Enhancing Visuospatial Working Memory and Motor Skills Through School-Based Coordination Training
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Tools
2.3.1. BVS-Corsi-2 Battery for the Assessment of Visuospatial Working Memory (Ages 8–12)
2.3.2. Test of Gross Motor Development—3rd Edition (TGMD-3)
2.3.3. Previous Day Physical Activity Recall (PDPAR)
2.3.4. Anthropometrics
2.4. Training Protocol
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EFs | Executive Functions |
| PA | Physical Activity |
| PE | Physical Education |
| VSWM | Visualspatial Working Memory |
| TGMD | Test of Gross Motor Development |
| BMI | Body Mass Index |
| PDPAR | Previous Day Physical Activity Recall |
| EG | Experimental Group |
| CG | Control Group |
References
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004; ISBN 0-88011-882-2. [Google Scholar]
- Zeng, N.; Ayyub, M.; Sun, H.; Wen, X.; Xiang, P.; Gao, Z. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review. BioMed Res. Int. 2017, 2017, 2760716. [Google Scholar] [CrossRef]
- Van der Fels, I.M.; Te Wierike, S.C.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The Relationship between Motor Skills and Cognitive Skills in 4–16 Year Old Typically Developing Children: A Systematic Review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef]
- Aubert, S.; Barnes, J.D.; Demchenko, I.; Hawthorne, M.; Abdeta, C.; Abi Nader, P.; Sala, J.C.A.; Aguilar-Farias, N.; Aznar, S.; Bakalár, P. Global Matrix 4.0 Physical Activity Report Card Grades for Children and Adolescents: Results and Analyses from 57 Countries. J. Phys. Act. Health 2022, 19, 700–728. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Demchenko, I.; Aubert, S.; Tremblay, M.S. Global Matrix 4.0 on Physical Activity for Children and Adolescents: Project Evolution, Process Evaluation, and Future Recommendations. J. Phys. Act. Health 2025, 22, 457–469. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global Trends in Insufficient Physical Activity among Adolescents: A Pooled Analysis of 298 Population-Based Surveys with 1· 6 Million Participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Med. Sci. Sports Exerc. 2016, 48, 1197. [Google Scholar] [CrossRef]
- Zhang, J. Cognitive Functions of the Brain: Perception, Attention and Memory. arXiv 2019, arXiv:1907.02863. [Google Scholar] [CrossRef]
- Diamond, A. Activities and Programs That Improve Children’s Executive Functions. Curr. Dir. Psychol. Sci. 2012, 21, 335–341. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.H.; Kramer, A.F. Physical Activity, Brain, and Cognition. Curr. Opin. Behav. Sci. 2015, 4, 27–32. [Google Scholar] [CrossRef]
- Hillman, C.H.; Logan, N.E.; Shigeta, T.T. A Review of Acute Physical Activity Effects on Brain and Cognition in Children. Transl. J. Am. Coll. Sports Med. 2019, 4, 132–136. [Google Scholar] [CrossRef]
- Diamond, A. Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions: Insights into Ways to Help More Children Thrive. Zero Three 2014, 35, 9–17. [Google Scholar]
- Logie, R.H. Visuo-Spatial Working Memory; Psychology Press: East Sussex, UK, 2014; ISBN 1-315-80474-3. [Google Scholar]
- Baddeley, A. Working Memory: The Interface between Memory and Cognition. J. Cogn. Neurosci. 1992, 4, 281–288. [Google Scholar] [CrossRef]
- Baddeley, A. Working Memory, Thought, and Action; OUP Oxford: Oxford, UK, 2007; ISBN 978-0-19-100496-4. [Google Scholar]
- Baniasadi, T. Comparison of Executive Function and Working Memory among Children with High and Low Levels of Physical Activity. Int. J. Educ. Cogn. Sci. 2024, 5, 11–17. [Google Scholar] [CrossRef]
- Diamond, A. Why Improving and Assessing Executive Functions Early in Life Is Critical; American Psychological Association: Washington, DC, USA, 2016. [Google Scholar]
- Bao, R.; Wade, L.; Leahy, A.A.; Owen, K.B.; Hillman, C.H.; Jaakkola, T.; Lubans, D.R. Associations between Motor Competence and Executive Functions in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 2141–2156. [Google Scholar] [CrossRef]
- Koziol, L.F.; Budding, D.; Andreasen, N.; D’Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K. Consensus Paper: The Cerebellum’s Role in Movement and Cognition. Cerebellum 2014, 13, 151–177. [Google Scholar] [CrossRef]
- Miller, E.K.; Lundqvist, M.; Bastos, A.M. Working Memory 2.0. Neuron 2018, 100, 463–475. [Google Scholar] [CrossRef]
- Haverkamp, B.F.; Wiersma, R.; Vertessen, K.; van Ewijk, H.; Oosterlaan, J.; Hartman, E. Effects of Physical Activity Interventions on Cognitive Outcomes and Academic Performance in Adolescents and Young Adults: A Meta-Analysis. J. Sports Sci. 2020, 38, 2637–2660. [Google Scholar] [CrossRef]
- Bulten, R.; Bedard, C.; Graham, J.D.; Cairney, J. Effect of Cognitively Engaging Physical Activity on Executive Functions in Children. Front. Psychol. 2022, 13, 841192. [Google Scholar] [CrossRef] [PubMed]
- Preston, M.L.; McClelland, M.; Craig, J.; Herbst, E.; Golinkoff, R.M. Cognitively Engaging Physical Activity Has an Immediate Impact on Preschool Children’s Executive Function. Early Child. Res. Q. 2025, 72, 91–101. [Google Scholar] [CrossRef]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, T.E.; Arseneault, L.; Belsky, D.; Dickson, N.; Hancox, R.J.; Harrington, H.; Houts, R.; Poulton, R.; Roberts, B.W.; Ross, S. A Gradient of Childhood Self-Control Predicts Health, Wealth, and Public Safety. Proc. Natl. Acad. Sci. USA 2011, 108, 2693–2698. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 173, pp. 225–240. ISBN 0072-9752. [Google Scholar]
- Donnelly, F.C.; Mueller, S.S.; Gallahue, D.L. Developmental Physical Education for All Children: Theory into Practice; Human Kinetics: Champaign, IL, USA, 2016; ISBN 1-4925-8565-3. [Google Scholar]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef]
- Tarp, J.; Domazet, S.L.; Froberg, K.; Hillman, C.H.; Andersen, L.B.; Bugge, A. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: Lcomotion—Learning, Cognition and Motion–A Cluster Randomized Controlled Trial. PLoS ONE 2016, 11, e0158087. [Google Scholar] [CrossRef]
- Veldman, S.L.; Santos, R.; Jones, R.A.; Sousa-Sá, E.; Okely, A.D. Associations between Gross Motor Skills and Cognitive Development in Toddlers. Early Hum. Dev. 2019, 132, 39–44. [Google Scholar] [CrossRef]
- Ambretti, A.; Monacis, D.; Forte, P.; Morsanuto, S.; Savoia, T.; D’Anna, C.; Iammarino, M. Future Perspectives for Physical Education in Primary School to Promote Innovative Co-Planning Practices. J. Incl. Methodol. Technol. Learn. Teach. 2025, 5, 1–15. [Google Scholar]
- Contreras-Osorio, F.; Campos-Jara, C.; Martínez-Salazar, C.; Chirosa-Ríos, L.; Martínez-García, D. Effects of Sport-Based Interventions on Children’s Executive Function: A Systematic Review and Meta-Analysis. Brain Sci. 2021, 11, 755. [Google Scholar] [CrossRef]
- Meijer, A.; Königs, M.; van der Fels, I.M.; Visscher, C.; Bosker, R.J.; Hartman, E.; Oosterlaan, J. The Effects of Aerobic versus Cognitively Demanding Exercise Interventions on Executive Functioning in School-Aged Children: A Cluster-Randomized Controlled Trial. J. Sport Exerc. Psychol. 2020, 43, 1–13. [Google Scholar] [CrossRef]
- Zang, W.; Zhu, J.; Xiao, N.; Fang, M.; Li, D.; Li, H.; Yan, J.; Jing, H.; Wang, S. Effects of Aerobic Exercise on Children’s Executive Function and Academic Performance: A Systematic Review and Meta-Analysis. Heliyon 2024, 10, e28633. [Google Scholar] [CrossRef]
- Lopes, L.; Santos, R.; Pereira, B.; Lopes, V.P. Associations between Gross Motor Coordination and Academic Achievement in Elementary School Children. Hum. Mov. Sci. 2013, 32, 9–20. [Google Scholar] [CrossRef]
- Silva-Santos, S.; Santos, A.; Duncan, M.; Vale, S.; Mota, J. Association between Moderate and Vigorous Physical Activity and Gross Motor Coordination in Preschool Children. J. Mot. Learn. Dev. 2019, 7, 273–285. [Google Scholar] [CrossRef]
- Best, J.R. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, C.; Barra, V.; Palumbo, C.; Forte, P. Analisi Diacronica Dell’educazione Fisica Nelle Indicazioni Nazionali. Verso Quali Orizzonti? SIRD 2020, 4, 46–56. [Google Scholar]
- D’Anna, C.; Forte, P.; Pugliese, E. Corporeality and Cross-Curricular Learning: From the Analysis of the 2004-2007-2012 National Indications to Future Perspectives. In The Annals of Dunarea de Jos University of Galati Fascicle XV Physical Education and Sport Management; Galati University Press: Galati, Romania, 2023; Volume 2, pp. 89–103. [Google Scholar]
- D’Anna, C. Educazione Fisica Nel Primo Ciclo di Istruzione. Dai Nuclei Fondanti Alla Progettazione Didattica; Edizioni Nuova Cultura: Roma, Italy, 2018. [Google Scholar]
- Stroth, S.; Hille, K.; Spitzer, M.; Reinhardt, R. Aerobic Endurance Exercise Benefits Memory and Affect in Young Adults. Neuropsychol. Rehabil. 2009, 19, 223–243. [Google Scholar] [CrossRef]
- Fernandes, V.R.; Ribeiro, M.L.S.; Melo, T.; de Tarso Maciel-Pinheiro, P.; Guimarães, T.T.; Araújo, N.B.; Ribeiro, S.; Deslandes, A.C. Motor Coordination Correlates with Academic Achievement and Cognitive Function in Children. Front. Psychol. 2016, 7, 318. [Google Scholar] [CrossRef]
- Invernizzi, P.L.; Crotti, M.; Bosio, A.; Scurati, R.; Lovecchio, N. Correlation between Cognitive Functions and Motor Coordination in Children with Different Cognitive Levels. Adv. Phys. Educ. 2018, 8, 98–115. [Google Scholar] [CrossRef]
- Liu, J.-H.; Alderman, B.L.; Song, T.-F.; Chen, F.-T.; Hung, T.-M.; Chang, Y.-K. A Randomized Controlled Trial of Coordination Exercise on Cognitive Function in Obese Adolescents. Psychol. Sport Exerc. 2018, 34, 29–38. [Google Scholar] [CrossRef]
- Newell, K.M. Coordination, Control and Skill. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1985; Volume 27, pp. 295–317. ISBN 0166-4115. [Google Scholar]
- Alvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sanchez-Lopez, M.; Martínez-Hortelano, J.A.; Martinez-Vizcaino, V. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 729–738. [Google Scholar] [CrossRef]
- Planinšec, J.; Pišot, R. Motor Coordination and Intelligence Level in Adolescents. Adolescence 2006, 41, 667. [Google Scholar]
- Budde, H.; Voelcker-Rehage, C.; Pietraßyk-Kendziorra, S.; Ribeiro, P.; Tidow, G. Acute Coordinative Exercise Improves Attentional Performance in Adolescents. Neurosci. Lett. 2008, 441, 219–223. [Google Scholar] [CrossRef]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A. CONSORT 2025 Statement: Updated Guideline for Reporting Randomised Trials. Lancet 2025, 405, 1633–1640. [Google Scholar] [CrossRef]
- Mammarella, I.C.; Toso, C.; Stefani, F.N. BVS-Corsi-2. Batteria per la Valutazione della Memoria di Lavoro Visuospaziale (8–12 anni); Edizioni Centro Studi Erickson SpA: Trento, Italy, 2023; ISBN 978-88-590-3392-9. [Google Scholar]
- Kessels, R.P.; Van Zandvoort, M.J.; Postma, A.; Kappelle, L.J.; De Haan, E.H. The Corsi Block-Tapping Task: Standardization and Normative Data. Appl. Neuropsychol. 2000, 7, 252–258. [Google Scholar] [CrossRef]
- Payne, V.G.; Isaacs, L.D. Human Motor Development: A Lifespan Approach; Routledge: Oxfordshire, UK, 2017. [Google Scholar]
- Woodfield, L. Physical Development in the Early Years; Bloomsbury Publishing: London, UK, 2004; ISBN 1-4411-1463-7. [Google Scholar]
- Williams, H.G. Perceptual and Motor Development; Pearson Education: Singapore, 1983. [Google Scholar]
- Clark, J.E.; Metcalfe, J.S. The Mountain of Motor Development: A Metaphor. Mot. Dev. Res. Rev. 2002, 2, 183–202. [Google Scholar]
- Gabbard, C. Lifelong Motor Development; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2021; ISBN 1-9751-6944-1. [Google Scholar]
- Gallahue, D.L. Assessing Motor Development in Young Children. Stud. Educ. Eval. 1982, 8, 247–252. [Google Scholar] [CrossRef]
- Gallahue, D.L.; Donnelly, F.C. Developmental Physical Education for All Children; Human Kinetics: Champaign, IL, USA, 2007; ISBN 0-7360-7120-2. [Google Scholar]
- Goodway, J.D.; Ozmun, J.C.; Gallahue, D.L. Understanding Motor Development: Infants, Children, Adolescents, Adults: Infants, Children, Adolescents, Adults; Jones & Bartlett Learning: Burlington, MA, USA, 2019; ISBN 1-284-20445-6. [Google Scholar]
- Haubenstricker, J.; Seefeldt, V. Acquisition of Motor Skills during Childhood. Phys. Act. Well-Being 1986, 1986, 41–92. [Google Scholar]
- Haywood, K.; Getchell, N. Life Span Motor Development; Human Kinetics: Champaign, IL, USA, 2024; ISBN 1-7182-1672-6. [Google Scholar]
- Malina, R.M. Physical Activity, Growth, and Functional Capacity. In Human Physical Growth and Maturation: Methodologies and Factors; Springer: Berlin/Heidelberg, Germany, 1980; pp. 303–327. [Google Scholar]
- Payne, V.G.; Isaacs, L.D. Introduction to Motor Development. In Human Motor Development; Routledge: Oxfordshire, UK, 2020; pp. 3–30. [Google Scholar]
- Thelen, E. Motor Development: A New Synthesis. Am. Psychol. 1995, 50, 79. [Google Scholar] [CrossRef]
- Magistro, D.; Piumatti, G.; Carlevaro, F.; Sherar, L.B.; Esliger, D.W.; Bardaglio, G.; Magno, F.; Zecca, M.; Musella, G. Measurement Invariance of TGMD-3 in Children With and Without Mental and Behavioral Disorders. Psychol. Assess. 2018, 30, 1421–1429. [Google Scholar] [CrossRef]
- Magistro, D.; Piumatti, G.; Carlevaro, F.; Sherar, L.B.; Esliger, D.W.; Bardaglio, G.; Magno, F.; Zecca, M.; Musella, G. Psychometric Proprieties of the Test of Gross Motor Development–Third Edition in a Large Sample of Italian Children. J. Sci. Med. Sport 2020, 23, 860–865. [Google Scholar] [CrossRef]
- Ulrich, D.; D’Anna, C.; Carlevaro, F.; Magno, F.; Magistro, D. TGMD-3. Test per La Valutazione Dello Sviluppo Grosso-Motorio; Edizioni Centro Studi Erickson SpA: Trento, Italy, 2023; ISBN 88-590-3251-2. [Google Scholar]
- Walters, G.W.M.; Cooper, S.; Carlevaro, F.; Magno, F.; Boat, R.; Vagnetti, R.; D’Anna, C.; Musella, G.; Magistro, D. Normative Percentile Values for the TGMD-3 for Italian Children Aged 3–11+ years. J. Sci. Med. Sport 2025, 28, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.T.; Petosa, R.; Pate, R.R. Validation of an Instrument for Measurement of Physical Activity in Youth. Med. Sci. Sports Exerc. 1997, 29, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Gallotta, M.C.; Emerenziani, G.P.; Iazzoni, S.; Meucci, M.; Baldari, C.; Guidetti, L. Impacts of Coordinative Training on Normal Weight and Overweight/Obese Children’s Attentional Performance. Front. Hum. Neurosci. 2015, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Croce, R.; Ben-Soussan, T.D.; Vazou, S.; McCullick, B.; Tomporowski, P.D.; Horvat, M. Variability of Practice as an Interface between Motor and Cognitive Development. Int. J. Sport Exerc. Psychol. 2019, 17, 133–152. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Wrisberg, C.A. Motor Learning and Performance: A Situation-Based Learning Approach; Human Kinetics: Champaign, IL, USA, 2008; ISBN 0-7360-6964-X. [Google Scholar]
- Ministero dell’Istruzione. dell’Università e della Ricerca Annali della Pubblica Amministrazione. In dicazioni Nazionali per il Curricolo Della Scuola Dell’infanzia e del Primo ciclo D’istruzione; Period. Multimediale Scuola Italy: Genova, Italy, 2012. [Google Scholar]
- Ministero dell’Istruzione; dell’Università e della Ricerca. Indicazioni Nazionali e Nuovi Scenari; Ordinamenti: Boston, MA, USA, 2018.
- Blanca Mena, M.J.; Alarcón Postigo, R.; Arnau Gras, J.; Bono Cabré, R.; Bendayan, R. Non-normal data: Is ANOVA still a valid option? Psicothema 2017, 29, 552–557. [Google Scholar] [CrossRef]
- Alesi, M.; Bianco, A.; Luppina, G.; Palma, A.; Pepi, A. Improving Children’s Coordinative Skills and Executive Functions: The Effects of a Football Exercise Program. Percept. Mot. Skills 2016, 122, 27–46. [Google Scholar] [CrossRef]
- Latino, F.; Cataldi, S.; Fischetti, F. Effects of a Coordinative Ability Training Program on Adolescents’ Cognitive Functioning. Front. Psychol. 2021, 12, 620440. [Google Scholar] [CrossRef]
- Schmidt, M.; Mavilidi, M.F.; Singh, A.; Englert, C. Combining Physical and Cognitive Training to Improve Kindergarten Children’s Executive Functions: A Cluster Randomized Controlled Trial. Contemp. Educ. Psychol. 2020, 63, 101908. [Google Scholar] [CrossRef]
- Stein, M.; Auerswald, M.; Ebersbach, M. Relationships between Motor and Executive Functions and the Effect of an Acute Coordinative Intervention on Executive Functions in Kindergartners. Front. Psychol. 2017, 8, 859. [Google Scholar] [CrossRef]
- Castelli, D.M.; Hillman, C.H.; Buck, S.M.; Erwin, H.E. Physical Fitness and Academic Achievement in Third-and Fifth-Grade Students. J. Sport Exerc. Psychol. 2007, 29, 239–252. [Google Scholar] [CrossRef]
- Crova, C.; Struzzolino, I.; Marchetti, R.; Masci, I.; Vannozzi, G.; Forte, R.; Pesce, C. Cognitively Challenging Physical Activity Benefits Executive Function in Overweight Children. J. Sports Sci. 2014, 32, 201–211. [Google Scholar] [CrossRef]
- Fisher, A.; Boyle, J.M.; Paton, J.Y.; Tomporowski, P.; Watson, C.; McColl, J.H.; Reilly, J.J. Effects of a Physical Education Intervention on Cognitive Function in Young Children: Randomized Controlled Pilot Study. BMC Pediatr. 2011, 11, 97. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be Smart, Exercise Your Heart: Exercise Effects on Brain and Cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Moss, S.; Zhang, X.; Tamplain, P.; Gu, X. Overweight/Obesity and Socio-Demographic Disparities in Children’s Motor and Cognitive Function. Front. Psychol. 2023, 14, 1134647. [Google Scholar] [CrossRef]
- Capio, C.M.; Choi, C.S.; Masters, R.S. Association of Working Memory with Gross Motor Skills in Early Childhood. Int. J. Sport Exerc. Psychol. 2023, 21, 992–1005. [Google Scholar] [CrossRef]
- Moreau, D.; Conway, A.R. The Case for an Ecological Approach to Cognitive Training. Trends Cogn. Sci. 2014, 18, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Masci, I.; Marchetti, R.; Vazou, S.; Sääkslahti, A.; Tomporowski, P.D. Deliberate Play and Preparation Jointly Benefit Motor and Cognitive Development: Mediated and Moderated Effects. Front. Psychol. 2016, 7, 349. [Google Scholar] [CrossRef] [PubMed]
- De Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of Physical Activity on Executive Functions, Attention and Academic Performance in Preadolescent Children: A Meta-Analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Gilbert, L.M.; Dring, K.J.; Williams, R.A.; Boat, R.; Sunderland, C.; Morris, J.G.; Nevill, M.E.; Cooper, S.B. Effects of a Games-Based Physical Education Lesson on Cognitive Function in Adolescents. Front. Psychol. 2023, 14, 1098861. [Google Scholar] [CrossRef]
- Lin, C.-C.; Hsieh, S.-S.; Huang, C.-J.; Kao, S.-C.; Chang, Y.-K.; Hung, T.-M. The Unique Contribution of Motor Ability to Visuospatial Working Memory in School-age Children: Evidence from Event-related Potentials. Psychophysiology 2023, 60, e14182. [Google Scholar] [CrossRef]
- McClelland, M.M.; Cameron, C.E. Developing Together: The Role of Executive Function and Motor Skills in Children’s Early Academic Lives. Early Child. Res. Q. 2019, 46, 142–151. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H. A Developmental Perspective on Executive Function. Child Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef]
- St Clair-Thompson, H.; Stevens, R.; Hunt, A.; Bolder, E. Improving Children’s Working Memory and Classroom Performance. Educ. Psychol. 2010, 30, 203–219. [Google Scholar] [CrossRef]
- Diamond, A.; Ling, D.S. Conclusions about Interventions, Programs, and Approaches for Improving Executive Functions That Appear Justified and Those That, despite Much Hype, Do Not. Dev. Cogn. Neurosci. 2016, 18, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Marvel, C.L.; Morgan, O.P.; Kronemer, S.I. How the Motor System Integrates with Working Memory. Neurosci. Biobehav. Rev. 2019, 102, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Arslan Kabasakal, S.; Keskin, B.; Kaya, S. The relationship between posture and dynamic balance in 10–12 age group wrestlers. Acta Kinesiol. 2023, 17, 49–54. [Google Scholar] [CrossRef]
- Mao, F.; Huang, H.; Zhao, J.; Fang, X. Effects of cognitively engaging physical activity interventions on executive function in children and adolescents: A systematic review and meta-analysis. Front. Psychol. 2024, 15, 1454447. [Google Scholar] [CrossRef]
- Jansen, P.; Scheer, C.; Zayed, K. Motor Ability and Working Memory in Omani and German Primary School-Aged Children. PLoS ONE 2019, 14, e0209848. [Google Scholar] [CrossRef]
- Voyer, D.; Jansen, P. Motor Expertise and Performance in Spatial Tasks: A Meta-Analysis. Hum. Mov. Sci. 2017, 54, 110–124. [Google Scholar] [CrossRef]
- Ehrlich, S.B.; Levine, S.C.; Goldin-Meadow, S. The Importance of Gesture in Children’s Spatial Reasoning. Dev. Psychol. 2006, 42, 1259. [Google Scholar] [CrossRef]
- Jansen, P.; Schmelter, A.; Quaiser-Pohl, C.; Neuburger, S.; Heil, M. Mental Rotation Performance in Primary School Age Children: Are There Gender Differences in Chronometric Tests? Cogn. Dev. 2013, 28, 51–62. [Google Scholar] [CrossRef]
- Jirout, J.J.; Newcombe, N.S. Building Blocks for Developing Spatial Skills: Evidence from a Large, Representative US Sample. Psychol. Sci. 2015, 26, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, D.; Zambrzycka, J.; Makosz, S. Gender Differences in Toddlers’ Visual-Spatial Skills. Math. Think. Learn. 2017, 19, 167–180. [Google Scholar] [CrossRef]
- Boat, R.; Cooper, S.B.; Carlevaro, F.; Magno, F.; Bardaglio, G.; Musella, G.; Magistro, D. 16 Weeks of Physically Active Mathematics and English Language Lessons Improves Cognitive Function and Gross Motor Skills in Children Aged 8–9 Years. Int. J. Environ. Res. Public. Health 2022, 19, 16751. [Google Scholar] [CrossRef]
- Logan, S.W.; Robinson, L.E.; Wilson, A.E.; Lucas, W.A. Getting the Fundamentals of Movement: A Meta-analysis of the Effectiveness of Motor Skill Interventions in Children. Child Care Health Dev. 2012, 38, 305–315. [Google Scholar] [CrossRef]
- Magistro, D.; Cooper, S.B.; Carlevaro, F.; Marchetti, I.; Magno, F.; Bardaglio, G.; Musella, G. Two Years of Physically Active Mathematics Lessons Enhance Cognitive Function and Gross Motor Skills in Primary School Children. Psychol. Sport Exerc. 2022, 63, 102254. [Google Scholar] [CrossRef]
- D’Anna, C.; Carlevaro, F.; Magno, F.; Vagnetti, R.; Limone, P.; Magistro, D. Sex Differences in Gross Motor Competence in Italian Children Aged 3–11 Years: A Large-Scale Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2025, 10, 61. [Google Scholar] [CrossRef]
- Adolph, K.E.; Hospodar, C.M. Motor Development. In Developmental Science; Routledge: Oxfordshire, UK, 2024; pp. 234–269. [Google Scholar]
- Gallahue, D.L.; Ozmun, J.C. Motor Development in Young Children. In Handbook of Research on the Education of Young Children; Routledge: Oxfordshire, UK, 2014; pp. 123–138. [Google Scholar]
- Han, A.; Fu, A.; Cobley, S.; Sanders, R.H. Effectiveness of Exercise Intervention on Improving Fundamental Movement Skills and Motor Coordination in Overweight/Obese Children and Adolescents: A Systematic Review. J. Sci. Med. Sport 2018, 21, 89–102. [Google Scholar] [CrossRef]
- Kolovelonis, A.; Pesce, C.; Goudas, M. The Effects of a Cognitively Challenging Physical Activity Intervention on School Children’s Executive Functions and Motivational Regulations. Int. J. Environ. Res. Public Health 2022, 19, 12742. [Google Scholar] [CrossRef]
- Marchetti, R.; Forte, R.; Borzacchini, M.; Vazou, S.; Tomporowski, P.D.; Pesce, C. Physical and Motor Fitness, Sport Skills and Executive Function in Adolescents: A Moderated Prediction Model. Psychology 2015, 6, 1915–1929. [Google Scholar] [CrossRef]
- McMorris, T.; Tomporowski, P.; Audiffren, M. Exercise and Cognitive Function; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 0-470-74067-1. [Google Scholar]
- Tomporowski, P.D.; McCullick, B.A.; Pesce, C. Enhancing Children’s Cognition with Physical Activity Games; Human Kinetics: Champaign, IL, USA, 2015; ISBN 1-4925-8482-7. [Google Scholar]
- Forte, P.; Pugliese, E.; Matrisciano, C.; D’Anna, C. Exploring the Relationship Between Visual-Spatial Working Memory and Gross Motor Skills in Primary School Children. Italy J. Health Educ. Sport Incl. Didact. 2025, 9, 981915. [Google Scholar]
- Matrisciano, C.; Pugliese, E.; Forte, P.; D’Anna, C. Physical Activity and Development of Executive Functions in Developmental Age: A Systematic Review. Italy J. Health Educ. Sport Incl. Didact. 2025, 9, 1–19. [Google Scholar]
- Forte, P.; Pugliese, E.; Ambretti, A.; D’Anna, C. Physical Education and Embodied Learning: A Review. Sport Mont 2023, 21, 129–134. [Google Scholar] [CrossRef]
- Camp, N.; Vagnetti, R.; Bisele, M.; Felton, P.; Hunter, K.; Magistro, D. The Effect of Cognitive Task Complexity on Healthy Gait in the Walking Corsi Test. Brain Sci. 2023, 13, 1019. [Google Scholar] [CrossRef]
- Forte, P.; Gentilozzi, C.; Pugliese, E.; Lucaccioni, L.; D’Anna, C. Embodied Learning in Kindergarten School: Perspectives and Limits. Italy J. Health Educ. Sport Incl. Didact. 2024, 8. [Google Scholar] [CrossRef]






| Control Group (CG) | Experimental Group (EG) | |||
|---|---|---|---|---|
| Girl | 43 | 41.9% | 51 | 46.4% |
| Boy | 31 | 58.1% | 59 | 53.6% |
| M (SD) | M (SD) | |||
| Age | 9.50 (0.50) | 9.47 (0.55) | ||
| Body Mass Index | 18.7 (3.89) | 19.3 (3.37) | ||
| Total weekly hours of physical activity | 3.07 (1.65) | 3.50 (1.50) | ||
| Experimental | Control | Main Effect Group | ||||||
|---|---|---|---|---|---|---|---|---|
| Dependent Variable | Baseline, M (SD) | Post-Test, M (SD) | Percentage of Change | Baseline, M (SD) | Post-Test, M (SD) | Percentage of Change | Analysis of Covariance | Effect Size |
| Corsi Forward Task | 4.48 (0.70) | 5.35 (0.55) | 19.4 | 4.53 (0.85) | 4.54 (0.80) | 0.2 | F = 115.47, p < 0.001 | 1.12 |
| Corsi Backward Task | 4.16 (0.76) | 5.31 (0.46) | 27.6 | 4.09 (0.90) | 4.09 (0.73) | 0.0 | F = 250.96, p < 0.001 | 1.40 |
| Total Gross Motor | 104 (8.04) | 117 (3.82) | 12.5 | 103 (6.85) | 104 (5.73) | 0.9 | F = 386.73, p < 0.001 | 1.58 |
| Locomotor Score | 39 (3.88) | 46.9 (1.52) | 20.2 | 38.9 (3.38) | 39 (3.08) | 0.2 | F = 628.54, p < 0.001 | 2.11 |
| Ball Skills Score | 43.1 (2.95) | 48.8 (1.25) | 13.2 | 41.4 (3.71) | 42.7 (2.42) | 3.1 | F = 556.07, p < 0.001 | 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forte, P.; Pugliese, E.; Aquino, G.; Matrisciano, C.; Carlevaro, F.; Magno, F.; Magistro, D.; D’Anna, C. Enhancing Visuospatial Working Memory and Motor Skills Through School-Based Coordination Training. Sports 2025, 13, 396. https://doi.org/10.3390/sports13110396
Forte P, Pugliese E, Aquino G, Matrisciano C, Carlevaro F, Magno F, Magistro D, D’Anna C. Enhancing Visuospatial Working Memory and Motor Skills Through School-Based Coordination Training. Sports. 2025; 13(11):396. https://doi.org/10.3390/sports13110396
Chicago/Turabian StyleForte, Pasqualina, Elisa Pugliese, Giovanna Aquino, Carmela Matrisciano, Fabio Carlevaro, Francesca Magno, Daniele Magistro, and Cristiana D’Anna. 2025. "Enhancing Visuospatial Working Memory and Motor Skills Through School-Based Coordination Training" Sports 13, no. 11: 396. https://doi.org/10.3390/sports13110396
APA StyleForte, P., Pugliese, E., Aquino, G., Matrisciano, C., Carlevaro, F., Magno, F., Magistro, D., & D’Anna, C. (2025). Enhancing Visuospatial Working Memory and Motor Skills Through School-Based Coordination Training. Sports, 13(11), 396. https://doi.org/10.3390/sports13110396

