Acute Effects of a Multi-Ingredient Preworkout Supplement on Peak Torque and Muscle Excitation During an Isokinetic Fatigue Protocol
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Procedures
2.3.1. Visit 1: Familiarization
2.3.2. Visits 2 and 3: Fatigue Protocol Tests with Supplementation
2.4. Statistical Analyses
3. Results
3.1. Peak Torque Production
3.1.1. Isometric Peak Torque
3.1.2. Concentric Peak Torque
3.1.3. Eccentric Peak Torque
3.2. EMG Amplitude
3.2.1. Isometric Muscle Actions
3.2.2. Concentric Muscle Actions
3.2.3. Eccentric Muscle Actions
3.3. Median Power Frequency
3.3.1. Isometric Muscle Actions
3.3.2. Concentric Muscle Actions
3.3.3. Eccentric Muscle Actions
3.4. Food Log Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MIPS | Multi-ingredient preworkout supplement |
| MVC | Maximum voluntary contraction |
| 1-RM | One repetition maximum |
| EMG | Electromyography |
| MDF | Median power frequency |
| ANOVA | Analysis of variance |
| SD | Standard deviation |
References
- Beyer, K.S.; Gadsen, M.; Patterson-Zuber, P.; Gonzalez, A.M. A single dose multi-ingredient pre-workout supplement enhances upper body resistance exercise performance. Front. Nutr. 2024, 11, 1323408. [Google Scholar] [CrossRef]
- Curtis, J.; Evans, C.; Mekhail, V.; Czartoryski, P.; Santana, J.C.; Antonio, J. Correction: The Effects of a Pre-workout Supplement on Measures of Alertness, Mood, and Lower-Extremity Power. Cureus 2023, 15, c128. [Google Scholar]
- Drwal, A.; Palka, T.; Tota, L.; Wiecha, S.; Čech, P.; Strzala, M.; Maciejczyk, M. Acute effects of multi-ingredient pre-workout dietary supplement on anaerobic performance in untrained men: A randomized, crossover, single blind study. BMC Sports Sci. Med. Rehabil. 2024, 16, 128. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.; Campbell, B.; Franek, M.; Buchanan, L.; Colquhoun, R. The effect of acute pre-workout supplementation on power and strength performance. J. Int. Soc. Sports Nutr. 2016, 13, 29. [Google Scholar] [CrossRef]
- Negro, M.; Cerullo, G.; Perna, S.; Beretta-Piccoli, M.; Rondanelli, M.; Liguori, G.; Cena, H.; Phillips, S.M.; Cescon, C.; D’Antona, G. Effects of a Single Dose of a Creatine-Based Multi-Ingredient Pre-workout Supplement Compared to Creatine Alone on Performance Fatigability After Resistance Exercise: A Double-Blind Crossover Design Study. Front. Nutr. 2022, 9, 887523. [Google Scholar] [CrossRef]
- Snyder, M.; Brewer, C.; Taylor, K. Multi-Ingredient Preworkout Supplementation Compared With Caffeine and a Placebo Does Not Improve Repetitions to Failure in Resistance-Trained Women. Int. J. Sports Physiol. Perform. 2024, 19, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Harty, P.S.; Camic, C.L. Common Ingredient Profiles of Multi-Ingredient Pre-Workout Supplements. Nutrients 2019, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Lutsch, D.J.; Camic, C.L.; Jagim, A.R.; Stefan, R.R.; Cox, B.J.; Tauber, R.N.; Henert, S.E. Effects of a Multi-Ingredient Preworkout Supplement Versus Caffeine on Energy Expenditure and Feelings of Fatigue during Low-Intensity Treadmill Exercise in College-Aged Males. Sports 2020, 8, 132. [Google Scholar] [CrossRef]
- Harty, P.S.; Zabriskie, H.A.; Erickson, J.L.; Molling, P.E.; Kerksick, C.M.; Jagim, A.R. Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: A brief review. J. Int. Soc. Sports Nutr. 2018, 15, 41. [Google Scholar] [CrossRef]
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International society of sports nutrition position stand: Caffeine and performance. J. Int. Soc. Sports Nutr. 2010, 7, 5. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Spradley, B.D.; Crowley, K.R.; Tai, C.Y.; Kendall, K.L.; Fukuda, D.H.; Esposito, E.N.; Moon, S.E.; Moon, J.R. Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr. Metab. 2012, 9, 28. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef]
- Bailey, S.J.; Blackwell, J.R.; Lord, T.; Vanhatalo, A.; Winyard, P.G.; Jones, A.M. l-Citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. J. Appl. Physiol. 2015, 119, 385–395. [Google Scholar] [CrossRef]
- Bendahan, D.; Mattei, J.P.; Ghattas, B.; Confort-Gouny, S.; Le Guern, M.E.; Cozzone, P.J. Citrulline/malate promotes aerobic energy production in human exercising muscle. Br. J. Sports Med. 2002, 36, 282–289. [Google Scholar] [CrossRef]
- Zak, R.B.; Camic, C.L.; Hill, E.C.; Monaghan, M.M.; Kovacs, A.J.; Wright, G.A. Acute effects of an arginine-based supplement on neuromuscular, ventilatory, and metabolic fatigue thresholds during cycle ergometry. Appl. Physiol. Nutr. Metab. 2015, 40, 379–385. [Google Scholar] [CrossRef]
- Jagim, A.R.; Jones, M.T.; Wright, G.A.; St Antoine, C.; Kovacs, A.; Oliver, J.M. The acute effects of multi-ingredient pre-workout ingestion on strength performance, lower body power, and anaerobic capacity. J. Int. Soc. Sports Nutr. 2016, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.T.; Siedler, M.R.; Harty, P.S.; Rodriguez, C.; Boykin, J.R.; Green, J.J.; Keith, D.S.; White, S.J.; DeHaven, B.; Williams, A.D.; et al. The influence of caffeinated and non-caffeinated multi-ingredient pre-workout supplements on resistance exercise performance and subjective outcomes. J. Int. Soc. Sports Nutr. 2022, 19, 126–149. [Google Scholar] [CrossRef]
- Bergstrom, H.C.; Byrd, M.T.; Wallace, B.J.; Clasey, J.L. Examination of a Multi-ingredient Preworkout Supplement on Total Volume of Resistance Exercise and Subsequent Strength and Power Performance. J. Strength Cond. Res. 2018, 32, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Hamm, M.A.; Hurtado, A.K.; Cross, A.G.; Pineda, J.G.; Martin, A.Y.; Uribe, V.A.; Palmer, T.B. Effects of two pre-workout supplements on concentric and eccentric force production during lower body resistance exercise in males and females: A counterbalanced, double-blind, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2017, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.B.; Earnest, C.P.; Dalton, R.L.; Sowinski, R.J.; Grubic, T.J.; Favot, C.J.; Coletta, A.M.; Rasmussen, C.; Greenwood, M.; Kreider, R.B. Short-Term Effects of a Ready-to-Drink Pre-Workout Beverage on Exercise Performance and Recovery. Nutrients 2017, 9, 823. [Google Scholar] [CrossRef]
- Cameron, M.; Camic, C.L.; Doberstein, S.; Erickson, J.L.; Jagim, A.R. The acute effects of a multi-ingredient pre-workout supplement on resting energy expenditure and exercise performance in recreationally active females. J. Int. Soc. Sports Nutr. 2018, 15, 1. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Walsh, A.L.; Ratamess, N.A.; Kang, J.; Hoffman, J.R. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J. Sports Sci. Med. 2011, 10, 261–266. [Google Scholar]
- Anders, J.P.V.; Smith, C.M.; Keller, J.L.; Hill, E.C.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O. Inter- and Intra-Individual Differences in EMG and MMG during Maximal, Bilateral, Dynamic Leg Extensions. Sports 2019, 7, 175. [Google Scholar] [CrossRef] [PubMed]
- Camic, C.L.; Housh, T.J.; Zuniga, J.M.; Russell Hendrix, C.; Bergstrom, H.C.; Traylor, D.A.; Schmidt, R.J.; Johnson, G.O. Electromyographic and mechanomyographic responses across repeated maximal isometric and concentric muscle actions of the leg extensors. J. Electromyogr. Kinesiol. 2013, 23, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Camic, C.L.; Housh, T.J.; Zuniga, J.M.; Bergstrom, H.C.; Schmidt, R.J.; Johnson, G.O. Mechanomyographic and electromyographic responses during fatiguing eccentric muscle actions of the leg extensors. J. Appl. Biomech. 2014, 30, 255–261. [Google Scholar] [CrossRef]
- Perry-Rana, S.R.; Housh, T.J.; Johnson, G.O.; Bull, A.J.; Cramer, J.T. MMG and EMG responses during 25 maximal, eccentric, isokinetic muscle actions. Med. Sci. Sports Exerc. 2003, 35, 2048–2054. [Google Scholar] [CrossRef]
- Guo, W.; Gao, J.; Dawazhuoma; Mi, X.; Ciwang; Bianba. A meta-analysis of randomized controlled trials: Evaluating the efficacy of isokinetic muscle strengthening training in improving knee osteoarthritis outcomes. J. Orthop. Surg. Res. 2025, 20, 95. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ferrada, W.; Chirosa-Rios, L.; Martinez-Garcia, D.; Rodríguez-Perea, Á.; Jerez-Mayorga, D. Reliability of trunk strength measurements with an isokinetic dynamometer in non-specific low back pain patients: A systematic review. J. Back Musculoskelet. Rehabil. 2022, 35, 937–948. [Google Scholar] [CrossRef]
- Lynn, P.A. Direct on-line estimation of muscle fiber conduction velocity by surface electromyography. IEEE Trans. Biomed. Eng. 1979, 26, 564–571. [Google Scholar] [CrossRef]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front. Physiol. 2018, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Broman, H.; Bilotto, G.; De Luca, C.J. Myoelectric signal conduction velocity and spectral parameters: Influence of force and time. J. Appl. Physiol. 1985, 58, 1428–1437. [Google Scholar] [CrossRef]
- Duchateau, J.; Enoka, R.M. Neural control of lengthening contractions. J. Exp. Biol. 2016, 219 Pt 2, 197–204. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef]
- Astorino, T.A.; Terzi, M.N.; Roberson, D.W.; Burnett, T.R. Effect of caffeine intake on pain perception during high-intensity exercise. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 27–32. [Google Scholar] [CrossRef]
- Kalmar, J.M.; Cafarelli, E. Caffeine: A valuable tool to study central fatigue in humans? Exerc. Sport Sci. Rev. 2004, 32, 143–147. [Google Scholar] [CrossRef]
- Bode-Böger, S.M.; Böger, R.H.; Creutzig, A.; Tsikas, D.; Gutzki, F.M.; Alexander, K.; Frölich, J.C. L-arginine infusion decreases peripheral arterial resistance and inhibits platelet aggregation in healthy subjects. Clin. Sci. 1994, 87, 303–310. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Townsend, J.R.; Pinzone, A.G.; Hoffman, J.R. Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients 2023, 15, 660. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, P.L.; Limonta, E.; Riboli, A.; Bosio, A.; Scurati, R.; Esposito, F. Effects of Acute Carnosine and β-Alanine on Isometric Force and Jumping Performance. Int. J. Sports Physiol. Perform. 2016, 11, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Alonso, J.J.; Del Val-Manzano, M.; Cerezo-Telléz, E.; Ferragut, C.; Valadés, D.; Rodríguez-Falces, J.; Pérez-López, A. Acute caffeine intake improves muscular strength, power, and endurance performance, reversing the time-of-day effect regardless of muscle activation level in resistance-trained males: A randomized controlled trial. Eur. J. Appl. Physiol. 2025, 125, 3259–3272. [Google Scholar] [CrossRef]
- Kalmar, J.M.; Cafarelli, E. Effects of caffeine on neuromuscular function. J. Appl. Physiol. 1999, 87, 801–808. [Google Scholar] [CrossRef]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci. Rep. 2015, 5, 10209. [Google Scholar] [CrossRef]
- Walton, C.; Kalmar, J.M.; Cafarelli, E. Caffeine increases spinal excitability in humans. Muscle Nerve 2003, 28, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.M.; Cafarelli, E. Caffeine increases time to fatigue by maintaining force and not by altering firing rates during submaximal isometric contractions. J. Appl. Physiol. 2005, 99, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Alvares, T.S.; Conte-Junior, C.A.; Silva, J.T.; Paschoalin, V.M. Acute L-Arginine supplementation does not increase nitric oxide production in healthy subjects. Nutr. Metab. 2012, 9, 54. [Google Scholar] [CrossRef]
- Aguiar, A.F.; Balvedi, M.C.; Buzzachera, C.F.; Altimari, L.R.; Lozovoy, M.A.; Bigliassi, M.; Januário, R.S.; Pereira, R.M.; Sanches, V.C.; da Silva, D.K.; et al. L-Arginine supplementation does not enhance blood flow and muscle performance in healthy and physically active older women. Eur. J. Nutr. 2016, 55, 2053–2062. [Google Scholar] [CrossRef]
- Glenn, J.M.; Gray, M.; Wethington, L.N.; Stone, M.S.; Stewart, R.W., Jr.; Moyen, N.E. Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur. J. Nutr. 2017, 56, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.M.; Yang, Y.; Mangine, G.T.; Pinzone, A.G.; Ghigiarelli, J.J.; Sell, K.M. Acute Effect of L-Citrulline Supplementation on Resistance Exercise Performance and Muscle Oxygenation in Recreationally Resistance Trained Men and Women. J. Funct. Morphol. Kinesiol. 2023, 8, 88. [Google Scholar] [CrossRef]
- Sale, C.; Hill, C.A.; Ponte, J.; Harris, R.C. β-alanine supplementation improves isometric endurance of the knee extensor muscles. J. Int. Soc. Sports Nutr. 2012, 9, 26. [Google Scholar] [CrossRef]
- Kaczka, P.; Batra, A.; Kubicka, K.; Maciejczyk, M.; Rzeszutko-Bełzowska, A.; Pezdan-Śliż, I.; Michałowska-Sawczyn, M.; Przydział, M.; Płonka, A.; Cięszczyk, P.; et al. Effects of Pre-Workout Multi-Ingredient Supplement on Anaerobic Performance: Randomized Double-Blind Crossover Study. Int. J. Environ. Res. Public Health 2020, 17, 8262. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Pain, M.T.G.; Folland, J.P. Contraction speed and type influences rapid utilisation of available muscle force: Neural and contractile mechanisms. J. Exp. Biol. 2018, 221, 193367. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Dillon, K.N.; Martinez, M.A.; Maharaj, A.; Fischer, S.M.; Figueroa, A. L-Citrulline Supplementation Improves Arterial Blood Flow and Muscle Oxygenation during Handgrip Exercise in Hypertensive Postmenopausal Women. Nutrients 2024, 16, 1935. [Google Scholar] [CrossRef] [PubMed]




| MIPS | Placebo | ||||
|---|---|---|---|---|---|
| PRE | POST | PRE | POST | ||
| Isometric | |||||
| Vastus medialis (%) | 100.0 ± 0.0 | 143.3 ± 71.9 * | 100.0 ± 0.0 | 146.4 ± 79.5 * | |
| Rectus femoris (%) | 100.0 ± 0.0 | 157.1 ± 62.7 * | 100.0 ± 0.0 | 141.0 ± 67.2 * | |
| Vastus lateralis (%) | 100.0 ± 0.0 | 149.8 ± 60.9 * | 100.0 ± 0.0 | 136.9 ± 75.7 * | |
| Concentric | |||||
| Vastus medialis (%) | 123.7 ± 84.2 | 135.1 ± 90.2 | 112.9 ± 32.1 | 160.9 ± 141.6 | |
| Rectus femoris (%) | 105.3 ± 37.3 | 133.4 ± 64.6 | 103.7 ± 28.3 | 126.3 ± 69.1 | |
| Vastus lateralis (%) | 92.4 ± 29.9 | 120.3 ± 50.9 | 96.0 ± 35.0 | 112.5 ± 63.2 | |
| Eccentric | |||||
| Vastus medialis (%) | 147.8 ± 112.2 | 156.5 ± 134.1 | 104.0 ± 32.4 | 144.9 ± 83.0 | |
| Rectus femoris (%) | 100.0 ± 26.9 | 121.1 ± 58.3 | 96.6 ± 30.4 | 121.1 ± 62.0 | |
| Vastus lateralis (%) | 89.9 ± 24.5 | 101.9 ± 45.3 | 92.5 ± 42.5 | 113.1 ± 57.6 | |
| MIPS | Placebo | ||||
|---|---|---|---|---|---|
| PRE | POST | PRE | POST | ||
| Isometric | |||||
| Vastus medialis (%) | 100.0 ± 0.0 | 95.5 ± 23.0 | 100.0 ± 0.0 | 114.1 ± 25.8 | |
| Rectus femoris (%) | 100.0 ± 0.0 | 94.6 ± 32.3 | 100.0 ± 0.0 | 112.5 ± 38.6 | |
| Vastus lateralis (%) | 100.0 ± 0.0 | 95.0 ± 22.8 | 100.0 ± 0.0 | 108.2 ± 11.0 | |
| Concentric | |||||
| Vastus medialis (%) | 102.1 ± 12.2 | 95.6 ± 26.1 * | 108.6 ± 20.1 | 101.0 ± 18.4 * | |
| Rectus femoris (%) | 95.3 ± 19.9 | 83.1 ± 20.1 * | 113.8 ± 29.9 | 98.1 ± 36.1 * | |
| Vastus lateralis (%) | 99.4 ± 13.4 | 93.2 ± 12.7 | 110.5 ± 17.5 | 105.8 ± 13.1 | |
| Eccentric | |||||
| Vastus medialis (%) | 97.1 ± 21.9 | 90.2 ± 18.3 | 105.1 ± 21.5 | 97.2 ± 17.8 | |
| Rectus femoris (%) | 93.9 ± 25.0 | 82.8 ± 19.4 | 106.5 ± 24.4 | 97.7 ± 45.0 | |
| Vastus lateralis (%) | 98.7 ± 14.1 | 94.6 ± 12.3 | 107.3 ± 21.4 | 105.3 ± 16.1 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connors, B.R.; Camic, C.L.; Jagim, A.R.; Hill, C.M.; Sebastião, E.; Chomentowski, P.J.; Kowal, R.A.; de Leon, M.F. Acute Effects of a Multi-Ingredient Preworkout Supplement on Peak Torque and Muscle Excitation During an Isokinetic Fatigue Protocol. Sports 2025, 13, 404. https://doi.org/10.3390/sports13110404
Connors BR, Camic CL, Jagim AR, Hill CM, Sebastião E, Chomentowski PJ, Kowal RA, de Leon MF. Acute Effects of a Multi-Ingredient Preworkout Supplement on Peak Torque and Muscle Excitation During an Isokinetic Fatigue Protocol. Sports. 2025; 13(11):404. https://doi.org/10.3390/sports13110404
Chicago/Turabian StyleConnors, Benjamin R., Clayton L. Camic, Andrew R. Jagim, Christopher M. Hill, Emerson Sebastião, Peter J. Chomentowski, Rachel A. Kowal, and Matteo F. de Leon. 2025. "Acute Effects of a Multi-Ingredient Preworkout Supplement on Peak Torque and Muscle Excitation During an Isokinetic Fatigue Protocol" Sports 13, no. 11: 404. https://doi.org/10.3390/sports13110404
APA StyleConnors, B. R., Camic, C. L., Jagim, A. R., Hill, C. M., Sebastião, E., Chomentowski, P. J., Kowal, R. A., & de Leon, M. F. (2025). Acute Effects of a Multi-Ingredient Preworkout Supplement on Peak Torque and Muscle Excitation During an Isokinetic Fatigue Protocol. Sports, 13(11), 404. https://doi.org/10.3390/sports13110404

