Yoga for Neurodegenerative Disorders: Therapeutic Effects, Mechanisms, and Applications in Alzheimer’s and Parkinson’s Disease
Abstract
1. Introduction
2. Methodological Approach
3. Neurodegenerative Diseases
3.1. Alzheimer’s Disease
3.2. Parkinson’s Disease
4. Potential Beneficial Effect of Yoga on AD and Cognitive Function
5. Potential Beneficial Effect of Yoga on PD
6. General Effects of Yoga on Neurodegenerative Diseases
7. Discussion
7.1. Methodological Limitations and Challenges
7.2. Future Directions for Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krause-Sorio, B.; Siddarth, P.; Kilpatrick, L.; Milillo, M.M.; Aguilar-Faustino, Y.; Ercoli, L.; Narr, K.L.; Khalsa, D.S.; Lavretsky, H. Yoga Prevents Gray Matter Atrophy in Women at Risk for Alzheimer’s Disease: A Randomized Controlled Trial. J. Alzheimers Dis. 2022, 87, 569–581. [Google Scholar] [CrossRef]
- Srivastava, R.A.K. Life-Style-Induced Metabolic Derangement and Epigenetic Changes Promote Diabetes and Oxidative Stress Leading to NASH and Atherosclerosis Severity. J. Diabetes Metab. Disord. 2018, 17, 381–391. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Dumitrascu, D.I.; Capitanescu, B.; Petcu, E.B.; Surugiu, R.; Fang, W.-H.; Dumbrava, D.-A. Dietary Habits, Lifestyle Factors and Neurodegenerative Diseases. Neural Regen. Res. 2020, 15, 394. [Google Scholar] [CrossRef]
- Montesano, P.; Mazzeo, F. Improvement in soccer learning and methodology for young athletes. J. Phys. Educ. Sport (JPES) 2019, 19, 795–801. [Google Scholar] [CrossRef]
- Ruggiero, M.; Montesano, P.; Ferrante, L.; Mennitti, C.; Scudiero, O.; Mazzeo, F. Unified Sports for Inclusive Education: Assessing Basketball’s Role in Supporting Students with Special Educational Needs—A Pilot Study. Disabilities 2025, 5, 102. [Google Scholar] [CrossRef]
- Filannino, F.M.; Ruggiero, M.; Panaro, M.A.; Lofrumento, D.D.; Trotta, T.; Benameur, T.; Cianciulli, A.; Calvello, R.; Zoila, F.; Porro, C. Irisin Attenuates Neuroinflammation Targeting the NLRP3 Inflammasome. Molecules 2024, 29, 5623. [Google Scholar] [CrossRef]
- Erwin Wells, R.; Phillips, R.S.; McCarthy, E.P. Patterns of Mind-Body Therapies in Adults with Common Neurological Conditions. Neuroepidemiology 2010, 36, 46–51. [Google Scholar] [CrossRef]
- Mooventhan, A.; Nivethitha, L. Evidence Based Effects of Yoga in Neurological Disorders. J. Clin. Neurosci. 2017, 43, 61–67. [Google Scholar] [CrossRef]
- Brown, A.; Bayley, P.J. The Therapeutic Potential of Yoga for Alzheimer’s Disease: A Critical Review. J. Alzheimer’s Dis. 2024, 101, S521–S535. [Google Scholar] [CrossRef]
- Hüttenrauch, M.; Lopez-Noguerola, J.S.; Castro-Obregón, S. Connecting Mind-Body Therapy-Mediated Effects to Pathological Features of Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 82, S65–S90. [Google Scholar] [CrossRef]
- Bega, D.; Gonzalez-Latapi, P.; Zadikoff, C.; Simuni, T. A Review of the Clinical Evidence for Complementary and Alternative Therapies in Parkinson’s Disease. Curr. Treat. Options Neurol. 2014, 16, 314. [Google Scholar] [CrossRef]
- Burley, M. Haṭha-Yoga: Its Context, Theory, and Practice; Motilal Banarsidass Publishers Private Limited: New Delhi, India, 2000; ISBN 978-81-208-1706-7. [Google Scholar]
- Gothe, N.P.; Khan, I.; Hayes, J.; Erlenbach, E.; Damoiseaux, J.S. Yoga Effects on Brain Health: A Systematic Review of the Current Literature. Brain Plast. 2019, 5, 105–122. [Google Scholar] [CrossRef]
- Mohammad, A.; Thakur, P.; Kumar, R.; Kaur, S.; Saini, R.V.; Saini, A.K. Biological Markers for the Effects of Yoga as a Complementary and Alternative Medicine. J. Complement. Integr. Med. 2019, 16, 20180094. [Google Scholar] [CrossRef]
- Ramamoorthi, R.; Gahreman, D.; Skinner, T.; Moss, S. The Effect of Yoga Practice on Glycemic Control and Other Health Parameters in the Prediabetic State: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0221067. [Google Scholar] [CrossRef]
- Tolahunase, M.R.; Sagar, R.; Faiq, M.; Dada, R. Yoga- and Meditation-Based Lifestyle Intervention Increases Neuroplasticity and Reduces Severity of Major Depressive Disorder: A Randomized Controlled Trial. Restor. Neurol. Neurosci. 2018, 36, 423–442. [Google Scholar] [CrossRef]
- Burtscher, J.; Millet, G.P.; Place, N.; Kayser, B.; Zanou, N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int. J. Mol. Sci. 2021, 22, 6479. [Google Scholar] [CrossRef]
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef]
- Marques-Aleixo, I.; Beleza, J.; Sampaio, A.; Stevanović, J.; Coxito, P.; Gonçalves, I.; Ascensão, A.; Magalhães, J. Preventive and Therapeutic Potential of Physical Exercise in Neurodegenerative Diseases. Antioxid. Redox Signal. 2021, 34, 674–693. [Google Scholar] [CrossRef]
- Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 2022, 27, 3194. [Google Scholar] [CrossRef]
- Doroszkiewicz, J.; Groblewska, M.; Mroczko, B. Molecular Biomarkers and Their Implications for the Early Diagnosis of Selected Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 4610. [Google Scholar] [CrossRef]
- Zheng, J.C.; Chen, S. Translational Neurodegeneration in the Era of Fast Growing International Brain Research. Transl. Neurodegener. 2022, 11, 1. [Google Scholar] [CrossRef]
- Azam, H.M.H.; Rößling, R.I.; Geithe, C.; Khan, M.M.; Dinter, F.; Hanack, K.; Prüß, H.; Husse, B.; Roggenbuck, D.; Schierack, P.; et al. MicroRNA Biomarkers as Next-Generation Diagnostic Tools for Neurodegenerative Diseases: A Comprehensive Review. Front. Mol. Neurosci. 2024, 17, 1386735. [Google Scholar] [CrossRef]
- Erkkinen, M.G.; Kim, M.-O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018, 10, a033118. [Google Scholar] [CrossRef]
- Azam, S.; Haque, M.E.; Balakrishnan, R.; Kim, I.-S.; Choi, D.-K. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front. Cell Dev. Biol. 2021, 9, 683459. [Google Scholar] [CrossRef] [PubMed]
- Alsaleh, G.; Richter, F.C.; Simon, A.K. Age-Related Mechanisms in the Context of Rheumatic Disease. Nat. Rev. Rheumatol. 2022, 18, 694–710. [Google Scholar] [CrossRef] [PubMed]
- Leandro, G.S.; Sykora, P.; Bohr, V.A. The Impact of Base Excision DNA Repair in Age-Related Neurodegenerative Diseases. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2015, 776, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Bai, P.; Nagy, L.; Fodor, T.; Liaudet, L.; Pacher, P. Poly(ADP-Ribose) Polymerases as Modulators of Mitochondrial Activity. Trends Endocrinol. Metab. 2015, 26, 75–83. [Google Scholar] [CrossRef]
- Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The Genetic Architecture of Parkinson’s Disease. Lancet Neurol. 2020, 19, 170–178. [Google Scholar] [CrossRef]
- Fang, E.F.; Lautrup, S.; Hou, Y.; Demarest, T.G.; Croteau, D.L.; Mattson, M.P.; Bohr, V.A. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol. Med. 2017, 23, 899–916. [Google Scholar] [CrossRef]
- Huynh, J.L.; Garg, P.; Thin, T.H.; Yoo, S.; Dutta, R.; Trapp, B.D.; Haroutunian, V.; Zhu, J.; Donovan, M.J.; Sharp, A.J.; et al. Epigenome-Wide Differences in Pathology-Free Regions of Multiple Sclerosis–Affected Brains. Nat. Neurosci. 2014, 17, 121–130. [Google Scholar] [CrossRef]
- Huang, L.-K.; Chao, S.-P.; Hu, C.-J. Clinical Trials of New Drugs for Alzheimer Disease. J. Biomed. Sci. 2020, 27, 18. [Google Scholar] [CrossRef]
- Jeppesen, D.K.; Bohr, V.A.; Stevnsner, T. DNA Repair Deficiency in Neurodegeneration. Prog. Neurobiol. 2011, 94, 166–200. [Google Scholar] [CrossRef]
- Piancone, F.; La Rosa, F.; Marventano, I.; Saresella, M.; Clerici, M. The Role of the Inflammasome in Neurodegenerative Diseases. Molecules 2021, 26, 953. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, M. Molecular and Cellular Mechanisms of Selective Vulnerability in Neurodegenerative Diseases. Nat. Rev. Neurosci. 2024, 25, 351–371. [Google Scholar] [CrossRef]
- Wilson, D.M.; Cookson, M.R.; Bosch, L.V.D.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of Neurodegenerative Diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Li, S.; Lei, Z.; Sun, T. The Role of microRNAs in Neurodegenerative Diseases: A Review. Cell Biol. Toxicol. 2023, 39, 53–83. [Google Scholar] [CrossRef]
- Jadhav, S.P. MicroRNAs in Microglia: Deciphering Their Role in Neurodegenerative Diseases. Front. Cell. Neurosci. 2024, 18, 1391537. [Google Scholar] [CrossRef]
- Caligiore, D.; Giocondo, F.; Silvetti, M. The Neurodegenerative Elderly Syndrome (NES) Hypothesis: Alzheimer and Parkinson Are Two Faces of the Same Disease. IBRO Neurosci. Rep. 2022, 13, 330–343. [Google Scholar] [CrossRef]
- Caligiore, D.; Silvetti, M.; D’Amelio, M.; Puglisi-Allegra, S.; Baldassarre, G. Computational Modeling of Catecholamines Dysfunction in Alzheimer’s Disease at Pre-Plaque Stage. J. Alzheimer’s Dis. 2020, 77, 275–290. [Google Scholar] [CrossRef]
- De Marco, M.; Venneri, A. Volume and Connectivity of the Ventral Tegmental Area Are Linked to Neurocognitive Signatures of Alzheimer’s Disease in Humans. J. Alzheimer’s Dis. 2018, 63, 167–180. [Google Scholar] [CrossRef]
- Nobili, A.; Latagliata, E.C.; Viscomi, M.T.; Cavallucci, V.; Cutuli, D.; Giacovazzo, G.; Krashia, P.; Rizzo, F.R.; Marino, R.; Federici, M.; et al. Dopamine Neuronal Loss Contributes to Memory and Reward Dysfunction in a Model of Alzheimer’s Disease. Nat. Commun. 2017, 8, 14727. [Google Scholar] [CrossRef]
- Bogdan, R.; Hyde, L.W.; Hariri, A.R. A Neurogenetics Approach to Understanding Individual Differences in Brain, Behavior, and Risk for Psychopathology. Mol. Psychiatry 2013, 18, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Park, C.; Brietzke, E.; Zuckerman, H.; Rong, C.; Mansur, R.B.; Fus, D.; Subramaniapillai, M.; Lee, Y.; McIntyre, R.S. Cognitive Impairment in Major Depressive Disorder. CNS Spectr. 2019, 24, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Stelzmann, R.A.; Norman Schnitzlein, H.; Reed Murtagh, F. An English Translation of Alzheimer’s 1907 Paper, “Über Eine Eigenartige Erkankung Der Hirnrinde”. Clin. Anat. 1995, 8, 429–431. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.J.; Aisen, P.S.; De Strooper, B.; Fox, N.C.; Lemere, C.A.; Ringman, J.M.; Salloway, S.; Sperling, R.A.; Windisch, M.; Xiong, C. Autosomal-Dominant Alzheimer’s Disease: A Review and Proposal for the Prevention of Alzheimer’s Disease. Alzheimer’s Res. Ther. 2011, 3, 1. [Google Scholar] [CrossRef]
- Escott-Price, V.; Sims, R.; Bannister, C.; Harold, D.; Vronskaya, M.; Majounie, E.; Badarinarayan, N.; Morgan, K.; Passmore, P.; Holmes, C.; et al. Common Polygenic Variation Can Predict Risk of Alzheimer’s Disease. Brain 2015, 138, 3673–3684. [Google Scholar] [CrossRef]
- Altmann, A.; Tian, L.; Henderson, V.W.; Greicius, M.D.; Investigators, A.D.N.I. Sex Modifies the APOE-Related Risk of Developing Alzheimer Disease. Ann. Neurol. 2014, 75, 563–573. [Google Scholar] [CrossRef]
- Filippini, N.; MacIntosh, B.J.; Hough, M.G.; Goodwin, G.M.; Frisoni, G.B.; Smith, S.M.; Matthews, P.M.; Beckmann, C.F.; Mackay, C.E. Distinct Patterns of Brain Activity in Young Carriers of the APOE-Ε4 Allele. Proc. Natl. Acad. Sci. USA 2009, 106, 7209–7214. [Google Scholar] [CrossRef]
- Morrison, J.H.; Brinton, R.D.; Schmidt, P.J.; Gore, A.C. Estrogen, Menopause, and the Aging Brain: How Basic Neuroscience Can Inform Hormone Therapy in Women. J. Neurosci. 2006, 26, 10332–10348. [Google Scholar] [CrossRef]
- Whitehouse, P.J.; Price, D.L.; Clark, A.W.; Coyle, J.T.; DeLong, M.R. Alzheimer Disease: Evidence for Selective Loss of Cholinergic Neurons in the Nucleus Basalis. Ann. Neurol. 1981, 10, 122–126. [Google Scholar] [CrossRef]
- Coyle, J.T.; Price, D.L.; DeLong, M.R. Alzheimer’s Disease: A Disorder of Cortical Cholinergic Innervation. Science 1983, 219, 1184–1190. [Google Scholar] [CrossRef]
- Ishola, I.O.; Adamson, F.M.; Adeyemi, O.O. Ameliorative Effect of Kolaviron, a Biflavonoid Complex from Garcinia Kola Seeds against Scopolamine-Induced Memory Impairment in Rats: Role of Antioxidant Defense System. Metab. Brain Dis. 2017, 32, 235–245. [Google Scholar] [CrossRef]
- Armstrong, R.A. The Pathogenesis of Alzheimer′s Disease: A Reevaluation of the “Amyloid Cascade Hypothesis”. Int. J. Alzheimer’s Dis. 2011, 2011, 630865. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef]
- Binder, L.I.; Guillozet-Bongaarts, A.L.; Garcia-Sierra, F.; Berry, R.W. Tau, Tangles, and Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2005, 1739, 216–223. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Hasselmo, M.E. The Role of Acetylcholine in Learning and Memory. Curr. Opin. Neurobiol. 2006, 16, 710–715. [Google Scholar] [CrossRef]
- He, Y.; Zhu, J.; Huang, F.; Qin, L.; Fan, W.; He, H. Age-Dependent Loss of Cholinergic Neurons in Learning and Memory-Related Brain Regions and Impaired Learning in SAMP8 Mice with Trigeminal Nerve Damage. Neural Regen. Res. 2014, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
- Maurer, S.V.; Williams, C.L. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front. Immunol. 2017, 8, 1489. [Google Scholar] [CrossRef] [PubMed]
- Pinto, T.; Lanctôt, K.L.; Herrmann, N. Revisiting the Cholinergic Hypothesis of Behavioral and Psychological Symptoms in Dementia of the Alzheimer’s Type. Ageing Res. Rev. 2011, 10, 404–412. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s Disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Burns, J.M.; Galvin, J.E.; Roe, C.M.; Morris, J.C.; McKeel, D.W. The Pathology of the Substantia Nigra in Alzheimer Disease with Extrapyramidal Signs. Neurology 2005, 64, 1397–1403. [Google Scholar] [CrossRef]
- Gibb, W.R.; Mountjoy, C.Q.; Mann, D.M.; Lees, A.J. The Substantia Nigra and Ventral Tegmental Area in Alzheimer’s Disease and Down’s Syndrome. J. Neurol. Neurosurg. Psychiatry 1989, 52, 193–200. [Google Scholar] [CrossRef]
- Storga, D.; Vrecko, K.; Birkmayer, J.G.D.; Reibnegger, G. Monoaminergic Neurotransmitters, Their Precursors and Metabolites in Brains of Alzheimer Patients. Neurosci. Lett. 1996, 203, 29–32. [Google Scholar] [CrossRef]
- Martorana, A.; Koch, G. Is Dopamine Involved in Alzheimer’s Disease? Front. Aging Neurosci. 2014, 6, 252. [Google Scholar] [CrossRef]
- Ceyzériat, K.; Gloria, Y.; Tsartsalis, S.; Fossey, C.; Cailly, T.; Fabis, F.; Millet, P.; Tournier, B.B. Alterations in Dopamine System and in Its Connectivity with Serotonin in a Rat Model of Alzheimer’s Disease. Brain Commun. 2021, 3, fcab029. [Google Scholar] [CrossRef] [PubMed]
- Vakalopoulos, C. Alzheimer’s Disease: The Alternative Serotonergic Hypothesis of Cognitive Decline. J. Alzheimer’s Dis. 2017, 60, 859–866. [Google Scholar] [CrossRef]
- Whiley, L.; Chappell, K.E.; D’Hondt, E.; Lewis, M.R.; Jiménez, B.; Snowden, S.G.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; et al. Metabolic Phenotyping Reveals a Reduction in the Bioavailability of Serotonin and Kynurenine Pathway Metabolites in Both the Urine and Serum of Individuals Living with Alzheimer’s Disease. Alzheimer’s Res. Ther. 2021, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Gao, Y.; Zeng, M.; Wang, Y.; Wei, T.-F.; Lu, Y.-B.; Zhang, W.-P. Nicotinamide Ribose Ameliorates Cognitive Impairment of Aged and Alzheimer’s Disease Model Mice. Metab. Brain Dis. 2019, 34, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the Pathologic Process in Alzheimer Disease: Age Categories From 1 to 100 Years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [Google Scholar] [CrossRef]
- Mathers, B.; Agur, A.; Oliver, M.; Gordon, K. Biaxial Quantification of Deep Layer Transverse Carpal Ligament Elastic Properties by Sex and Region. Clin. Biomech. 2016, 40, 58–62. [Google Scholar] [CrossRef]
- Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.R.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; et al. Monoaminergic Neuropathology in Alzheimer’s Disease. Prog. Neurobiol. 2017, 151, 101–138. [Google Scholar] [CrossRef] [PubMed]
- Weinshenker, D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci. 2018, 41, 211–223. [Google Scholar] [CrossRef]
- Parkinson, J. An Essay on the Shaking Palsy. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 223–236. [Google Scholar] [CrossRef]
- Twelves, D.; Perkins, K.S.M.; Counsell, C. Systematic Review of Incidence Studies of Parkinson’s Disease. Mov. Disord. 2003, 18, 19–31. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef]
- Kaltenboeck, A.; Johnson, S.J.; Davis, M.R.; Birnbaum, H.G.; Carroll, C.A.; Tarrants, M.L.; Siderowf, A.D. Direct Costs and Survival of Medicare Beneficiaries with Early and Advanced Parkinson’s Disease. Park. Relat. Disord. 2012, 18, 321–326. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson Disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Sung, V.W.; Nicholas, A.P. Nonmotor Symptoms in Parkinson’s Disease: Expanding the View of Parkinson’s Disease Beyond a Pure Motor, Pure Dopaminergic Problem. Neurol. Clin. 2013, 31, S1–S16. [Google Scholar] [CrossRef] [PubMed]
- Fearnley, J.M.; Lees, A.J. Ageing and Parkinson’s Disease: Substantia Nigra Regional Selectivity. Brain 1991, 114, 2283–2301. [Google Scholar] [CrossRef]
- Marras, C.; Beck, J.C.; Bower, J.H.; Roberts, E.; Ritz, B.; Ross, G.W.; Abbott, R.D.; Savica, R.; Van Den Eeden, S.K.; Willis, A.W.; et al. Prevalence of Parkinson’s Disease across North America. Npj Park. Dis. 2018, 4, 21. [Google Scholar] [CrossRef]
- Goldman, S.M.; Marek, K.; Ottman, R.; Meng, C.; Comyns, K.; Chan, P.; Ma, J.; Marras, C.; Langston, J.W.; Ross, G.W.; et al. Concordance for Parkinson’s Disease in Twins: A 20-Year Update. Ann. Neurol. 2019, 85, 600–605. [Google Scholar] [CrossRef]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurology 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the Parkin Gene Cause Autosomal Recessive Juvenile Parkinsonism. Nature 1998, 392, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.K.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Hereditary Early-Onset Parkinson’s Disease Caused by Mutations in PINK1. Science 2004, 304, 1158–1160. [Google Scholar] [CrossRef]
- Shin, J.-H.; Ko, H.S.; Kang, H.; Lee, Y.; Lee, Y.-I.; Pletinkova, O.; Troconso, J.C.; Dawson, V.L.; Dawson, T.M. PARIS (ZNF746) Repression of PGC-1α Contributes to Neurodegeneration in Parkinson’s Disease. Cell 2011, 144, 689–702. [Google Scholar] [CrossRef]
- De Nuccio, F.; Cianciulli, A.; Porro, C.; Kashyrina, M.; Ruggiero, M.; Calvello, R.; Miraglia, A.; Nicolardi, G.; Lofrumento, D.D.; Panaro, M.A. Inflammatory Response Modulation by Vitamin C in an MPTP Mouse Model of Parkinson’s Disease. Biology 2021, 10, 1155. [Google Scholar] [CrossRef]
- Clark, L.N.; Nicolai, A.; Afridi, S.; Harris, J.; Mejia-Santana, H.; Strug, L.; Cote, L.J.; Louis, E.D.; Andrews, H.; Waters, C.; et al. Pilot Association Study of the β-Glucocerebrosidase N370S Allele and Parkinson’s Disease in Subjects of Jewish Ethnicity. Mov. Disord. 2005, 20, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Kannarkat, G.T.; Boss, J.M.; Tansey, M.G. The Role of Innate and Adaptive Immunity in Parkinson’s Disease. J. Park. Dis. 2013, 3, 493–514. [Google Scholar] [CrossRef]
- Rolli-Derkinderen, M.; Leclair-Visonneau, L.; Bourreille, A.; Coron, E.; Neunlist, M.; Derkinderen, P. Is Parkinson’s Disease a Chronic Low-Grade Inflammatory Bowel Disease? J. Neurol. 2020, 267, 2207–2213. [Google Scholar] [CrossRef]
- De Pablo-Fernandez, E.; Goldacre, R.; Pakpoor, J.; Noyce, A.J.; Warner, T.T. Association between Diabetes and Subsequent Parkinson Disease. Neurology 2018, 91, e139–e142. [Google Scholar] [CrossRef]
- van Heesbeen, H.J.; Smidt, M.P. Entanglement of Genetics and Epigenetics in Parkinson’s Disease. Front. Neurosci. 2019, 13, 277. [Google Scholar] [CrossRef]
- Wyse, R.K.; Brundin, P.; Sherer, T.B. Nilotinib—Differentiating the Hope from the Hype. J. Park. Dis. 2016, 6, 519–522. [Google Scholar] [CrossRef]
- Hussain, A.; Bloemer, J. Chapter 3—Side Effects of Drugs Used in the Treatment of Alzheimer’s Disease. In Side Effects of Drugs Annual; Ray, S.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 45, pp. 27–32. [Google Scholar]
- Kaushik, M.; Yadav, A.; Upadhyay, A.; Gupta, A.; Tiwari, P.; Tripathi, M.; Dada, R. Yoga an Integrated Mind Body Intervention for Improvement in Quality of Life in Individuals with Alzheimer’s Disease and Their Caregivers. Front. Aging 2025, 6, 1449485. [Google Scholar] [CrossRef] [PubMed]
- Tolahunase, M.R.; Sagar, R.; Dada, R. 5-HTTLPR and MTHFR 677C>T Polymorphisms and Response to Yoga-Based Lifestyle Intervention in Major Depressive Disorder: A Randomized Active-Controlled Trial. Indian J. Psychiatry 2018, 60, 410. [Google Scholar] [CrossRef]
- Dada, T.; Verma, S.; Gagrani, M.; Bhartiya, S.; Chauhan, N.; Satpute, K.; Sharma, N. Ocular and Systemic Factors Associated with Glaucoma. J. Curr. Glaucoma Pract. 2022, 16, 179–191. [Google Scholar] [CrossRef]
- Gautam, S.; Tolahunase, M.; Kumar, U.; Dada, R. Impact of Yoga Based Mind-Body Intervention on Systemic Inflammatory Markers and Co-Morbid Depression in Active Rheumatoid Arthritis Patients: A Randomized Controlled Trial. Restor. Neurol. Neurosci. 2019, 37, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Coury, R.; Tang, W. Prediction of Conversion from Mild Cognitive Impairment to Alzheimer’s Disease and Simultaneous Feature Selection and Grouping Using Medicaid Claim Data. Alzheimer’s Res. Ther. 2024, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Eyre, H.A.; Siddarth, P.; Acevedo, B.; Dyk, K.V.; Paholpak, P.; Ercoli, L.; Cyr, N.S.; Yang, H.; Khalsa, D.S.; Lavretsky, H. A Randomized Controlled Trial of Kundalini Yoga in Mild Cognitive Impairment. Int. Psychogeriatr. 2017, 29, 557–567. [Google Scholar] [CrossRef]
- Grzenda, A.; Siddarth, P.; Milillo, M.M.; Aguilar-Faustino, Y.; Khalsa, D.S.; Lavretsky, H. Cognitive and Immunological Effects of Yoga Compared to Memory Training in Older Women at Risk for Alzheimer’s Disease. Transl. Psychiatry 2024, 14, 96. [Google Scholar] [CrossRef]
- Oxenkrug, G.F. Genetic and Hormonal Regulation of Tryptophan–Kynurenine Metabolism. Ann. N. Y. Acad. Sci. 2007, 1122, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Harwood, D.G.; Barker, W.W.; Ownby, R.L.; Mullan, M.; Duara, R. No Association between Subjective Memory Complaints and Apolipoprotein E Genotype in Cognitively Intact Elderly. Int. J. Geriatr. Psychiatry 2004, 19, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Ban, M.; Yue, X.; Dou, P.; Zhang, P. The Effects of Yoga on Patients with Parkinson’s Disease: A Meta-Analysis of Randomized Controlled Trials. Behav. Neurol. 2021, 2021, 5582488. [Google Scholar] [CrossRef]
- Popescu, B.O.; Batzu, L.; Ruiz, P.J.G.; Tulbă, D.; Moro, E.; Santens, P. Neuroplasticity in Parkinson’s Disease. J. Neural Transm. 2024, 131, 1329–1339. [Google Scholar] [CrossRef]
- Sharma, N.K.; Robbins, K.; Wagner, K.; Colgrove, Y.M. A Randomized Controlled Pilot Study of the Therapeutic Effects of Yoga in People with Parkinson’s Disease. Int. J. Yoga 2015, 8, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Signorile, J.F.; Mooney, K.; Balachandran, A.; Potiaumpai, M.; Luca, C.; Moore, J.G.; Kuenze, C.M.; Eltoukhy, M.; Perry, A.C. Comparative Effect of Power Training and High-Speed Yoga on Motor Function in Older Patients with Parkinson Disease. Arch. Phys. Med. Rehabil. 2016, 97, 345–354.e15. [Google Scholar] [CrossRef]
- Elangovan, N.; Cheung, C.; Mahnan, A.; Wyman, J.F.; Tuite, P.; Konczak, J. Hatha Yoga Training Improves Standing Balance but Not Gait in Parkinson’s Disease. Sports Med. Health Sci. 2020, 2, 80–88. [Google Scholar] [CrossRef]
- Swink, L.A.; Fling, B.W.; Sharp, J.L.; Fruhauf, C.A.; Atler, K.E.; Schmid, A.A. Merging Yoga and Occupational Therapy for Parkinson’s Disease: A Feasibility and Pilot Program. Occup. Ther. Health Care 2020, 34, 351–372. [Google Scholar] [CrossRef]
- Mailankody, P.; Kamble, N.; Bhattacharya, A.; Bhat, G.S.S.; Arumugam, T.; Thennarasu, K.; Arasappa, R.; Varambally, S.; Yadav, R.; Pal, P.K. Yoga as an Add-on Therapy in Parkinson’s Disease: A Single Group Open-Label Trial. Can. J. Neurol. Sci. 2024, 52, 102–109. [Google Scholar] [CrossRef]
- Morris, M.E. Movement Disorders in People with Parkinson Disease: A Model for Physical Therapy. Phys. Ther. 2000, 80, 578–597. [Google Scholar] [CrossRef]
- Raj, R.; Verma, A.; Singh, R.; Kumar, A.; Prakash, A.; Anand, S. Effects of Yoga Therapy in Teaching Oral Hygiene Practice and Tooth Brushing Skills in Patients with Parkinson’s Disease: A Qualitative Study. J. Educ. Health Promot. 2023, 12, 146. [Google Scholar] [CrossRef]
- Kwok, J.Y.Y.; Chan, L.M.L.; Lai, C.A.; Ho, P.W.L.; Choi, Z.Y.; Auyeung, M.; Pang, S.Y.Y.; Choi, E.P.H.; Fong, D.Y.T.; Yu, D.S.F.; et al. Effects of Meditation and Yoga on Anxiety, Depression and Chronic Inflammation in Patients with Parkinson’s Disease: A Randomized Clinical Trial. Psychother. Psychosom. 2025, 94, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Kwok, J.Y.Y.; Lee, J.J.; Choi, E.P.H.; Chau, P.H.; Auyeung, M. Stay Mindfully Active during the Coronavirus Pandemic: A Feasibility Study of mHealth-Delivered Mindfulness Yoga Program for People with Parkinson’s Disease. BMC Complement. Med. Ther. 2022, 22, 37. [Google Scholar] [CrossRef]
- Good, A.; Pachete, A.; Gilmore, S.; Russo, F.A. Comparing the Biopsychosocial Impact of Group Singing and Yoga Activities in Older Adults Living with Parkinson’s Disease. Sci. Rep. 2025, 15, 26713. [Google Scholar] [CrossRef]
- Van Puymbroeck, M.; Walter, A.A.; Hawkins, B.L.; Sharp, J.L.; Woschkolup, K.; Urrea-Mendoza, E.; Revilla, F.; Adams, E.V.; Schmid, A.A. Functional Improvements in Parkinson’s Disease Following a Randomized Trial of Yoga. Evid. Based Complement. Alternat Med. 2018, 2018, 8516351. [Google Scholar] [CrossRef]
- Kwok, J.Y.Y.; Kwan, J.C.Y.; Auyeung, M.; Mok, V.C.T.; Lau, C.K.Y.; Choi, K.C.; Chan, H.Y.L. Effects of Mindfulness Yoga vs Stretching and Resistance Training Exercises on Anxiety and Depression for People with Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.; Verheyden, G.; Ashburn, A. Effect of a Yoga Programme on an Individual with Parkinson’s Disease: A Single-Subject Design. Disabil. Rehabil. 2011, 33, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Farhang, M.; Rojas, G.; Martínez, P.; Behrens, M.I.; Langer, Á.I.; Diaz, M.; Miranda-Castillo, C. The Impact of a Yoga-Based Mindfulness Intervention versus Psycho-Educational Session for Older Adults with Mild Cognitive Impairment: The Protocol of a Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 15374. [Google Scholar] [CrossRef]
- Ribeiro, S. Iyengar Yoga Therapy as an Intervention for Cramp Management in Individuals with Amyotrophic Lateral Sclerosis: Three Case Reports. J. Altern. Complement. Med. 2014, 20, 322–326. [Google Scholar] [CrossRef]
- Fasczewski, K.S.; Garner, L.M.; Clark, L.A.; Michels, H.S.; Migliarese, S.J. Medical Therapeutic Yoga for Multiple Sclerosis: Examining Self-Efficacy for Physical Activity, Motivation for Physical Activity, and Quality of Life Outcomes. Disabil. Rehabil. 2022, 44, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Gunnersen, S.R.; Hanehøj, K.; Gro, S.; Petersen, C.M.; Skovgaard, L. The Effects of a 12-Week Yoga Intervention on Body Awareness in People with Multiple Sclerosis: A Non-Controlled Pilot Study. Adv. Integr. Med. 2022, 9, 167–172. [Google Scholar] [CrossRef]
- Zoila, F.; Filannino, F.M.; Panaro, M.A.; Sannicandro, I.; Cianciulli, A.; Porro, C. Enhancing Active Aging through Exercise: A Comparative Study of High-Intensity Interval Training and Continuous Aerobic Training Benefits. Front. Aging 2025, 6, 1493827. [Google Scholar] [CrossRef]
- Danucalov, M.a.D.; Kozasa, E.H.; Ribas, K.T.; Galduróz, J.C.F.; Garcia, M.C.; Verreschi, I.T.N.; Oliveira, K.C.; Romani de Oliveira, L.; Leite, J.R. A Yoga and Compassion Meditation Program Reduces Stress in Familial Caregivers of Alzheimer’s Disease Patients. Evid. Based Complement. Alternat Med. 2013, 2013, 513149. [Google Scholar] [CrossRef]
- Danucalov, M.A.; Kozasa, E.H.; Afonso, R.F.; Galduroz, J.C.; Leite, J.R. Yoga and Compassion Meditation Program Improve Quality of Life and Self-Compassion in Family Caregivers of Alzheimer’s Disease Patients: A Randomized Controlled Trial. Geriatr. Gerontol. Int. 2017, 17, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Robinson, M.; Willerth, S.M. Modeling the Effects of Yoga on the Progression of Alzheimer’s Disease in a Dish. Cells Tissues Organs 2019, 206, 263–271. [Google Scholar] [CrossRef]
- Hassan, A.; Robinson, M.; Willerth, S.M. Determining the Mechanism behind Yoga’s Effects on Preventing the Symptoms of Alzheimer’s Disease. Neural Regen. Res. 2020, 15, 261–262. [Google Scholar] [CrossRef]
- Allende, S.; Mahoney, L.; Francisco, J.M.; Fitz, K.; Keaney, A.; Parker-Bridges, K.; Mahoney, H.; Jo, B.; Greenberg, J.; Bayley, P.J. Teleyoga for Patients with Alzheimer’s Disease and Chronic Musculoskeletal Pain and Their Caregivers: A Feasibility Study. Glob. Adv. Integr. Med. Health 2024, 13, 27536130241240405. [Google Scholar] [CrossRef]
- James-Palmer, A.M.; Daneault, J.-F. Tele-Yoga for the Management of Parkinson Disease: A Safety and Feasibility Trial. Digit. Health 2022, 8, 20552076221119327. [Google Scholar] [CrossRef]
- Ivanovska, M.; Abdi, Z.; Murdjeva, M.; Macedo, D.; Maes, A.; Maes, M. CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals 2020, 13, 230. [Google Scholar] [CrossRef]
- Kilpatrick, L.A.; Siddarth, P.; Krause-Sorio, B.; Milillo, M.M.; Aguilar-Faustino, Y.; Ercoli, L.; Narr, K.L.; Khalsa, D.S.; Lavretsky, H. Impact of Yoga Versus Memory Enhancement Training on Hippocampal Connectivity in Older Women at Risk for Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 95, 149. [Google Scholar] [CrossRef]
- Suárez-Iglesias, D.; Santos, L.; Sanchez-Lastra, M.A.; Ayán, C. Systematic Review and Meta-Analysis of Randomised Controlled Trials on the Effects of Yoga in People with Parkinson’s Disease. Disabil. Rehabil. 2022, 44, 6210–6229. [Google Scholar] [CrossRef] [PubMed]
- Boulgarides, L.K.; Barakatt, E.; Coleman-Salgado, B. Measuring the Effect of an Eight-Week Adaptive Yoga Program on the Physical and Psychological Status of Individuals with Parkinson’s Disease. A Pilot Study. Int. J. Yoga Ther. 2014, 24, 31–41. [Google Scholar] [CrossRef]
- Arasappa, R.; Bhargav, H.; Ramachandra, K.; Varambally, S.; Gangadhar, B. Perspective of Patients Referred to Yoga Center in a Tertiary Neuropsychiatric Hospital: A Cross-Sectional Retrospective Study. Indian J. Psychiatry 2021, 63, 543–548. [Google Scholar] [CrossRef] [PubMed]
| Ref. (Author, Year) | Method/Study Design | Evaluation (Design/Follow-Up) | Process (Protocol) | Sample Size and Characteristics (N, Age, Condition) | Variables Evaluated (Outcomes) | Generalization/Setting | Treatment (Type of Yoga) | Focus (Primary Goal) |
|---|---|---|---|---|---|---|---|---|
| Van Puymbroeck et al., 2018 [118] | RCT, Wait-list Controlled Pilot | Pre–Post (8 weeks) | Duration: 8 weeks. Freq.: 2x/week. Sess. Len.: 60–75 min. | N = 27 (15 Yoga/12 Control). PD, community-dwelling, with fear of falling. | Motor Function, Functional Gait, Postural Stability, Fall Risk (UPDRS, FGA, TUG). | Moderate (Community setting, focused on fall-risk PD). | Adaptive Therapeutic Yoga. | Improvement of functional mobility and reduction of fall risk. |
| Sharma et al., 2015 [108] | RCT, Controlled Pilot Study | Pre–Post (12 weeks) | Duration: 12 weeks. Freq.: 2x/week. Sess. Len.: 60 min. | N = 20 (10 Yoga/10 Control). PD (H&Y Stage I–III), mean age 67 years. | Motor Function (UPDRS Motor, BBS), Quality of Life (PDQ-39). | Low (Pilot study). Hospital-based clinic setting. | Hatha Yoga modified for PD. | Effect on motor function (bradykinesia, balance) and Quality of Life. |
| Kwok et al., 2019 [119] | RCT, Active Controlled | Pre–Post (8 weeks) and 12-week follow-up | Duration: 8 weeks. Freq.: 1x/week. Sess. Len.: 90 min. | N = 138 (69 Yoga/69 SRTE Control). Mild-to-moderate PD. Age 65 ± 8 years. | Psychospiritual Outcomes (Anxiety, Depression, Hardship/Equanimity) and HRQoL. | High (Large sample size for a yoga study). Community-based. | Mindfulness-based Yoga. | Psychospiritual outcomes and health-related Quality of Life (HRQoL). |
| Hall et al., 2011 [120] | RCT, Active Controlled (vs. Dance) | Pre–Post (12 weeks) | Duration: 12 weeks. Freq.: 2x/week. Sess. Len.: 60 min. | N = 50 (25 Yoga/25 Dance). Mild-to-moderate PD. | Balance, Gait, Freezing of Gait (FOG). | Moderate (Specific comparison group). Community-based rehabilitation setting. | Integral Yoga adapted for PD. | Comparison of Yoga vs. Dance therapy on balance and gait performance. |
| Elangovan et al., 2020 [110] | RCT, Non-blinded | Pre–Post (12 weeks) | Duration: 12 weeks. Freq.: 2x/week. Sess. Len.: 90 min. | N = 40 (20 Yoga/20 Control). Mild-to-moderate PD. | Cardiorespiratory Fitness, Muscle Strength, Flexibility. | Moderate (Clinic setting, focused on physical fitness). | Hatha Yoga modified for fall prevention. | Improvement of cardiorespiratory and physical fitness. |
| Farhang et al., 2022 [121] | RCT, Wait-list Controlled | Pre–Post (12 weeks) | Duration: 12 weeks. Freq.: 1x/week. Sess. Len.: 90 min. | N = 48 (24 Yoga/24 Control). Community-dwelling older adults, non-PD. | Health-Related QoL (SF-36), Mood (CES-D). | High (General elderly population). | Mindfulness-based Yoga (Hatha). | Effect on Quality of Life and Psychological Distress. |
| Ni et al., 2016 [109] | RCT, Controlled | Pre–Post (8 weeks) | Duration: 8 weeks. Freq.: 2x/week. Sess. Len.: 60 min. | N = 44 (22 Yoga/22 Control). PD patients (H&Y II-III). | Balance (BBS), Falls Efficacy (FES), Mobility (TUG). | Moderate. Community center. | Adaptive Hatha Yoga. | Improving balance and self-efficacy related to falls. |
| Kwok et al., 2022 [116] | RCT, Active Controlled (vs. Conventional exercise) | Pre–Post (12 weeks) | Duration: 12 weeks. Freq.: 3x/week. Sess. Len.: 60 min. | N = 80 (40 Yoga/40 Exercise). PD patients. | 1 Quality (PSQI), Non-motor symptoms (NMSQ). | Moderate (Specific focus on non-motor symptoms). | Traditional Hatha Yoga. | Improvement of sleep quality and non-motor symptoms. |
| Kaushik et al., 2025 [97] | RCT, Wait-list Controlled | Pre–Post (12 weeks) | Duration: 12 weeks. Freq.: 3x/week. Sess. Len.: 60 min. | N = 52 (26 Yoga/26 Control). Mild-to-moderate AD. | Cognitive function (ADAS-Cog, MMSE), QoL. | Low (Early research stage for AD). Clinic setting. | Integrated Yoga (Asana, Pranayama, Meditation). | Effect on cognitive decline and Quality of Life in AD. |
| Swink et al., 2020 [111] | RCT, Wait-list Controlled | Pre–Post (8 weeks) | Duration: 8 weeks. Freq.: 2x/week. Sess. Len.: 60 min. | N = 34 (17 Yoga/17 Control). PD patients (H&Y I-III). | Balance (BBS), Mobility (TUG), Fear of Falling (FES). | Moderate. Rehabilitation center. | Modified Hatha Yoga. | Balance, mobility, and confidence in patients with PD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoila, F.; de Stefano, M.I.; Sgobbio, A.; Panaro, M.A.; Maffione, A.B.; Antonucci, L.; Benameur, T.; Massaro, M.; Frota Gaban, S.V.; Filannino, F.M.; et al. Yoga for Neurodegenerative Disorders: Therapeutic Effects, Mechanisms, and Applications in Alzheimer’s and Parkinson’s Disease. Sports 2025, 13, 458. https://doi.org/10.3390/sports13120458
Zoila F, de Stefano MI, Sgobbio A, Panaro MA, Maffione AB, Antonucci L, Benameur T, Massaro M, Frota Gaban SV, Filannino FM, et al. Yoga for Neurodegenerative Disorders: Therapeutic Effects, Mechanisms, and Applications in Alzheimer’s and Parkinson’s Disease. Sports. 2025; 13(12):458. https://doi.org/10.3390/sports13120458
Chicago/Turabian StyleZoila, Federico, Maria Ida de Stefano, Alessia Sgobbio, Maria Antonietta Panaro, Angela Bruna Maffione, Laura Antonucci, Tarek Benameur, Michele Massaro, Socorro Vanesca Frota Gaban, Francesca Martina Filannino, and et al. 2025. "Yoga for Neurodegenerative Disorders: Therapeutic Effects, Mechanisms, and Applications in Alzheimer’s and Parkinson’s Disease" Sports 13, no. 12: 458. https://doi.org/10.3390/sports13120458
APA StyleZoila, F., de Stefano, M. I., Sgobbio, A., Panaro, M. A., Maffione, A. B., Antonucci, L., Benameur, T., Massaro, M., Frota Gaban, S. V., Filannino, F. M., & Porro, C. (2025). Yoga for Neurodegenerative Disorders: Therapeutic Effects, Mechanisms, and Applications in Alzheimer’s and Parkinson’s Disease. Sports, 13(12), 458. https://doi.org/10.3390/sports13120458

