Improving Mental Skills in Precision Sports by Using Neurofeedback Training: A Narrative Review
Abstract
:1. Introduction
- To synthesise the existing research on the application of NFT in improving cognitive and mental skills in athletes, with a specific focus on precision sports such as archery and shooting;
- To evaluate the effectiveness of NFT protocols in enhancing performance outcomes in precision sports by reviewing and analysing the outcomes of relevant studies;
- To identify the theoretical mechanisms through which NFT may influence cognitive and psychological processes relevant to sports performance;
- To discuss the current limitations and future directions of research in the application of NFT in sports, with an emphasis on precision disciplines.
2. Neurofeedback and Sport Performance
3. Methodology
4. Neurofeedback and Target-Precision Sports
4.1. Theoretical Foundations
4.2. Landers’s Early Studies
4.3. Progress in Archery Research
4.4. Application of Neurofeedback in Shooting
4.5. Enhancing Precision Sports Performance through Neurofeedback
4.6. The Role of Motor Programming
4.7. Combined Training Approaches
4.8. Current Efficacies and Future Directions for Mobile EEG Technologies
5. Technological Advancements for Neuromodulation and Biofeedback
5.1. The Significance of Neuromodulation in Enhancing Shooting Sports Performance
5.2. From Landers’s Early Work to Contemporary Neuromodulation Strategies
5.3. Synergistic Approaches: Combining Neurofeedback with Physiological Biofeedback
5.4. Customising Neurofeedback for Enhanced Psychophysiological Consistency in Athletes
5.5. Exploring Neuromodulation’s Role in Athlete Recovery and Mental Well-Being
5.6. The Expanding Horizons of BCI in Sports
6. Conclusions and Future Directions
- -
- Integration of NFT with Emerging Technologies
- -
- Personalisation and Machine Learning
- -
- Wearable Neurofeedback Devices
- -
- Longitudinal Studies and Big Data
- -
- Interdisciplinary Research
- -
- Ethical and Regulatory Considerations
- -
- Exploring New Sports and Disciplines
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Hu, T.; Luo, R.; Shen, Q.; Wang, Y.; Li, X.; Qiao, J.; Zhu, L.; Cui, L.; Yin, H. Effect of cognitive reappraisal on archery performance of elite athletes: The mediating effects of sport-confidence and attention. Front. Psychol. 2022, 13, 860817. [Google Scholar] [CrossRef]
- Mikicin, M.; Szczypańska, M.; Skwarek, K. Neurofeedback needs support! Effects of neurofeedback-EEG training in terms of the level of attention and arousal control in sports shooters. Balt. J. Health Phys. Act. 2018, 10, 8. [Google Scholar] [CrossRef]
- Kim, E.J.; Kang, H.W.; Park, S.M. The effects of psychological skills training for archery players in Korea: Research synthesis using meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 2272. [Google Scholar] [CrossRef]
- Taha, Z.; Musa, R.M.; Abdullah, M.R.; Maliki, A.B.; Kosni, N.A.; Mat-Rasid, S.M.; Adnan, A.; Juahir, H. Supervised pattern recognition of archers’ relative psychological coping skills as a component for a better archery performance. Malays. J. Fundam. Appl. Sci. 2018, 10, 467–484. [Google Scholar]
- Diotaiuti, P.; Corrado, S.; Mancone, S.; Falese, L.; Dominski, F.H.; Andrade, A. An exploratory pilot study on choking episodes in archery. Front. Psychol. 2021, 12, 585477. [Google Scholar] [CrossRef] [PubMed]
- Nien, J.T.; Gill, D.L.; Chou, T.Y.; Liu, C.S.; Geng, X.; Hung, T.M.; Chang, Y.K. Effect of brief mindfulness and relaxation inductions on anxiety, affect and brain activation in athletes. Psychol. Sport Exerc. 2023, 67, 102422. [Google Scholar] [CrossRef] [PubMed]
- Kieffaber, P.D.; Dickter, C.L. EEG Methods for the Psychological Sciences; Sage Publications, Ltd.: London, UK, 2013; pp. 1–176. [Google Scholar]
- Gruzelier, J.H. EEG-neurofeedback for optimizing performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 2014, 44, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.Q.; Hou, X.H.; Liao, B.G.; Liao, J.W.; Hu, M. The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychol. Sport Exerc. 2018, 36, 114–122. [Google Scholar] [CrossRef]
- Dessy, E.; Mairesse, O.; Van Puyvelde, M.; Cortoos, A.; Neyt, X.; Pattyn, N. Train your brain? Can we really selectively train specific EEG frequencies with neurofeedback training. Front. Hum. Neurosci. 2020, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Mirifar, A.; Keil, A.; Ehrlenspiel, F. Neurofeedback and neural self-regulation: A new perspective based on allostasis. Rev. Neurosci. 2022, 33, 607–629. [Google Scholar] [CrossRef]
- Jimenez Morgan, S.; Molina Mora, J.A. Effect of heart rate variability biofeedback on sport performance, a systematic review. Appl. Psychophysiol. Biofeedback 2017, 42, 235–245. [Google Scholar] [CrossRef]
- Davelaar, E.J. Mechanisms of neurofeedback: A computation-theoretic approach. Neuroscience 2018, 378, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Egner, T.; Zech, T.F.; Gruzelier, J.H. The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clin. Neurophysiol. Pract. 2004, 115, 2452–2460. [Google Scholar] [CrossRef] [PubMed]
- Mierau, A.; Hülsdünker, T.; Strüder, H.K. Brain Oscillations and Athletic Performance. In Sports Performance; Kanosue, K., Nagami, T., Tsuchiya, J., Eds.; Springer: Tokyo, Japan, 2015; pp. 25–36. [Google Scholar]
- Alatorre-Cruz, G.C.; Fernández, T.; Castro-Chavira, S.A.; González-López, M.; Sánchez-Moguel, S.M.; Silva-Pereyra, J. One-year follow-up of healthy older adults with electroencephalographic risk for neurocognitive disorder after neurofeedback training. J. Alzheimer’s Dis. 2022, 85, 1767–1781. [Google Scholar] [CrossRef] [PubMed]
- Vernon, D. Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Appl. Psychophysiol. Biofeedback 2005, 30, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.C. Neurofeedback for the enhancement of athletic performance and physical balance. J. Am. Board Sport Psychol. 2007, 1, 1–9. [Google Scholar]
- Enriquez-Geppert, S.; Huster, R.J.; Herrmann, C.S. EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Front. Hum. Neurosci. 2017, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Mirifar, A.; Beckmann, J.; Ehrlenspiel, F. Neurofeedback as supplementary training for optimizing athletes’ performance: A systematic review with implications for future research. Neurosci. Biobehav. Rev. 2017, 75, 419–432. [Google Scholar] [CrossRef]
- Levy, J.J.; Baldwin, D.R. Psychophysiology and biofeedback of sport performance. In APA Handbook of Sport and Exercise Psychology: Sport Psychology; American Psychological Association: Washington, DC, USA, 2019. [Google Scholar]
- Brandmeyer, T.; Delorme, A. Closed-loop frontal midlineθ neurofeedback: A novel approach for training focused-attention meditation. Front. Hum. Neurosci. 2020, 14, 246. [Google Scholar] [CrossRef]
- Maszczyk, A.; Dobrakowski, P.; Nitychoruk, M.; Żak, M.; Kowalczyk, M.; Toborek, M. The effect of neurofeedback training on the visual processing efficiency in judo athletes. J. Hum. Kinet. 2020, 71, 219–227. [Google Scholar] [CrossRef]
- Harvey, R.H.; Beauchamp, M.K.; Saab, M.; Beauchamp, P. Biofeedback reaction-time training: Toward Olympic gold. Biofeedback 2011, 39, 7–14. [Google Scholar] [CrossRef]
- Fortenbaugh, F.C.; DeGutis, J.; Esterman, M. Recent theoretical, neural, and clinical advances in sustained attention research. Ann. N. Y. Acad. Sci. 2017, 1396, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Milton, J.; Solodkin, A.; Hluštík, P.; Small, S.L. The mind of expert motor performance is cool and focused. NeuroImage 2007, 35, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Wang, K.P.; Chang, W.H.; Kao, C.W.; Hung, T.M. Effects of the function-specific instruction approach to neurofeedback training on frontal midline theta waves and golf putting performance. Psychol. Sport Exerc. 2022, 61, 102211. [Google Scholar] [CrossRef]
- Dupee, M.; Werthner, P. Managing the stress response: The use of biofeedback and neurofeedback with Olympic athletes. Biofeedback 2011, 39, 92–94. [Google Scholar] [CrossRef]
- Marzbani, H.; Marateb, H.R.; Mansourian, M. Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 2016, 7, 143. [Google Scholar]
- Domingos, C.; Silva, C.M.D.; Antunes, A.; Prazeres, P.; Esteves, I.; Rosa, A.C. The influence of an alpha band neurofeedback training in heart rate variability in athletes. Int. J. Environ. Res. Public Health 2021, 18, 12579. [Google Scholar] [CrossRef]
- Zoefel, B.; Huster, R.; Herrmann, C. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage 2011, 54, 1427–1431. [Google Scholar] [CrossRef]
- Gong, A.; Gu, F.; Nan, W.; Qu, Y.; Jiang, C.; Fu, Y. A review of neurofeedback training for improving sport performance from the perspective of user experience. Front. Neurosci. 2021, 15, 638369. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Hsueh, J.; Chen, T.; Shaw, F. Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity. Sci. Rep. 2021, 11, 19615. [Google Scholar] [CrossRef] [PubMed]
- Schabus, M.; Griessenberger, H.; Gnjezda, M.; Heib, D.; Wisłowska, M.; Hoedlmoser, K. Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain 2017, 140, 1041–1052. [Google Scholar] [CrossRef]
- Enriquez-Geppert, S.; Smit, D.; Pimenta, M.; Arns, M. Neurofeedback as a treatment intervention in ADHD: Current evidence and practice. Curr. Psychiatry Rep. 2019, 21, 46. [Google Scholar] [CrossRef]
- Renton, T.; Tibbles, A.; Topolovec-Vranic, J. Neurofeedback as a form of cognitive rehabilitation therapy following stroke: A systematic review. Arch. Phys. Med. Rehabil. 2015, 96, e27. [Google Scholar] [CrossRef]
- Landers, D.M.; Petruzzello, S.J.; Salazar, W.; Crews, D.J.; Kubitz, K.A.; Gannon, T.L.; Han, M. The influence of electrocortical biofeedback on performance in pre-elite archers. Med. Sci. Sports Exerc. 1991, 23, 123–129. [Google Scholar] [CrossRef]
- Landers, D.M.; Han, M.; Salazar, W.; Petruzzello, S.J. Effects of learning on electroencephalographic and electrocardiographic patterns in novice archers. Int. J. Sport Psychol. 1994, 25, 313–330. [Google Scholar]
- Loze, G.M.; Collins, D.; Holmes, P.S. Pre-shot EEG alpha-power reactivity during expert air-pistol shooting: A comparison of best and worst shots. J. Sports Sci. 2001, 19, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Evaluation of attention and relaxation levels of archers in shooting process using brain wave signal analysis algorithms. Sci. Emot. Sensib. 2009, 12, 341–350. [Google Scholar]
- Chang, Y.; Lee, J.J.; Seo, J.H.; Song, H.J.; Kim, Y.T.; Lee, H.J.; Kim, H.J.; Lee, J.; Kim, W.; Woo, M.; et al. Neural correlates of motor imagery for elite archers. NMR Biomed. 2011, 24, 366–372. [Google Scholar] [CrossRef]
- Paul, M.; Ganesan, S.; Sandhu, J.; Simon, J. Effect of sensory motor rhythm neurofeedback on psychophysiological, electro-encephalographic measures and performance of archery players. Ibnosina J. Med. Biomed. Sci. 2012, 4, 32–39. [Google Scholar]
- Callan, D.E.; Naito, E. Neural processes distinguishing elite from expert and novice athletes. Cogn. Behav. Neurol. 2014, 27, 183–188. [Google Scholar] [CrossRef]
- Kim, W.; Chang, Y.; Kim, J.; Seo, J.; Ryu, K.; Lee, E.; Woo, M.; Janelle, C.M. An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming. Cogn. Behav. Neurol. 2014, 27, 173–182. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Huang, C.J.; Chang, Y.K.; Koester, D.; Schack, T.; Hung, T.M. Sensorimotor rhythm neurofeedback enhances golf putting performance. J. Sport Exerc. Psychol. 2015, 37, 626–636. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Wang, K.P.; Hung, C.L.; Tu, Y.L.; Huang, C.J.; Koester, D.; Schack, T.; Hung, T.M. Higher power of sensorimotor rhythm is associated with better performance in skilled air-pistol shooters. Psychol. Sport Exerc. 2017, 32, 47–53. [Google Scholar] [CrossRef]
- Kakhaki, A.S.; Taheri, H. The Effect of Bio/Neurofeedback Training on Performance, Audio and Visual Attention in Elite Shooters. J. Appl. Biomech. 2017, 6, 85–90. [Google Scholar]
- Christie, S.; Bertollo, M.; Werthner, P. The effect of an integrated neurofeedback and biofeedback training intervention on ice hockey shooting performance. J. Sport Exerc. Psychol. 2020, 42, 34–47. [Google Scholar] [CrossRef]
- Gong, A.; Nan, W.; Yin, E.; Jiang, C.; Fu, Y. Efficacy, trainability, and neuroplasticity of SMR vs. alpha rhythm shooting performance neurofeedback training. Front. Hum. Neurosci. 2020, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Gong, A.; Qu, Y.; Bao, A.; Wu, J.; Jiang, C.; Fu, Y. From Expert to Elite?—Research on Top Archer’s EEG Network Topology. Front. Hum. Neurosci. 2022, 16, 759330. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.Y.; Wang, K.P.; Doppelmayr, M.; Steinberg, F.; Hung, T.M.; Lu, C.; Tan, Y.Y.; Hatfield, B. QEEG markers of superior shooting performance in skilled marksmen: An investigation of cortical activity on psychomotor efficiency hypothesis. Psychol. Sport Exerc. 2023, 65, 102320. [Google Scholar] [CrossRef] [PubMed]
- Hatami, F.; Tahmasbi, F.; Pasbani, H. The Effects of Skilled People’s EEG-Based Neurofeedback Training on Learning the Air Rifle Shooting Skill in Novices. J. Sports Mot. Dev. Learn. 2023, 15, 87–104. [Google Scholar]
- Kavianipoor, H.; Farsi, A.; Bahrami, A. The Effect of Neurofeedback Training on Executive Control Network of Attention and Dart-Throwing Performance in Individuals with Trait Anxiety. Appl. Psychophysiol. Biofeedback 2023, 48, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Mutang, J.A.; Seok, C.B.; Wider, W. Sensorimotor Rhythm (SMR) Neurofeedback Training on Anxiety: A Case Study on Archers. J. ReAttach Ther. Dev. Divers. 2023, 6, 282–291. [Google Scholar]
- Toolis, T.; Cooke, A.; Laaksonen, M.S.; McGawley, K. Effects of Neurofeedback Training on Frontal Midline Theta Power, Shooting Performance, and Attentional Focus With Experienced Biathletes. J. Clin. Sport Psychol. 2023, 1, 1–23. [Google Scholar] [CrossRef]
- Hung, T.M.; Cheng, M.Y. Neurofeedback in sport: Theory, methods, research, and efficacy. In Handbook of Sport Neuroscience and Psychophysiology; Routledge: London, UK, 2018; pp. 304–319. [Google Scholar]
- Sarro, K.J.; Viana, T.D.C.; De Barros, R.M.L. Relationship between bow stability and postural control in recurve archery. Eur. J. Sport Sci. 2021, 21, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Liu, W. Research and Application of Competitive Sports Psychological Control; People’s Sports Publishing House: Beijing, China, 2005; pp. 110–111. [Google Scholar]
- Salazar, W.; Landers, D.M.; Petruzzello, S.J.; Han, M.; Crews, D.J.; Kubitz, K.A. Hemispheric asymmetry, cardiac response, and performance in elite archers. Res. Q. Exerc. Sport 1990, 61, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Hung, T.M. Understanding and controlling cortical activity for superior performance. Kinesiol. Rev. 2020, 9, 41–50. [Google Scholar] [CrossRef]
- Debnath, S.; Debnath, S. Performance evaluation by image processing techniques in archery—A case study. Biomater. Transl. 2016, 3, 1–6. [Google Scholar]
- Katahira, K.; Yamazaki, Y.; Yamaoka, C.; Ozaki, H.; Nakagawa, S.; Nagata, N. EEG correlates of the flow state: A combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic task. Front. Psychol. 2018, 9, 300. [Google Scholar] [CrossRef]
- Salehi, M.; Pyke, W.; Mohammadzadeh, H.; Nazari, M.A.; Javadi, A.H. Neurofeedback and Motor Imagery Are as Good as Physical Training on Dart Throwing. 2019. Available online: https://psyarxiv.com (accessed on 24 November 2023).
- Li, P.; Lu, Q.; Wu, Q.; Liu, X.; Wu, Y. What makes an elite shooter and archer? The critical role of interoceptive attention. Front. Psychol. 2021, 12, 666568. [Google Scholar] [CrossRef]
- Bertollo, M.; di Fronso, S.; Conforto, S.; Schmid, M.; Bortoli, L.; Comani, S.; Robazza, C. Proficient brain for optimal performance: The MAP model perspective. PeerJ 2016, 4, e2082. [Google Scholar] [CrossRef]
- Wang, K.P.; Cheng, M.Y.; Chen, T.T.; Chang, Y.K.; Huang, C.J.; Feng, J.; Hung, T.M.; Ren, J. Experts’ successful psychomotor performance was characterized by effective switch of motor and attentional control. Psychol. Sport Exerc. 2019, 43, 374–379. [Google Scholar] [CrossRef]
- Cooke, A.; Kavussanu, M.; Gallicchio, G.; Willoughby, A.; McIntyre, D.; Ring, C. Preparation for action: Psychophysiological activity preceding a motor skill as a function of expertise, performance outcome, and psychological pressure. Psychophysiology 2014, 51, 374–384. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Wang, K.P.; Cheng, M.Y.; Chen, T.T.; Huang, C.J.; Schack, T.; Hung, T.M. Elite golfers are characterized by psychomotor refinement in cognitive-motor processes. Psychol. Sport Exerc. 2020, 50, 101739. [Google Scholar] [CrossRef]
- Kao, S.C.; Huang, C.J.; Hung, T.M. Neurofeedback training reduces frontal midline theta and improves putting performance in expert golfers. J. Appl. Sport Psychol. 2014, 26, 271–286. [Google Scholar] [CrossRef]
- Wang, K.P.; Frank, C.; Hung, T.M.; Schack, T. Neurofeedback training: Decreases in Mu rhythm lead to improved motor performance in complex visuomotor skills. Curr. Psychol. 2023, 42, 20860–20871. [Google Scholar] [CrossRef] [PubMed]
- Ring, C.; Cooke, A.; Kavussanu, M.; McIntyre, D.; Masters, R. Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychol. Sport Exerc. 2015, 16, 118–127. [Google Scholar] [CrossRef]
- Afrash, S.; Saemi, E.; Gong, A.; Doustan, M. Neurofeedback training and motor learning: The enhanced sensorimotor rhythm protocol is better or the suppressed alpha or the suppressed mu? BMC Sports Sci. Med. Rehabil. 2023, 15, 93. [Google Scholar] [CrossRef]
- Cardozo, P.; Cibeira, L.F.; Rigo, L.C.; Chiviacowsky, S. Explicit and implicit activation of gender stereotypes additively impair soccer performance and learning in women. Eur. J. Sport Sci. 2021, 21, 1306–1313. [Google Scholar] [CrossRef]
- Pourbehbahani, Z.; Saemi, E.; Cheng, M.Y.; Dehghan, M.R. Both sensorimotor rhythm neurofeedback and self-controlled practice enhance motor learning and performance in novice golfers. Behav. Sci. 2023, 13, 65. [Google Scholar] [CrossRef]
- Iwatsuki, T.; Otten, M.P. Providing choice enhances motor performance under psychological pressure. J. Mot. Behav. 2021, 53, 656–662. [Google Scholar] [CrossRef]
- Colzato, L.S.; Nitsche, M.A.; Kibele, A. Noninvasive brain stimulation and neural entrainment enhance athletic performance—A review. J. Cogn. Enhanc. 2017, 1, 73–79. [Google Scholar] [CrossRef]
- Park, J.L.; Fairweather, M.M.; Donaldson, D.I. Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 2015, 52, 117–130. [Google Scholar] [CrossRef]
- Sabio, J.; Williams, N.; McArthur, G.; Badcock, N.A. A scoping review on the use of consumer-grade EEG devices for research. bioRxiv 2022. [Google Scholar] [CrossRef]
- Friehs, M.A.; Whelan, E.; Güldenpenning, I.; Krause, D.; Weigelt, M. Stimulating performance: A scoping review on transcranial electrical stimulation effects on olympic sports. Psychol. Sport Exerc. 2022, 59, 102130. [Google Scholar] [CrossRef]
- Raza, Q.; Li Yin Ong, M.; Kuan, G. Effects of Using EEG Neurofeedback Device to Enhance Elite Bowlers’ Performance. In Enhancing Health and Sports Performance by Design. MoHE 2019. Lecture Notes in Bioengineering, Proceedings of the International Conference on Movement, Health and Exercise, Kuching, Malaysia, 30 September–2 October 2019; Hassan, M., Ed.; Springer: Singapore, 2019; pp. 503–510. [Google Scholar]
- Flanagan, K.; Saikia, M.J. Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing. Sensors 2023, 23, 8482. [Google Scholar] [CrossRef]
- Yousefpour Dehaghani, A.; Rajabi, H.; Moradi, L.; Reza Soltani, Z.; Eliaspour, D. The effect of resistance training and neurofeedback on shooting performance in military beginners. Mil. Psychol. 2023, 14, 55–75. [Google Scholar]
- Brito, M.A.; Fernandes, J.R.; Esteves, N.S.; Müller, V.T.; Alexandria, D.B.; Pérez, D.I.; Slimani, M.; Brito, C.J.; Bragazzi, N.L.; Miarka, B. The effect of neurofeedback on the reaction time and cognitive performance of athletes: A systematic review and meta-analysis. Front. Hum. Neurosci. 2022, 16, 868450. [Google Scholar] [CrossRef]
- Perrey, S. Probing the Promises of Noninvasive Transcranial Electrical Stimulation for Boosting Mental Performance in Sports. Brain Sci. 2023, 13, 282. [Google Scholar] [CrossRef]
- Moscaleski, L.A.; Fonseca, A.; Brito, R.; Morya, E.; Morgans, R.; Moreira, A.; Okano, A.H. Does high-definition transcranial direct current stimulation change brain electrical activity in professional female basketball players during free-throw shooting? Front. Neuroergon. 2022, 3, 932542. [Google Scholar] [CrossRef]
- Onagawa, R.; Muraoka, Y.; Hagura, N.; Takemi, M. An investigation of the effectiveness of neurofeedback training on motor performance in healthy adults: A systematic review and meta-analysis. NeuroImage 2023, 270, 120000. [Google Scholar] [CrossRef]
- Pusenjak, N.; Grad, A.; Tusak, M.; Leskovsek, M.; Schwarzlin, R. Can biofeedback training of psychophysiological responses enhance athletes’ sport performance? A practitioner’s perspective. Physician Sportsmed. 2015, 43, 287–299. [Google Scholar] [CrossRef]
- Guru, C.S.; Krishnan, A.; Mahajan, U.; Sharma, D. Heart Rate Values During Shooting is a Field-Side Performance Analysis Tool in Archery-A study of Elite Indian Archers. Int. Sports Med. Health Sci. 2020, 3, e99687. [Google Scholar] [CrossRef]
- Maleki Nezamabad, A.; Mohammadzadeh, H.; Eskandarnejad, M. The effect of biofeedback exercises on some physiological factors and performance of skilled archers. J. Sport Manag. Mot. Behav. 2022, 18, 125–137. [Google Scholar]
- Göçmen, R.; Aktop, A.; Pınar, Y.; Toktaş, N.; Jandačková, V.K. The Effect of Heart Rate Variability Biofeedback on Basketball Performance Tests. Appl. Psychophysiol. Biofeedback 2023, 48, 461–470. [Google Scholar] [CrossRef]
- Rydzik, Ł.; Wąsacz, W.; Ambroży, T.; Javdaneh, N.; Brydak, K.; Kopańska, M. The Use of Neurofeedback in Sports Training: Systematic Review. Brain Sci. 2023, 13, 660. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Hung, T.M. Biofeedback and neurofeedback for mental skills training in sports. In Advancements in Mental Skills Training; Bertollo, M., Filho, E., Terry, P., Eds.; Routledge: London, UK, 2020; pp. 149–163. [Google Scholar]
- Wilson, V.E.; Peper, E.; Moss, D. “The Mind Room” in Italian Soccer Training: The Use of Biofeedback and Neurofeedback for Optimum Performance. Biofeedback 2006, 34, 79. [Google Scholar]
- Dupee, M.; Werthner, P.; Forneris, T. A preliminary study on the relationship between athletes’ ability to self-regulate and world ranking. Biofeedback 2015, 43, 57–63. [Google Scholar] [CrossRef]
- Isaychev, S.; Chernorizov, A.; Korolev, A.; Isaychev, E.; Dubynin, I.; Zakharov, I. The psychophysiological diagnostics of the functional state of the athlete. Preliminary data. Psychol. Russ. State Art 2012, 5, 244. [Google Scholar] [CrossRef]
- Domingos, C.; Alves, C.; Sousa, E.; Rosa, A.; Pereira, J. Does neurofeedback training improve performance in athletes? Neuroregulation 2020, 7, 8–17. [Google Scholar] [CrossRef]
- Zadkhosh, S.; Zandi, H.; Hemayattalab, R. Neurofeedback versus mindfulness on young football players’ anxiety and performance. Turk. J. Kinesiol. 2018, 4, 132–141. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Y.; Guo, Y.; Bai, Y.; Dang, Y.; Xu, R.; He, J. Current status of neuromodulatory therapies for disorders of consciousness. Neurosci. Bull. 2018, 34, 615–625. [Google Scholar] [CrossRef]
- LoPresti, M.; Camacho, E.; Appelboom, G.; Connolly, E. The promising role of neuromodulation in improving ischemic stroke recovery. J. Neurol. Neurosurg. 2015, 1, 112. [Google Scholar] [CrossRef]
- Zhang, J. Neuromodulation for functional restoration: Recent advances and future perspectives. Int. J. Radiol. Radiat. Ther. 2021, 8, 134–137. [Google Scholar] [CrossRef]
- Zhang, Y.; Khorkova, O.; Rodríguez, R.; Golowaschi, J. Activity and neuromodulatory input contribute to the recovery of rhythmic output after decentralization in a central pattern generator. J. Neurophysiol. 2009, 101, 372–386. [Google Scholar] [CrossRef]
- Pawuś, D.; Paszkiel, S. BCI wheelchair control using expert system classifying EEG signals based on power spectrum estimation and nervous tics detection. Appl. Sci. 2022, 12, 10385. [Google Scholar] [CrossRef]
Authors | Year | Topic | Precision Sports | Sample Description | NFT Protocol | Results Obtained |
---|---|---|---|---|---|---|
Landers, et al. [37] | 1991 | The influence of electrocortical biofeedback on performance in pre-elite archers. | Archery | Pre-elite archers | Electrocortical biofeedback | Enhanced performance and concentration |
Landers, et al. [38] | 1994 | Effects of learning on EEG and ECG patterns in novice archers. | Archery | Novice archers | EEG and ECG biofeedback | Better learning outcomes and physiological control |
Loze, et al. [39] | 2001 | Pre-shot EEG alpha-power reactivity during expert air-pistol shooting. | Shooting | Expert shooters | EEG alpha power | Higher accuracy in best vs. worst shots |
Lee [40] | 2009 | Evaluation of attention and relaxation levels of archers using brain wave analysis. | Archery | Archers | Brain wave analysis | Improved focus and relaxation |
Chang, et al. [41] | 2011 | Neural correlates of motor imagery for elite archers. | Archery | Elite archers | Motor imagery | Enhanced mental preparation and performance |
Paul, et al. [42] | 2012 | Effect of SMR neurofeedback on psychophysiological measures and performance of archery players. | Archery | Archery players | SMR neurofeedback | Improved psychophysiological measures and performance |
Callan & Naito [43] | 2014 | Neural processes distinguishing elite from expert and novice athletes. | Various | Athletes (various sports) | N/A | Differentiated neural processes by skill level |
Kim, et al. [44] | 2014 | fMRI study of brain activity differences among elite, expert, and novice archers. | Archery | Archers (various skill levels) | N/A | Identified brain activity correlates of skill level |
Cheng, et al. [45] | 2015 | Sensorimotor Rhythm Neurofeedback Enhances Golf Putting Performance | Golf Putting | Pre-elite and elite golfers | Sensorimotor Rhythm (SMR) Neurofeedback Training (NFT) | Improved putting performance and increased SMR activity |
Cheng, et al. [46] | 2017 | Higher sensorimotor rhythm power associated with better performance in shooters. | Shooting | Skilled shooters | Sensorimotor rhythm neurofeedback | Improved shooting performance |
Kakhaki & Taheri [47] | 2017 | Bio/neurofeedback training’s effect on performance, attention in elite shooters. | Shooting | Elite shooters | Bio/neurofeedback | Enhanced attention and performance |
Mikicin, et al. [2] | 2018 | Effects of neurofeedback–EEG training on the level of attention and arousal control in sports shooters. | Shooting | Sports shooters | Neurofeedback–EEG training | Enhanced attention and arousal control |
Christie, et al. [48] | 2020 | The effect of an integrated neurofeedback and biofeedback training intervention on ice hockey shooting performance. | Ice Hockey | Ice hockey players | Integrated neurofeedback and biofeedback | Improved ice hockey shooting performance |
Gong, et al. [49] | 2020 | Efficacy, trainability, and neuroplasticity of SMR vs. alpha rhythm in enhancing shooting performance through neurofeedback training | Shooting | Students with basic pistol shooting skills | SMR (Sensorimotor Rhythm) vs. Alpha rhythm neurofeedback training | Improved shooting performance in the SMR group, decreased performance in the Alpha group |
Gong, et al. [32] | 2021 | Review of neurofeedback training for sport performance from user experience perspective. | Various | Athletes | Various NFT protocols | Positive user experience and performance improvement suggestions |
Chen, et al. [27] | 2022 | Effects of the function-specific instruction approach to neurofeedback training on frontal midline theta waves and golf putting performance. | Golf | Golfers | Function-specific instruction | Improved golf putting performance |
Gu, et al. [50] | 2022 | Research on top archer’s EEG network topology from expert to elite. | Archery | Top archers | EEG network analysis | Insights into neural basis of elite performance |
Cheng, et al. [51] | 2023 | QEEG markers of superior shooting performance in skilled marksmen. | Shooting | Skilled marksmen | QEEG analysis | Identified EEG markers linked to superior performance |
Hatami, et al. [52] | 2023 | The effects of EEG-based neurofeedback training on learning air rifle shooting in novices. | Air Rifle Shooting | Novices in air rifle shooting | EEG-based neurofeedback | Enhanced learning of air rifle shooting |
Kavianipoor, et al. [53] | 2023 | Neurofeedback training’s effect on attention and dart-throwing performance with anxiety. | Dart throwing | Individuals with anxiety | Neurofeedback | Improved executive control and performance |
Mutang, et al. [54] | 2023 | SMR neurofeedback training on anxiety in archers. | Archery | Archers with anxiety | SMR Neurofeedback | Reduced anxiety and improved performance |
Toolis, et al. [55] | 2023 | Neurofeedback training effects on shooting performance and attentional focus in biathletes. | Biathlon | Experienced biathletes | Neurofeedback | Enhanced focus and performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, S.; Tosti, B.; Mancone, S.; Di Libero, T.; Rodio, A.; Andrade, A.; Diotaiuti, P. Improving Mental Skills in Precision Sports by Using Neurofeedback Training: A Narrative Review. Sports 2024, 12, 70. https://doi.org/10.3390/sports12030070
Corrado S, Tosti B, Mancone S, Di Libero T, Rodio A, Andrade A, Diotaiuti P. Improving Mental Skills in Precision Sports by Using Neurofeedback Training: A Narrative Review. Sports. 2024; 12(3):70. https://doi.org/10.3390/sports12030070
Chicago/Turabian StyleCorrado, Stefano, Beatrice Tosti, Stefania Mancone, Tommaso Di Libero, Angelo Rodio, Alexandro Andrade, and Pierluigi Diotaiuti. 2024. "Improving Mental Skills in Precision Sports by Using Neurofeedback Training: A Narrative Review" Sports 12, no. 3: 70. https://doi.org/10.3390/sports12030070
APA StyleCorrado, S., Tosti, B., Mancone, S., Di Libero, T., Rodio, A., Andrade, A., & Diotaiuti, P. (2024). Improving Mental Skills in Precision Sports by Using Neurofeedback Training: A Narrative Review. Sports, 12(3), 70. https://doi.org/10.3390/sports12030070