Caffeine Effects on Physical Performance and Sport-Specific Skills in Elite Youth Soccer Players: A Randomised Trial Using the Balanced Placebo Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- -
- The presence of injuries and illnesses that caused the missing of more than three training sessions within three months prior to the time of the study;
- -
- Refusal to participate in the study at any stage;
- -
- An anxiety score above 10 points on the GAD-7 questionnaire;
- -
- An injury sustained during the study that prevented full study completion;
- -
- Any allergic reactions linked to caffeine in the participant’s medical history or during the study;
- -
- Administration of medications potentially affecting the pharmacokinetics or pharmacodynamics of caffeine within 24 h prior to the start of the study;
- -
- Administration of any other ergogenic substance in the 48 h prior to the start of the study;
- -
- Smoking and use of psychoactive substances within 72 h before the start of the study.
2.2. Experimental Design
2.3. Participant Groups
- -
- Group 1 (n = 14)—CAF/CAF: received caffeine and were informed that they had received caffeine;
- -
- Group 2 (n = 12)—CAF/PLA: received placebo and were informed that they had received caffeine;
- -
- Group 3 (n = 15)—PLA/PLA: received placebo and were informed that they had received placebo;
- -
- Group 4 (n = 13)—PLA/CAF: received caffeine and were informed that they had received placebo.
2.4. Patient and Public Involvement Statement
2.5. Equity, Diversity and Inclusion Statement
2.6. Standing Height and Body Mass
2.7. Physical Performance and Sport-Specific Skills Test Protocols
- -
- Survey using questionnaires (GAD-7, CCQ-r);
- -
- Measurement of height and body mass;
- -
- FIFA 11+ warm-up;
- -
- 30 m sprint with splits of 5-, 10-, 20-m;
- -
- Countermovement jump;
- -
- Change of direction;
- -
- T-drill test;
- -
- Dribbling speed;
- -
- RSA test (6 × 20/20 m with 20 s of rest).
- -
- Measurement of height and body mass
- -
- Caffeine or placebo capsule intake
- -
- FIFA 11+ warm-up;
- -
- 30 m sprint with splits of 5, 10, 20 m;
- -
- Countermovement jump;
- -
- Change of direction;
- -
- T-drill test;
- -
- Dribbling speed;
- -
- RSA test (6 × 20/20 with 20 s of rest).
2.8. Maturity Status
2.9. Assessment of Anxiety Levels
2.10. Assessment of Habitual Caffeine Consumption
2.11. Assessment of Adverse Events
2.12. Nutritional Aid
2.13. Ethical Approval
2.14. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bradley, P.S. “Setting the Benchmark” Part 2: Contextualising the Physical Demands of Teams in the FIFA World Cup Qatar 2022. Biol. Sport 2024, 41, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sports Med. 2018, 48, 907–931. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and Performance in Sport: Consensus Statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in soccer: Part I—Post-match fatigue and time course of recovery. Sports Med. 2012, 42, 997–1015. [Google Scholar] [CrossRef] [PubMed]
- Mandorino, M.; Figueiredo, A.J.; Condello, G.; Tessitore, A. The influence of maturity on recovery and perceived exertion, and its relationship with illnesses and non-contact injuries in young soccer players. Biol. Sports 2022, 39, 839–848. [Google Scholar] [CrossRef]
- Abreu, R.; Oliveira, C.B.; Costa, J.A.; Brito, J.; Teixeira, V.H. Effects of dietary supplements on athletic performance in elite soccer players: A systematic review. J. Int. Soc. Sports Nutr. 2023, 20, 2236060. [Google Scholar] [CrossRef]
- Abreu, R.; Oliveira, C.B.; Brito, J.; Teixeira, V.H. Perspectives and practices of nutritionists on dietary supplements for elite soccer teams: A cross-sectional survey study. Front. Sports Act. Living 2023, 5, 1230969. [Google Scholar] [CrossRef]
- Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Burke, L.M. Evidence-Based Supplements for the Enhancement of Athletic Performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Tallis, J.; Clarke, N.; Morris, R.; Richardson, D.; Ellis, M.; Eyre, E.; Duncan, M.; Noon, M. The prevalence and practices of caffeine use as an ergogenic aid in English professional soccer. Biol. Sports 2021, 38, 525–534. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, B.; Gao, J.; Del Coso, J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients 2022, 15, 148. [Google Scholar] [CrossRef] [PubMed]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Cazan, F.; Ballmann, C.G.; Ardigò, L.P.; Chtourou, H. Combined effects of low-dose caffeine and warm-up music enhance male athletes’ performance in simulated Taekwondo combat: A double-blind, randomized crossover trial. Psychopharmacology 2025. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Protocol for Anthropometric Assessment; International Society for Advancement of Kinanthropometry: Murcia, Spain, 2019. [Google Scholar]
- Roche, A.F.; Heymsfield, S.B.; Lohman, T.G. Human Body Composition; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Bizzini, M.; Dvorak, J. FIFA 11+: An effective programme to prevent football injuries in various player groups worldwide—A narrative review. Br. J. Sports Med. 2015, 49, 577–579. [Google Scholar] [CrossRef]
- Romdhani, Z.; Ceylan, H.I.; Hammami, R.; Sahli, F.; Dhahbi, W.; Souissi, N. Small-sided-games with coaches’ verbal encouragement has a positive effect on aerobic performance, mood state, satisfaction and subjective effort in male semi-professional soccer players. J. Men’s Health 2024, 20, 1–10. [Google Scholar] [CrossRef]
- Altmann, S.; Ringhof, S.; Neumann, R.; Woll, A.; Rumpf, M.C. Validity and reliability of speed tests used in soccer: A systematic review. PLoS ONE 2019, 201914, e0220982. [Google Scholar] [CrossRef]
- Haugen, T.; Buchheit, M. Sprint Running Performance Monitoring: Methodological and Practical Considerations. Sports Med. 2016, 46, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef]
- Stewart, P.F.; Turner, A.N.; Miller, S.C. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand. J. Med. Sci. Sports 2014, 24, 500–506. [Google Scholar] [CrossRef]
- Charron, J.; Garcia, J.E.V.; Roy, P.; Ferland, P.M.; Comtois, A.S. Physiological Responses to Repeated Running Sprint Ability Tests: A Systematic Review. Int. J. Exerc. Sci. 2020, 113, 1190–1205. [Google Scholar]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho; Silva, M.J.; Figueiredo, A.J. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.; Roberts, S.J.; Mckeown, J.; Littlewood, M.; McLaren-Towlson, C.; Andrew, M.; Enright, K. Methods to predict the timing and status of biological maturation in male adolescent soccer players: A narrative systematic review. PLoS ONE 2023, 18, e0286768. [Google Scholar] [CrossRef]
- Malina, R.M.; Cumming, S.P.; Rogol, A.D.; Coelho-E-Silva, M.J.; Figueiredo, A.J.; Konarski, J.M.; Kozieł, S.M. Bio-Banding in Youth Sports: Background, Concept, and Application. Sports Med. 2019, 49, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Löwe, B.; Decker, O.; Müller, S.; Brähler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med. Care 2008, 46, 266–274. [Google Scholar] [CrossRef]
- Junge, A.; Feddermann-Demont, N. Prevalence of depression and anxiety in top-level male and female football players. BMJ Open Sport Exerc. Med. 2016, 2, e000087. [Google Scholar] [CrossRef]
- Zolotareva, A.A. Adaptation of the Russian version of the Generalized Anxiety Disorder7. Couns. Psychol. Psychother. 2023, 31, 31–46. [Google Scholar] [CrossRef]
- Irons, J.G.; Bassett, D.T.; Prendergast, C.O.; Landrum, R.E.; Heinz, A.J. Development and Initial Validation of the Caffeine Consumption Questionnaire-Revised. J. Caffeine Res. 2016, 6, 20–25. [Google Scholar] [CrossRef]
- Batista, P.; Peixoto, J.; Oliveira-Silva, P. An Exploratory Study about the Characterization of Caffeine Consumption in a Portuguese Sample. Behav. Sci. 2022, 912, 386. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef]
- Muñoz, A.; López-Samanes, Á.; Aguilar-Navarro, M.; Varillas-Delgado, D.; Rivilla-García, J.; Moreno-Pérez, V.; Del Coso, J. Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes 2020, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength. Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Chia, J.S.; Barrett, L.A.; Chow, J.Y.; Burns, S.F. Effects of Caffeine Supplementation on Performance in Ball Games. Sports Med. 2017, 47, 2453–2471. [Google Scholar] [CrossRef]
- Rousseau, E.; Ladine, J.; Liu, Q.Y.; Meissner, G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch. Biochem. Biophys. 1988, 267, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Cureton, K.J.; Warren, G.L.; Millard-Stafford, M.L.; Wingo, J.E.; Trilk, J.; Buyckx, M. Caffeinated sports drink: Ergogenic effects and possible mechanisms. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 35–55. [Google Scholar] [CrossRef]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Del Coso, J.; Munoz-Fernandez, V.; Munoz, G.; Fernandez-Elias, V.; Ortega, J.; Hamouti, N. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 2012, 7, e0031380. [Google Scholar] [CrossRef]
- Gant, N.; Ali, A.; Foskett, A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 191–197. [Google Scholar] [CrossRef]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef]
- Astorino, T.A.; Matera, A.J.; Basinger, J.; Evans, M.; Schurman, T.; Marquez, R. Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 2012, 42, 1803–1808. [Google Scholar] [CrossRef]
- Pettersen, S.A.; Krustrup, P.; Bendiksen, M.; Randers, M.B.; Brito, J.; Bangsbo, J. Caffeine supplementation does not affect match activities and fatigue resistance during match play in young football players. J. Sports Sci. 2014, 32, 1958–1965. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Marticorena, F.M.; Grecco, B.H.; Barreto, G.; Saunders, B. Can I have my coffee and drink it? A Systematic Review and Meta-analysis to Determine Whether Habitual Caffeine Consumption Affects the Ergogenic Effect of Caffeine. Sports Med. 2022, 52, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Howatson, G.; Abraham, C.S.; Lockey, R.A.; Goodwin, J.E.; Foley, P.; McInnes, G. Caffeine supplementation and multiple sprint running performance. Med. Sci. Sports Exerc. 2008, 40, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Dawson, B.; Schneiker, K.; Goodman, C.; Lay, B. Effect of caffeine supplementation on repeated sprint running performance. J. Sports Med. Phys. Fitness 2008, 48, 472–478. [Google Scholar]
- Pontifex, K.J.; Wallman, K.E.; Dawson, B.T.; Goodman, C. Effects of caffeine on repeated sprint ability, reactive agility time, sleep and next day performance. J. Sports Med. Phys. Fitness 2010, 50, 455–464. [Google Scholar]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef]
- Sahli, H.; Haddad, M.; Jebabli, N.; Sahli, F.; Ouergui, I.; Ouerghi, N.; Bragazzi, N.L.; Zghibi, M. The Effects of Verbal Encouragement and Compliments on Physical Performance and Psychophysiological Responses During the Repeated Change of Direction Sprint Test. Front. Psychol. 2022, 12, 698673. [Google Scholar] [CrossRef]
- Gutiérrez-Hellín, J.; Ruiz-Moreno, C.; Aguilar-Navarro, M.; Muñoz, A.; Varillas-Delgado, D.; Amaro-Gahete, F.J.; Roberts, J.D.; Del Coso, J. Placebo Effect of Caffeine on Substrate Oxidation during Exercise. Nutrients 2021, 13, 782. [Google Scholar] [CrossRef]
- Hurst, P.; Schipof-Godart, L.; Hettinga, F.; Roelands, B.; Beedie, C. Improved 1000-m Running Performance and Pacing Strategy With Caffeine and Placebo: A Balanced Placebo Design Study. Int. J. Sports Physiol. Perform. 2019, 15, 483–488. [Google Scholar] [CrossRef]
- Tallis, J.; Muhammad, B.; Islam, M.; Duncan, M.J. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve 2016, 54, 479–486. [Google Scholar] [CrossRef]
- Shabir, A.; Hooton, A.; Tallis, J.; Higgins, F.M. The Influence of Caffeine Expectancies on Sport, Exercise, and Cognitive Performance. Nutrients 2018, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Saimaiti, A.; Zhou, D.-D.; Li, J.; Xiong, R.-G.; Gan, R.-Y.; Huang, S.-Y.; Shang, A.; Zhao, C.-N.; Li, H.-Y.; Li, H.-B. Dietary sources, health benefits, and risks of caffeine. Crit. Rev. Food Sci. Nutr. 2023, 63, 9648–9666. [Google Scholar] [CrossRef]
- Grgic, J.; Garofolini, A.; Pickering, C.; Duncan, M.J.; Tinsley, G.M.; Del Coso, J. Isolated effects of caffeine and sodium bicarbonate ingestion on performance in the Yo-Yo test: A systematic review and meta-analysis. J. Sci. Med. Sport 2020, 23, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Donald, C.M.; Moore, J.; McIntyre, A.; Carmody, K.; Donne, B. Acute Effects of 24-h Sleep Deprivation on Salivary Cortisol and Testosterone Concentrations and Testosterone to Cortisol Ratio Following Supplementation with Caffeine or Placebo. Int. J. Exerc. Sci. 2017, 10, 108. [Google Scholar] [CrossRef]
- dePaula, J.; Farah, A. Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages 2019, 5, 37. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Yang, A.; Palmer, A.A.; Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology 2010, 211, 245–257. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef]
- Minaei, S.; Rahimi, M.R.; Mohammadi, H.; Jourkesh, M.; Kreider, R.B.; Forbes, S.C.; Souza-Junior, T.P.; McAnulty, S.R.; Kalman, D. CYP1A2 Genotype Polymorphism Influences the Effect of Caffeine on Anaerobic Performance in Trained Males. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 16–21. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C.; Bishop, D.J.; Schoenfeld, B.J.; Mikulic, P.; Pedisic, Z. CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. J. Int. Soc. Sports Nutr. 2020, 1517, 21. [Google Scholar] [CrossRef]
- Dos Santos, M.P.P.; Spineli, H.; Dos Santos, B.P.; Lima-Silva, A.E.; Gitaí, D.L.; Bishop, D.J.; De Araujo, G.G. The effect of caffeine on exercise performance is not influenced by ADORA2A genotypes, alone or pooled with CYP1A2 genotypes, in adolescent athletes. Eur. J. Nutr. 2023, 62, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Combining Caffeine and Sodium Bicarbonate on Exercise Performance: A Review with Suggestions for Future Research. J. Diet. Suppl. 2021, 18, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D. Dietary supplements and team-sport performance. Sports Med. 2010, 140, 995–1017. [Google Scholar] [CrossRef]
All Participants (n = 54) | Group 1 (n = 14) | Group 2 (n = 12) | Group 3 (n = 15) | Group 4 (n = 13) | p-Value | |
---|---|---|---|---|---|---|
Dose (mg/kg) (Me; IQR; min–max) | 5.77; 0.79; 4.24–8.64 | 5.67; 0.66; 5.12–7.42 | 5.65; 1.55; 4.24–8.64 | 5.82; 0.59; 4.82–6.76 | 5.79; 0.36; 5.38–7.75 | 0.185 |
All Participants (n = 54) | Group 1 (n = 14) | Group 2 (n = 12) | Group 3 (n = 15) | Group 4 (n = 13) | p-Value | |
---|---|---|---|---|---|---|
Age; (Me; IQR; min–max) | 16.5; 1.2; 15.1–17.8 | 16.0; 1.2; 15.1–17.7 | 16.5; 1.3; 15.2–17.8 | 16.6; 1.2; 15.1–17.8 | 16.5; 1.5; 15.5–17.8 | 0.981 |
Maturity status (%) (Me; IQR; min–max) | 98.6; 2; 91–100 | 98; 3; 95–100 | 98; 2.5; 91–99.7 | 99; 0.9; 95–100 | 98.6; 2; 95–100 | 0.818 |
Height (cm); (Me; IQR; min–max) | 180; 9.5; 157–199 | 182; 7.5; 168–192 | 182; 20.8; 157–199 | 179; 6.5; 166–189 | 180; 6; 170–188 | 0.846 |
Body Mass (kg); (Me; IQR; min–max) | 69.2; 9.97; 46.4–94.8 | 70.6; 8.5; 53.9–78.1 | 71.2; 19.8; 46.4–94.8 | 68.8; 7; 59.2–82.3 | 66.7; 4.2; 51.6–73.5 | 0.554 |
BMI (kg/m2); (Me; IQR; min–max) | 21.4; 2.07; 17.9–23.9 | 21.5; 2.2; 19.1–23.5 | 22.1; 2.36; 18.8–23.9 | 21.5; 1.06; 18.8–23.6 | 21.0; 1.1; 17.9–22.4 | 0.450 |
Group 1 (n = 14) | Group 2 (n = 12) | Group 3 (n = 15) | Group 4 (n = 13) | p-Value | |
---|---|---|---|---|---|
Split 5 (Me; IQR; min–max) | 1.1; 0.04; 0.97–1.16 | 1.06; 0.09; 1.01–1.16 | 1.08; 0.04; 0.98–1.14 | 1.09; 0.1; 0.98–1.26 | 0.884 |
Split 10 (Me; IQR; min–max) | 1.84; 0.08; 1.7–1.93 | 1.78; 0.08; 1.71–1.85 | 1.83; 0.06; 1.74–1.92 | 1.83; 0.05; 1.72–2.00 | 0.170 |
Split 20 (Me; IQR; min–max) | 3.08; 0.14; 2.89–3.3 | 3.03; 0.08; 2.95–3.23 | 3.04; 0.11; 2.95–3.19 | 3.05; 0.1; 2.86–3.3 | 0.517 |
Sprint 30 (Me; IQR; min–max) | 4.25; 0.2; 4.04–4.59 | 4.17; 0.07; 4.04–4.5 | 4.22; 0.17; 4.07–4.44 | 4.19; 0.11; 4.02–4.55 | 0.693 |
CMJ (Me; IQR; min–max) | 44.7; 5.2; 35.4–56.9 | 47.1; 7.8; 38.9–53.6 | 44.4; 3.6; 37.4–56.4 | 45.2; 6.2; 39.2–60.4 | 0.968 |
COD (Me; IQR; min–max) | 7.5; 0.4; 7.2–8.4 | 7.4; 0.4; 7.0–7.9 | 7.5; 0.3; 7.1–8.0 | 7.4; 0.4; 6.9–8.1 | 0.479 |
T-test (Me; IQR; min–max) | 8.5; 0.3; 8.1–9.2 | 8.3; 0.3; 8.0–8.8 | 8.4; 0.3; 8.3–8.9 | 8.3; 0.3; 7.9–9.2 | 0.064 |
Dribbling (Me; IQR; min–max) | 9.1; 0.4; 8.6–10.2 | 9.0; 0.6; 8.3–10.3 | 9.1; 0.3; 8.3–10.5 | 9.2; 0.5; 8.4–10.1 | 0.749 |
RSA total (Me; IQR; min–max) | 44.0; 1.7; 42.1–48.2 | 43.1; 1.6; 41.7–47.9 | 44.1; 0.9; 42.2–46.9 | 43.7; 1.9; 41.6–47.1 | 0.869 |
RSA mean (Me; IQR; min–max) | 7.3; 0.3; 7.0–8.0 | 7.3; 0.3; 6.9–8.0 | 7.3; 0.1; 7.0–7.8 | 7.3; 0.3; 6.9–7.8 | 0.869 |
RSA1 (Me; IQR; min–max) | 7.02; 0.3; 6.69–7.73 | 6.89; 0.3; 6.73–7.39 | 7.00; 02; 6.85–7.46 | 6.83; 0.2; 6.72–7.67 | 0.113 |
RSA2 (Me; IQR; min–max) | 7.17; 0.2; 6.79–8.03 | 7.13; 0.4; 5.29–7.55 | 7.22; 0.2; 6.84–7.71 | 7.11; 0.4; 6.83–7.72 | 0.645 |
RSA3 (Me; IQR; min–max) | 7.36; 0.4; 6.94–8.12 | 7.34; 0.4; 6.88–7.96 | 7.39; 0.2; 6.89–7.85 | 7.22; 0.5; 6.76–7.66 | 0.746 |
RSA4 (Me; IQR; min–max) | 7.56; 0.3; 6.94–8.01 | 7.36; 0.3; 7.01–8.11 | 7.45; 0.3; 6.98–7.85 | 7.51; 0.4; 7.00–8.04 | 0.921 |
RSA5 (Me; IQR; min–max) | 7.59; 0.3; 7.09–8.20 | 7.32; 0.4; 7.04–8.68 | 7.56; 0.2; 7.25–7.96 | 7.54; 0.3; 7.06–8.17 | 0.328 |
RSA6 (Me; IQR; min–max) | 7.51; 0.5; 7.21–8.09 | 7.52; 0.4; 7.11–8.87 | 7.53; 0.2; 7.23–8.12 | 7.62; 0.4; 7.20–8.28 | 0.476 |
RSA best (Me; IQR; min–max) | 7.02; 0.279; 6.69–7.73 | 6.88; 0.4; 5.29–7.39 | 6.95; 0.2; 6.84–7.46 | 6.83; 0.2; 6.72–7.66 | 0.137 |
RSA1–3 (Me; IQR; min–max) | 21.6; 1; 20.6–23.9 | 21.2; 1; 19.4–22.9 | 21.6; 0.6; 20.6–23.0 | 21.2; 1; 20.3; 23.1 | 0.591 |
RSA4–6 (Me; IQR; min–max) | 22.8; 0.7; 21.2–24.3 | 22.1; 0.764; 21.2–25.5 | 22.5; 0.6; 21.6–23.9 | 22.5; 0.6; 21.6–23.9 | 0.350 |
RSA1–3–RSA4–6 (Me; IQR; min–max) | −0.93; 0.7; −2.05–−0.352 | −0.82; 0.7; −3.16–0.121 | −0.99; 0.4; −1.53–0.028 | −0.938; 0.3; −1.53–0.028 | 0.050 |
FI (Me; IQR; min–max) | 7.9; 3.4; 4.0–15.6 | 9.2; 5.2; 4.2–45.1 | 8.6; 2.8; 4.8–11.8 | 10.2; 1.8; 5.0–20.1 | 0.257 |
Sdec (Me; IQR; min–max) | 4.5; 1.3; 1.2–7.5 | 4.6; 2.6; 2.1–31.9 | 4.7; 2.3; 2.6–7.2 | 6.1; 1.7; 2.5–9.4 | 0.251 |
Group 1 (n = 14) | Group 2 (n = 12) | Group 3 (n = 15) | Group 4 (n = 13) | |||||
---|---|---|---|---|---|---|---|---|
Contr. day | Exp. day | Contr. day | Exp. day | Contr. day | Exp. day | Contr. day | Exp. day | |
Split 5 (Me; IQR; min–max) | 1.1; 0.04; 0.97–1.16 | 1.04; 0.12; 0.97–1.93 | 1.06; 0.09; 1.01–1.16 | 1.08; 0.08; 1.0–1.2 | 1.08; 0.04; 0.98–1.14 | 1.09; 0.1; 0.99–1.2 | 1.09; 0.1; 0.98–1.26 | 1.02; 0.05; 0.98–1.21 |
p-value | 0.086 | 0.553 | 0.155 | 0.080 | ||||
Split 10 (Me; IQR; min–max) | 1.84; 0.08; 1.7–1.93 | 1.79; 0.11; 1.67–1.97 | 1.78; 0.08; 1.71–1.85 | 1.83; 0.11; 1.73–1.92 | 1.83; 0.06; 1.74–1.92 | 1.83; 0.11; 1.75–1.94 | 1.83; 0.05; 1.72–2.00 | 1.78; 0.09; 1.7–1.91 |
p-value | 0.137 | 0.075 | 0.405 | 0.054 | ||||
Split 20 (Me; IQR; min–max) | 3.08; 0.14; 2.89–3.3 | 3.05; 0.17; 2.87–3.28 | 3.03; 0.08; 2.95–3.23 | 3.06; 0.09; 2.96–3.25 | 3.04; 0.11; 2.95–3.19 | 3.04; 0.17; 2.96–3.25 | 3.05; 0.1; 2.86–3.3 | 3.04; 0.15; 2.87–3.26 |
p-value | 0.073 | 0.038 | 0.201 | 0.198 | ||||
Sprint 30 (Me; IQR; min–max) | 4.25; 0.2; 4.04–4.59 | 4.22; 0.24; 3.96–4.57 | 4.17; 0.07; 4.04–4.5 | 4.23; 0.09; 4.1–4.61 | 4.22; 0.17; 4.07–4.44 | 4.2; 0.22; 4.05–4.53 | 4.19; 0.11; 4.02–4.55 | 4.18; 0.2; 3.96–4.6 |
p-value | 0.077 | 0.025 | 0.229 | 0.152 | ||||
CMJ (Me; IQR; min–max) | 44.7; 5.2; 35.4–56.9 | 45.5; 6.3; 35.1–56.4 | 47.1; 7.8; 38.9–53.6 | 45.7; 5.2; 38.7–56.0 | 44.4; 3.6; 37.4–56.4 | 44.4; 6.3; 38.6–54.7 | 45.2; 6.2; 39.2–60.4 | 44.4; 5.4; 38.2–61.5 |
p-value | 0.929 | 0.818 | 0.631 | 0.631 | ||||
COD (Me; IQR; min–max) | 7.5; 0.4; 7.2–8.4 | 7.4; 0.4; 7.1–7.9 | 7.4; 0.4; 7.0–7.9 | 7.4; 0.4; 7.0–7.9 | 7.5; 0.3; 7.1–8.0 | 7.5; 0.2; 7.1–8.0 | 7.4; 0.4; 6.9–8.1 | 7.4; 0.4; 6.9–8.1 |
p-value | 0.126 | 0.479 | 0.683 | 0.949 | ||||
T-test (Me; IQR; min–max) | 8.5; 0.3; 8.1–9.2 | 8.5; 0.3; 8.0–9.0 | 8.3; 0.3; 8.0–8.8 | 8.4; 0.4; 7.9–8.7 | 8.4; 0.3; 8.3–8.9 | 8.4; 0.3; 8.0–8.7 | 8.3; 0.3; 7.9–9.2 | 8.3; 0.2; 7.8–9.0 |
p-value | 0.175 | 0.519 | 0.476 | 0.542 | ||||
Dribbling (Me; IQR; min–max) | 9.1; 0.4; 8.6–10.2 | 8.9; 0.4; 8.1–10.0 | 9.0; 0.6; 8.3–10.3 | 9.0; 0.6; 7.9–9.9 | 9.1; 0.3; 8.3–10.5 | 9.1; 0.4; 8.4–10.1 | 9.2; 0.5; 8.4–10.1 | 8.8; 0.5; 8.4–10.0 |
p-value | 0.048 | 0.228 | 0.679 | 0.064 |
Group 1 (n = 14) | Group 2 (n = 12) | Group 3 (n = 15) | Group 4 (n = 13) | |||||
---|---|---|---|---|---|---|---|---|
Contr. day | Exp. day | Contr. day | Exp. day | Contr. day | Exp. day | Contr. day | Exp. day | |
RSA total (Me; IQR; min–max) | 44.0; 1.7; 42.1–48.2 | 44.2; 1.4; 41.9–46.6 | 43.1; 1.6; 41.7–47.9 | 44.1; 2.1; 42.5–47.0 | 44.1; 0.9; 42.2–46.9 | 43.9; 1.0; 42.1–46.7 | 43.7; 1.9; 41.6–47.1 | 44.0; 1.5; 40.8–46.3 |
p | 0.226 | 0.054 | 0.178 | 0.226 | ||||
RSA mean (Me; IQR; min–max) | 7.3; 0.3; 7.0–8.0 | 7.4; 0.2; 7.0–7.8 | 7.3; 0.3; 6.9–8.0 | 7.2; 0.3; 7.1–7.8 | 7.3; 0.1; 7.0–7.8 | 7.3; 0.2; 7.0–7.8 | 7.3; 0.3; 6.9–7.8 | 7.3; 0.2; 6.8–7.7 |
p-value | 0.226 | 0.055 | 0.178 | 0.226 | ||||
RSA1 (Me; IQR; min–max) | 7.02; 0.3; 6.69–7.73 | 7.03; 0.3; 6.70–7.44 | 6.89; 0.3; 6.73–7.39 | 7.09; 0.3; 6.68–7.31 | 7.00; 02; 6.85–7.46 | 7.03; 0.3; 6.70–7.57 | 6.83; 0.2; 6.72–7.67 | 7.03; 0.3; 6.70–7.57 |
p-value | 0.538 | 0.163 | 0.258 | 0.057 | ||||
RSA2 (Me; IQR; min–max) | 7.17; 0.2; 6.79–8.03 | 7.19; 0.3; 6.88–7.64 | 7.13; 0.4; 5.29–7.55 | 7.17; 0.3; 6.96–7.53 | 7.22; 0.2; 6.84–7.71 | 7.2; 0.2; 6.85–7.67 | 7.11; 0.4; 6.83–7.72 | 7.20; 0.2; 6.85–7.67 |
p-value | 0.321 | 0.092 | 0.369 | 0.685 | ||||
RSA3 (Me; IQR; min–max) | 7.36; 0.4; 6.94–8.12 | 7.36; 0.4; 6.95–7.72 | 7.34; 0.4; 6.88–7.96 | 7.39; 0.3; 6.99–7.59 | 7.39; 0.2; 6.89–7.85 | 7.32; 0.2; 6.83–7.89 | 7.22; 0.5; 6.76–7.66 | 7.32; 0.2; 6.83–7.89 |
p-value | 0.584 | 0.783 | 0.684 | 0.962 | ||||
RSA4 (Me; IQR; min–max) | 7.56; 0.3; 6.94–8.01 | 7.45; 0.5; 6.98–7.87 | 7.36; 0.3; 7.01–8.11 | 7.42; 0.4; 7.19–8.19 | 7.45; 0.3; 6.98–7.85 | 7.43; 0.2; 6.80–7.91 | 7.51; 0.4; 7.00–8.04 | 7.43; 0.2; 6.80–7.91 |
p-value | 0.079 | 0.266 | 0.523 | 0.039 | ||||
RSA5 (Me; IQR; min–max) | 7.59; 0.3; 7.09–8.20 | 7.46; 0.3; 7.07–7.96 | 7.32; 0.4; 7.04–8.68 | 7.51; 0.4; 7.28–8.46 | 7.56; 0.2; 7.25–7.96 | 7.43; 0.3; 7.18–7.78 | 7.54; 0.3; 7.06–8.17 | 7.43; 0.4; 7.18–7.78 |
p-value | 0.069 | 0.065 | 0.029 | 0.156 | ||||
RSA6 (Me; IQR; min–max) | 7.51; 0.5; 7.21–8.09 | 7.44; 0.5; 7.06–8.07 | 7.52; 0.4; 7.11–8.87 | 7.55; 0.4; 7.24–8.33 | 7.53; 0.2; 7.23–8.12 | 7.55; 0.1; 7.10–7.88 | 7.62; 0.4; 7.20–8.28 | 7.55; 0.1; 7.10–7.88 |
p-value | 0.220 | 0.519 | 0.992 | 0.005 | ||||
RSA best (Me; IQR; min–max) | 7.02; 0.279; 6.69–7.73 | 7.03; 0.3; 6.70–7.38 | 6.88; 0.4; 5.29–7.39 | 7.09; 0.3; 6.68–7.31 | 6.95; 0.2; 6.84–7.46 | 7.0; 0.3; 6.70–7.57 | 6.83; 0.2; 6.72–7.66 | 7.07; 0.3; 6.60–7.55 |
p-value | 0.476 | 0.064 | 0.489 | 0.057 | ||||
RSA1–3 (Me; IQR; min–max) | 21.6; 1; 20.6–23.9 | 21.6; 0.9; 20.6–22.7 | 21.2; 1; 19.4–22.9 | 21.7; 0.9; 20.6–22.4 | 21.6; 0.6; 20.6–23.0 | 21.7; 0.7; 20.4–23.1 | 21.2; 1; 20.3; 23.1 | 21.7; 0.6; 20.4–23.1 |
p-value | 0.428 | 0.146 | 0.313 | 0.328 | ||||
RSA4–6 (Me; IQR; min–max) | 22.8; 0.7; 21.2–24.3 | 22.4; 0.9; 21.3–23.9 | 22.1; 0.764; 21.2–25.5 | 22.4; 1.1; 21.9–25.0 | 22.5; 0.6; 21.6–23.9 | 22.4; 0.3; 21.6–23.6 | 22.5; 0.6; 21.6–23.9 | 22.4; 0.2; 21.6–23.6 |
p-value | 0.05 | 0.110 | 0.273 | 0.479 | ||||
RSA1–3–RSA4–6 (Me; IQR; min–max) | −0.93; 0.7; −2.05–−0.352 | −0.85; 0.6; −1.52–−0.237 | −0.82; 0.7; −3.16–0.121 | −0.94; 0.5; −2.95–−0.64 | −0.99; 0.4; −1.53–0.028 | −0.829; 0.5; −1.93–−0.05 | −0.938; 0.3; −1.53–0.028 | −0.79; 0.6; −1.93–−0.05 |
p-value | 0.385 | 0.733 | 0.742 | 0.860 | ||||
FI (Me; IQR; min–max) | 7.9; 3.4; 4.0–15.6 | 7.4; 2.2; 2.2–12.9 | 9.2; 5.2; 4.2–45.1 | 8.0; 2.3; 5.6–17.2 | 8.6; 2.8; 4.8–11.8 | 8.0; 4.1; 4.5–16.7 | 10.2; 1.8; 5.0–20.1 | 6.7; 3.8; 3.5–12.0 |
p-value | <0.001 | 0.266 | 0.847 | < 0.001 | ||||
Sdec (Me; IQR; min–max) | 4.5; 1.3; 1.2–7.5 | 4.2; 1.3; 1.3–6.8 | 4.6; 2.6; 2.1–31.9 | 4.7; 1.7; 2.2–8.5 | 4.7; 2.3; 2.6–7.2 | 4.9; 1.4; 2.8–7.6 | 6.1; 1.7; 2.5–9.4 | 3.3; 1.2; 1.5–7.3 |
p-value | <0.001 | 0.301 | 0.867 | <0.001 |
Group 1 (n = 14) | Group 2 (n = 12) | Group 3 (n = 15) | Group 4 (n = 13) | p-Value | |
---|---|---|---|---|---|
Insomnia | 1 (7.1%) | 0 (0%) | 1 (6.6%) | 1 (7.7%) | 0.82 |
Increased urine production | 0 | 0 | 0 | 1 (7.7%) | - |
Gastrointestinal problems | 2 (14.3%) | 2 (16.7%) | 0 | 1 (7.7%) | 0.82 |
Restlessness | 4 (28.6%) | 3 (25%) | 1 (6.6%) | 3 (23.1%) | 0.47 |
Headache | 3 (21.4%) | 0 | 0 | 2 (15.4%) | 0.67 |
Irritability | 0 | 0 | 1 (6.6%) | 3 (23.1%) | 0.22 |
Muscular pain | 3 (21.4%) | 3 (25%) | 5 (33.3%) | 2 (15.4%) | 0.73 |
Tachycardia/palpitations | 0 | 0 | 0 | 1 (7.7%) | - |
Number of participants with at least one adverse event | 9 | 5 | 6 | 6 | 0.56 |
Group 1 and 4 | Group 2 and 3 | p-Value | |
---|---|---|---|
Insomnia | 2 (7.4%) | 0 | 0.15 |
Increased urine production | 1 (3.7%) | 0 | 0.30 |
Gastrointestinal problems | 3 (11.1%) | 2 (7.4%) | 0.64 |
Increased activeness | 7 (25.9%) | 4 (14.8%) | 0.31 |
Headache | 5 (18.5%) | 0 | 0.019 |
Irritability | 3 (11.1%) | 1 (3.7%) | 0.30 |
Muscular pain | 5 (18.5%) | 8 (29.6%) | 0.34 |
Tachycardia/palpitations | 1 (3.7%) | 0 | 0.30 |
Number of participants with at least one adverse event | 15 (55.5%) | 11 (40.7%) | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezuglov, E.; Vakhidov, T.; Morgans, R.; Malyakin, G.; Emanov, A.; Koroleva, E.; Kapralova, E.; Talibov, O. Caffeine Effects on Physical Performance and Sport-Specific Skills in Elite Youth Soccer Players: A Randomised Trial Using the Balanced Placebo Design. Sports 2025, 13, 106. https://doi.org/10.3390/sports13040106
Bezuglov E, Vakhidov T, Morgans R, Malyakin G, Emanov A, Koroleva E, Kapralova E, Talibov O. Caffeine Effects on Physical Performance and Sport-Specific Skills in Elite Youth Soccer Players: A Randomised Trial Using the Balanced Placebo Design. Sports. 2025; 13(4):106. https://doi.org/10.3390/sports13040106
Chicago/Turabian StyleBezuglov, Eduard, Timur Vakhidov, Ryland Morgans, Georgiy Malyakin, Anton Emanov, Egana Koroleva, Elizaveta Kapralova, and Oleg Talibov. 2025. "Caffeine Effects on Physical Performance and Sport-Specific Skills in Elite Youth Soccer Players: A Randomised Trial Using the Balanced Placebo Design" Sports 13, no. 4: 106. https://doi.org/10.3390/sports13040106
APA StyleBezuglov, E., Vakhidov, T., Morgans, R., Malyakin, G., Emanov, A., Koroleva, E., Kapralova, E., & Talibov, O. (2025). Caffeine Effects on Physical Performance and Sport-Specific Skills in Elite Youth Soccer Players: A Randomised Trial Using the Balanced Placebo Design. Sports, 13(4), 106. https://doi.org/10.3390/sports13040106