The Impact of Different Velocity Losses on Post-Activation Performance Enhancement (PAPE) Effects in Sprint Athletes: A Pilot Randomized Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Training Protocol
2.3. Measurement
2.3.1. Movement Speed Monitoring
2.3.2. 20 m Sprint Test
2.3.3. Stride Length and Frequency Testing
2.4. Statistical Analysis
3. Results
3.1. Effects of Different Velocity Losses on PAPE in 0–10 m Phase
3.2. Effects of Different Velocity Losses on PAPE in 10−20 m Phase
3.3. Effects of Different Velocity Losses on PAPE in 0–20 m Phase
3.4. Impact of Different Velocity Losses on Stride Length in 0–20 m Phase
3.5. Impact of Different Velocity Losses on Stride Frequency in 0–20 m Phase
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-activation potentiation: Underlying physiology and implications for motor performance. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Babault, N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Boullosa, D.; Del Rosso, S.; Behm, D.G.; Foster, C. Post-activation potentiation (PAP) in endurance sports: A review. Eur. J. Sport Sci. 2018, 18, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Behrens, M.; Chaabene, H.; Granacher, U.; Maffiuletti, N.A. Time to Differentiate Postactivation “Potentiation” from “Performance Enhancement” in the Strength and Conditioning Community. Sports Med. 2020, 50, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Matusinski, A.; Pietraszewski, P.; Krzysztofik, M.; Golas, A. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters. Front. Physiol. 2021, 12, 651659. [Google Scholar] [CrossRef] [PubMed]
- Krcmar, M.; Krcmarova, B.; Bakalar, I.; Simonek, J. Acute Performance Enhancement Following Squats Combined With Elastic Bands on Short Sprint and Vertical Jump Height in Female Athletes. J. Strength Cond. Res. 2021, 35, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.F.; Wang, X.X.; Han, M.Y.; Li, L.L.; Nassis, G.P.; Li, Y.M. Effects of velocity based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A Systematic review with meta-analysis. PLoS ONE 2021, 16, e0259790. [Google Scholar] [CrossRef]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.; McKune, A.; Pumpa, K.; Ball, N. The Use of Acute Exercise Interventions as Game Day Priming Strategies to Improve Physical Performance and Athlete Readiness in Team-Sport Athletes: A Systematic Review. Sports Med. 2020, 50, 1943–1962. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.J.S.; Mann, B.; Banyard, H.G.; McLaren, S.J.; Scott, T.J.; García-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Sanchez-Medina, L.; Suarez-Arrones, L.; Gonzalez-Badillo, J.J. Effects of Velocity Loss During Resistance Training on Performance in Professional Soccer Players. Int. J. Sports Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.K.; Falvo, M.J.; Chiu, L.Z. Force-velocity, impulse-momentum relationships: Implications for efficacy of purposefully slow resistance training. J. Sports Sci. Med. 2008, 7, 299–304. [Google Scholar] [PubMed]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Morales-Alamo, D.; Perez-Suarez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Alcazar, J.; Sanchez-Valdepenas, J.; Cornejo-Daza, P.J.; Piqueras-Sanchiz, F.; Mora-Vela, R.; Sanchez-Moreno, M.; Bachero-Mena, B.; Ortega-Becerra, M.; Alegre, L.M. Velocity Loss as a Critical Variable Determining the Adaptations to Strength Training. Med. Sci. Sports Exerc. 2020, 52, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Perez-Castilla, A.; Garcia-Ramos, A.; Padial, P.; Morales-Artacho, A.J.; Feriche, B. Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J. Sports Sci. 2018, 36, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, W.; Li, S.; Zhang, H. Stride length mediates the correlation between movement coordination and sprint velocity. J. Sports Sci. 2023, 41, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Schubert, A.G.; Kempf, J.; Heiderscheit, B.C. Influence of stride frequency and length on running mechanics: A systematic review. Sports Health 2014, 6, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Hanley, B.; Tucker, C.B. Reliability of the OptoJump Next System for Measuring Temporal Values in Elite Racewalking. J. Strength Cond. Res. 2019, 33, 3438–3443. [Google Scholar] [CrossRef] [PubMed]
- Finlay, M.J.; Bridge, C.A.; Greig, M.; Page, R.M. Upper-Body Post-activation Performance Enhancement for Athletic Performance: A Systematic Review with Meta-analysis and Recommendations for Future Research. Sports Med. 2022, 52, 847–871. [Google Scholar] [CrossRef] [PubMed]
- Garbisu-Hualde, A.; Santos-Concejero, J. Post-Activation Potentiation in Strength Training: A Systematic Review of the Scientific Literature. J. Hum. Kinet. 2021, 78, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Rumeau, V.; Grospretre, S.; Babault, N. Post-Activation Performance Enhancement and Motor Imagery Are Efficient to Emphasize the Effects of a Standardized Warm-Up on Sprint-Running Performances. Sports 2023, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Galiano, C.; Pareja-Blanco, F.; Hidalgo de Mora, J.; Saez de Villarreal, E. Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J. Strength Cond. Res. 2022, 36, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, A.; Padulo, J.; Seitz, L.D. Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players. J. Sports Sci. 2018, 36, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Bevan, H.R.; Cunningham, D.J.; Tooley, E.P.; Owen, N.J.; Cook, C.J.; Kilduff, L.P. Influence of postactivation potentiation on sprinting performance in professional rugby players. J. Strength Cond. Res. 2010, 24, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Gouvea, A.L.; Fernandes, I.A.; Cesar, E.P.; Silva, W.A.; Gomes, P.S. The effects of rest intervals on jumping performance: A meta-analysis on post-activation potentiation studies. J. Sports Sci. 2013, 31, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.; Hoffman, J.R.; Mangine, G.T.; Wells, A.J.; Gonzalez, A.M.; Jajtner, A.R.; Townsend, J.R.; McCormack, W.P.; Stout, J.R.; Fragala, M.S.; et al. Do changes in muscle architecture affect post-activation potentiation? J. Sports Sci. Med. 2014, 13, 483–492. [Google Scholar] [PubMed]
- Zimmermann, H.B.; MacIntosh, B.R.; Dal Pupo, J. Does postactivation potentiation (PAP) increase voluntary performance? Appl. Physiol. Nutr. Metab. 2020, 45, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.L.; Stull, J.T. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am. J. Physiol. 1984, 247, C462–C471. [Google Scholar] [CrossRef] [PubMed]
- Güllich, A.; Sehmidtbleicher, D. MVC-induced short- term potentiation of explosive force. New Stud. Athl. 1996, 11, 67–84. [Google Scholar]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Santanielo, N.; Nobrega, S.R.; Scarpelli, M.C.; Alvarez, I.F.; Otoboni, G.B.; Pintanel, L.; Libardi, C.A. Effect of resistance training to muscle failure vs non-failure on strength, hypertrophy and muscle architecture in trained individuals. Biol. Sport 2020, 37, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Bezodis, I. Investigations of the step length-step frequency relationship in sprinting: Applied implications for performance. In Proceedings of the ISBS-Conference Proceedings Archive, Melbourne, Australia, 2–6 July 2012. [Google Scholar]
- Shen, W. The effects of stride length and frequency on the speeds of elite sprinters in 100 meter dash. In Proceedings of the ISBS-Conference Proceedings Archive, Hong Kong, China, 25–30 June 2000. [Google Scholar]
- Bartolomei, S.; De Luca, R.; Marcora, S.M. May a Nonlocalized Postactivation Performance Enhancement Exist Between the Upper and Lower Body in Trained Men? J. Strength Cond. Res. 2023, 37, 68–73. [Google Scholar] [CrossRef] [PubMed]
Pre | 4 min | 8 min | 12 min | 16 min | Group | Time | Group × Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mean ± SD | 95% CI | mean ± SD | 95% CI | mean ± SD | 95% CI | mean ± SD | 95% CI | mean ± SD | 95% CI | p | p | p | |
TG | 1.681 ± 0.017 | 1.647~1.714 | 1.685 ± 0.016 | 1.654~1.717 | 1.664 ± 0.017 | 1.629~1.699 | 1.683 ± 0.017 | 1.648~1.718 | 1.686 ± 0.017 | 1.652~1.72 | 0.169 | 0.247 | 0.083 |
10% VL | 1.691 ± 0.017 | 1.656~1.725 | 1.71 ± 0.016 | 1.678~1.742 | 1.688 ± 0.018 | 1.653~1.724 | 1.697 ± 0.018 | 1.662~1.733 | 1.694 ± 0.017 | 1.659~1.729 | |||
20% VL | 1.69 ± 0.017 | 1.658~1.723 | 1.657 ± 0.015 | 1.626~1.687 | 1.656 ± 0.017 | 1.622~1.691 | 1.672 ± 0.017 | 1.639~1.706 | 1.665 ± 0.017 | 1.632~1.698 |
Pre | 4 min | 8 min | 12 min | 16 min | Group | Time | Group × Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | p | p | p | |
TG | 1.202 ± 0.009 | 1.184~1.22 | 1.213 ± 0.009 | 1.196~1.23 | 1.225 ± 0.014 | 1.197~1.254 | 1.206 ± 0.01 | 1.187~1.225 | 1.2 ± 0.011 | 1.178~1.223 | 0.481 | 0.237 | 0.493 |
10% VL | 1.209 ± 0.009 | 1.191~1.227 | 1.199 ± 0.009 | 1.182~1.216 | 1.203 ± 0.014 | 1.175~1.232 | 1.203 ± 0.01 | 1.184~1.222 | 1.188 ± 0.011 | 1.166~1.21 | |||
20% VL | 1.199 ± 0.009 | 1.18~1.217 | 1.193 ± 0.009 | 1.175~1.21 | 1.199 ± 0.014 | 1.17~1.227 | 1.195 ± 0.01 | 1.176~1.214 | 1.195 ± 0.011 | 1.173~1.217 |
Pre | 4 min | 8 min | 12 min | 16 min | Group | Time | Group × Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | p | p | p | Mean ± SD | 95% CI | p | p | p | |
TG | 2.883 ± 0.021 | 2.842~2.924 | 2.896 ± 0.021 | 2.854~2.939 | 2.885 ± 0.022 | 2.841~2.93 | 2.887 ± 0.022 | 2.842~2.932 | 2.887 ± 0.024 | 2.84~2.935 | 0.208 | 0.509 | 0.037 |
10% VL | 2.898 ± 0.021 | 2.857~2.939 | 2.904 ± 0.021 | 2.861~2.947 | 2.891 ± 0.022 | 2.847~2.936 | 2.89 ± 0.022 | 2.845~2.934 | 2.878 ± 0.024 | 2.831~2.926 | |||
20% VL | 2.895 ± 0.02 | 2.855~2.936 | 2.857 ± 0.021 | 2.815~2.899 | 2.86 ± 0.022 | 2.817~2.904 | 2.872 ± 0.022 | 2.828~2.916 | 2.866 ± 0.023 | 2.819~2.912 |
Pre | 4 min | 8 min | 12 min | 16 min | Group | Time | Group × Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | p | p | p | |
TG | 337.797 ± 5.229 | 327.503~348.091 | 334.942 ± 5.321 | 324.468~345.416 | 338.634 ± 5.573 | 327.663~349.605 | 335.569 ± 5.337 | 325.062~346.075 | 337.19 ± 5.221 | 326.912~347.469 | 0.159 | 0.061 | 0.388 |
10% VL | 334.472 ± 5.119 | 324.395~344.549 | 337.085 ± 5.209 | 326.831~347.339 | 337.356 ± 5.456 | 326.616~348.096 | 338.342 ± 5.225 | 328.057~348.627 | 336.573 ± 5.111 | 326.511~346.635 | |||
20% VL | 335.312 ± 5.229 | 325.018~345.606 | 337.466 ± 5.321 | 326.991~347.94 | 341.188 ± 5.573 | 330.217~352.16 | 341.672 ± 5.337 | 331.166~352.178 | 338.498 ± 5.221 | 328.22~348.777 |
Pre | 4 min | 8 min | 12 min | 16 min | Group | Time | Group × Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | p | p | p | |
TG | 4.37 ± 1.682 | 1.059~7.681 | 4.418 ± 1.686 | 1.099~7.737 | 4.411 ± 1.834 | 0.8~8.021 | 4.434 ± 1.746 | 0.996~7.872 | 4.387 ± 1.848 | 0.749~8.026 | 0.148 | 0.645 | 0.924 |
10% VL | 7.293 ± 1.664 | 4.017~10.568 | 7.3 ± 1.668 | 4.017~10.584 | 7.551 ± 1.814 | 3.98~11.123 | 7.408 ± 1.728 | 4.007~10.809 | 7.605 ± 1.829 | 4.005~11.204 | |||
20% VL | 4.437 ± 1.682 | 1.126~7.747 | 4.425 ± 1.686 | 1.106~7.743 | 4.39 ± 1.834 | 0.78~8.001 | 4.398 ± 1.746 | 0.961~7.836 | 4.422 ± 1.848 | 0.784~8.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Mo, L.; Liu, Y.; Mei, T. The Impact of Different Velocity Losses on Post-Activation Performance Enhancement (PAPE) Effects in Sprint Athletes: A Pilot Randomized Controlled Study. Sports 2024, 12, 157. https://doi.org/10.3390/sports12060157
Li L, Mo L, Liu Y, Mei T. The Impact of Different Velocity Losses on Post-Activation Performance Enhancement (PAPE) Effects in Sprint Athletes: A Pilot Randomized Controlled Study. Sports. 2024; 12(6):157. https://doi.org/10.3390/sports12060157
Chicago/Turabian StyleLi, Liang, Ling Mo, Yanxu Liu, and Tao Mei. 2024. "The Impact of Different Velocity Losses on Post-Activation Performance Enhancement (PAPE) Effects in Sprint Athletes: A Pilot Randomized Controlled Study" Sports 12, no. 6: 157. https://doi.org/10.3390/sports12060157
APA StyleLi, L., Mo, L., Liu, Y., & Mei, T. (2024). The Impact of Different Velocity Losses on Post-Activation Performance Enhancement (PAPE) Effects in Sprint Athletes: A Pilot Randomized Controlled Study. Sports, 12(6), 157. https://doi.org/10.3390/sports12060157