.166 | 0.563 | 0.017 | 0.540 | ||
BMI | R | −0.276 | −0.082 | −0.446 * | −0.357 * | |
p-value | 0.085 | 0.613 | 0.004 | 0.024 | ||
Lower-Leg Length | R | −0.312 | −0.239 | −0.248 | −0.432 | |
p-value | 0.050 | 0.138 | 0.122 | 0.005 | ||
Thigh Length | R | −0.316 | −0.103 | −0.231 | −0.360 * | |
p-value | 0.049 | 0.527 | 0.151 | −0.023 | ||
Lower-Limb Length | R | −0.316 * | −0.142 | −0.299 | −0.376 * | |
p-value | 0.047 | 0.384 | 0.061 | 0.017 | ||
Left Limb | Age | R | −0.316 * | −0.168 | −0.353 * | −0.224 |
p-value | 0.047 | 0.299 | 0.025 | 0.165 | ||
BMI | R | −0.277 | −0.229 | −0.430 * | −0.218 | |
p-value | 0.083 | 0.155 | 0.006 | 0.176 | ||
Lower-Leg Length | R | −0.207 | −0.274 | −0.232 | −0.183 | |
p-value | 0.200 | 0.087 | 0.150 | 0.259 | ||
Thigh Length | R | −0.027 | −0.086 | −0.069 | 0.142 | |
p-value | 0.868 | 0.596 | 0.674 | 0.382 | ||
Lower-Limb Length | R | −0.162 | −0.223 | −0.161 | −0.063 | |
p-value | 0.319 | 0.166 | 0.321 | 0.698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casanova, N.; Correia, D.; Marconcin, P.; Flôres, F.; Soares, D.; Ruivo, R. Anthropometric Characteristics, Age, Sex, Drop Height, and Visual Feedback as Predictors of Dynamic Knee Valgus During Single-Leg Drop Landing. Sports 2025, 13, 151. https://doi.org/10.3390/sports13050151
Casanova N, Correia D, Marconcin P, Flôres F, Soares D, Ruivo R. Anthropometric Characteristics, Age, Sex, Drop Height, and Visual Feedback as Predictors of Dynamic Knee Valgus During Single-Leg Drop Landing. Sports. 2025; 13(5):151. https://doi.org/10.3390/sports13050151
Chicago/Turabian StyleCasanova, Nuno, David Correia, Priscila Marconcin, Fábio Flôres, Denise Soares, and Rodrigo Ruivo. 2025. "Anthropometric Characteristics, Age, Sex, Drop Height, and Visual Feedback as Predictors of Dynamic Knee Valgus During Single-Leg Drop Landing" Sports 13, no. 5: 151. https://doi.org/10.3390/sports13050151
APA StyleCasanova, N., Correia, D., Marconcin, P., Flôres, F., Soares, D., & Ruivo, R. (2025). Anthropometric Characteristics, Age, Sex, Drop Height, and Visual Feedback as Predictors of Dynamic Knee Valgus During Single-Leg Drop Landing. Sports, 13(5), 151. https://doi.org/10.3390/sports13050151