Basketball Fatigue Impact on Kinematic Parameters and 3-Point Shooting Accuracy: Insights across Players’ Positions and Cardiorespiratory Fitness Associations of High-Level Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Initial Assessments
2.3. Methodological Protocols
2.4. Field Basketball Exercise Simulation Test (BEST)
2.5. Basketball Shooting Test and Kinematic Parameter Measurements
2.6. Other Measurements (Blood Lactate Concentration, Subjective Rating of Perceived Exertion, and Perceived Level of Muscle Soreness)
2.7. Statistical Analyses
2.8. Preliminary Study
3. Results
4. Discussion
Limitations, Strength, Suggestions for Future Research, and Practical Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FIBA. International Basketball Federation Official Basketball Rules 2022; FIBA-International Basketball Federation: Mies, Switzerland, 2022; pp. 1–105. [Google Scholar]
- Theodorou, A.S.; Rizou, H.P.; Zacharakis, E.; Ktistakis, I.; Bekris, E.; Panoutsakopoulos, V.; Strouzas, P.; Bourdas, D.I.; Kostopoulos, N. Pivot Step Jump: A New Test for Evaluating Jumping Ability in Young Basketball Players. J. Funct. Morphol. Kinesiol. 2022, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.T.; Shung, H.M. Relationship between isokinetic strength and shooting accuracy at different shooting ranges in Taiwanese elite high school basketball players. Isokinet. Exerc. Sci. 2005, 13, 169–174. [Google Scholar] [CrossRef]
- Rojas, F.J.; Oña, A.; Gutierrez, M.; Cepero, M. Kinematic adjustments in the basketball jump shot against an opponent. Ergonomics 2000, 43, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Knudson, D. Biomechanics of the Basketball Jump Shot—Six Key Teaching Points. J. Phys. Educ. Recreat. Danc. 1993, 64, 67–73. [Google Scholar] [CrossRef]
- Okazaki, V.H.A.; Rodacki, A.L.F.; Satern, M.N. A review on the basketball jump shot. Sports Biomech. 2015, 14, 190–205. [Google Scholar] [CrossRef]
- Aksović, N.; Bjelica, B.; D’Onofrio, R.; Milanović, F.; Nikolić, D.; Pržulj, R. Kinematic Analysis of Basketball Jump Shot. Ital. J. Sports Rehabil. Posturol. 2022, 9, 2107–2117. [Google Scholar]
- Fontanella, J.J. The Physics of Basketball; The Johns Hopkins University Press: Baltimore, ML, USA, 2006; ISBN 0-8018-8513-2. [Google Scholar]
- Brancazio, P.J. Physics of basketball. Am. J. Phys. 1981, 49, 356–365. [Google Scholar] [CrossRef]
- Okazaki, V.H.A.; Rodacki, A.L.F. Increased distance of shooting on basketball jump shot. J. Sport. Sci. Med. 2012, 11, 231–237. [Google Scholar]
- Crowley, M.J.; King, K. Monitoring of Physical Training Events; World Intellectual Property Organization: Geneva, Switzerland, 2010; p. 114. [Google Scholar]
- Dobovičnik, L.; Saša, J.; Zovko, V.; Erčulj, F. Determination of the optimal certain kinematic parameters in basketball three-point shooting using the 94fifty technology. Phys. Cult. 2015, 69, 5–13. [Google Scholar] [CrossRef]
- Stojanović, E.; Radenković, M.; Bubanj, S.; Stanković, R. Kinematic parameters of the jump shot in elite male basketball players. Phys. Educ. Sport 2019, 17, 237–245. [Google Scholar] [CrossRef]
- Zacharakis, E.D.; Bourdas, D.I.; Kotsifa, M.I.; Bekris, E.M.; Velentza, E.T.; Kostopoulos, N.I. Effect of balance and proprioceptive training on balancing and technical skills in 13–14-year-old youth basketball players. J. Phys. Educ. Sport 2020, 20, 2487–2500. [Google Scholar] [CrossRef]
- Zacharakis, E.; Souglis, A.; Bourdas, D.; Gioldasis, A.; Apostolidis, N.; Kostopoulos, N. The relationship between physical and technical performance characteristics of young soccer and basketball players: A comparison between two sports. Gazz. Medica Ital. Arch. Per Le Sci. Mediche 2021, 180, 653–664. [Google Scholar] [CrossRef]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sports Med. 2018, 48, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Bourdas, D.I.; Mitrousis, I.; Zacharakis, E.D.; Travlos, A.K. Home-audience advantage in basketball: Evidence from a natural experiment in Euro League games during the 2019–2021 COVID-19 era. J. Phys. Educ. Sport 2022, 22, 1761–1771. [Google Scholar] [CrossRef]
- Bourdas, D.I.; Zacharakis, E.D.; Travlos, A.K.; Souglis, A. Return to Basketball Play Following COVID-19 Lockdown. Sports 2021, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Leal, D.M.; Alcaraz, P.E. Training load and match-play demands in basketball based on competition level: A systematic review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef]
- Paulauskas, R.; Kamarauskas, P.; Nekriošius, R.; Bigwood, N.M. Physical and Physiological Response to Different Modes of Repeated Sprint Exercises in Basketball Players. J. Hum. Kinet. 2020, 72, 91–99. [Google Scholar] [CrossRef]
- Narazaki, K.; Berg, K.; Stergiou, N.; Chen, B. Physiological demands of competitive basketball. Scand. J. Med. Sci. Sports 2009, 19, 425–432. [Google Scholar] [CrossRef]
- Yang, C.; Leitkam, S.; Coté, J.N. Effects of different fatigue locations on upper body kinematics and inter-joint coordination in a repetitive pointing task. PLoS ONE 2019, 14, e0227247. [Google Scholar] [CrossRef]
- Erčulj, F.; Supej, M. The Impact of Fatigue on Jump Shot Height and Accuracy Over a Longer Shooting Distance in Basketball. Balt. J. Sport Health Sci. 2006, 4, 35–41. [Google Scholar] [CrossRef]
- Erculj, F.; Supej, M. Impact of fatigue on the position of the release arm and shoulder girdle over a longer shooting distance for an elite basketball player. J. Strength Cond. Res. 2009, 23, 1029–1036. [Google Scholar] [CrossRef]
- Slawinski, J.; Poli, J. Effect of fatigue on basketball three points shot kinematics. In Proceedings of the 33 International Conference of Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015; pp. 1209–1211. [Google Scholar]
- Marcolin, G.; Camazzola, N.; Panizzolo, F.A.; Grigoletto, D.; Paoli, A. Different intensities of basketball drills affect jump shot accuracy of expert and junior players. PeerJ 2018, 2018, e4250. [Google Scholar] [CrossRef]
- Rupcic, T.; Knjaz, D.; Bakovic, M.; Devrnja, A.; Matkovic, B.R. Impact of fatigue on accuracy and changes in certain kinematic parameters during shooting in basketball. Hrvat. Sport. Vjesn. 2015, 30, 15–20. [Google Scholar]
- Mulazimoglu, O.; Yanar, S.; Evcil, A.T.; Duvan, A. Examining the Effect of Fatigue on Shooting Accuracy in Young Basketball Players. Int. J. Soc. Humanit. Sci. Res. 2017, 27, 77–80. [Google Scholar] [CrossRef]
- Leigh, S.; Rolfe, B.; Konz, S. Cardiorespiratory Fitness Alleviates the Effect of Fatigue on Basketball Free Throw Shooting Performance. In Proceedings of the 37th International Society of Biomechanics in Sport Conference, Oxford, OH, USA, 21–25 July 2019; NMU Commons: Oxford, OH, USA, 2019; pp. 220–223. [Google Scholar]
- Freitas, L. Shot distribution in the NBA: Did we see when 3-point shots became popular? Ger. J. Exerc. Sport Res. 2021, 51, 237–240. [Google Scholar] [CrossRef]
- Rupčić, T.; Feng, L.; Matković, B.R.; Knjaz, D.; Dukarić, V.; Baković, M.; Matković, A.; Svoboda, I.; Vavaček, M.; Garafolić, H. The impact of progressive physiological loads on angular velocities during shooting in basketball-case study. Acta Kinesiol. 2020, 14, 102–109. [Google Scholar]
- Slawinski, J.; Louis, J.; Poli, J.; Tiollier, E.; Khazoom, C.; Dinu, D. The Effects of Repeated Sprints on the Kinematics of 3-Point Shooting in Basketball. J. Hum. Kinet. 2018, 62, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Ardigò, L.P.; Kuvacic, G.; Iacono, A.D.; Dascanio, G.; Padulo, J. Effect of heart rate on basketball three-point shot accuracy. Front. Physiol. 2018, 9, 75. [Google Scholar] [CrossRef]
- World Health Organization. Health Behaviour in School-Aged Children Study: Physical Activity in Adolescents Key Facts and Figures; World Health Organization: Geneva, Switzerland, 2016; p. 2. [Google Scholar]
- Bourdas, D.I.; Zacharakis, E.D. Impact of COVID-19 Lockdown on Physical Activity in a Sample of Greek Adults. Sports 2020, 8, 139. [Google Scholar] [CrossRef]
- Warburton, D.; Jamnik, V.; Bredin, S.; Gledhill, N. The 2018 Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) and electronic Physical Activity Readiness Medical Examination (ePARmed-X+). Health Fit. J. Can. 2018, 11, 31–34. [Google Scholar] [CrossRef]
- Bourdas, D.I.; Zacharakis, E.D.; Travlos, A.K.; Souglis, A.; Georgali, T.I.; Gofas, D.C.; Ktistakis, I.E.; Deltsidou, A. Impact of lockdown on smoking and sleeping in the early COVID-19 presence: Datasets of Greek Adults sample. Data Br. 2021, 39, 107480. [Google Scholar] [CrossRef]
- World Medical Association. Declaration of Helsinki, Ethical Principles for Scientific Requirements and Research Protocols. Bull. World Health Organ. 2013, 79, 373. [Google Scholar]
- Jackson, A.S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef]
- Clemente, F.M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Dose-response relationship between external load variables, body composition, and fitness variables in professional soccer players. Front. Physiol. 2019, 10, 443. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Riebe, D., Ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2018; ISBN 9781496339065. [Google Scholar]
- Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Cerezuela-Espejo, V.; Courel-Ibáñez, J.; Morán-Navarro, R.; Martínez-Cava, A.; Pallarés, J.G. The relationship between lactate and ventilatory thresholds in runners: Validity and reliability of exercise test performance parameters. Front. Physiol. 2018, 9, 1320. [Google Scholar] [CrossRef]
- Wasserman, K.; Whipp, B.J.; Koyal, S.N.; Beaver, W.L. Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 1973, 35, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Gaskill, S.E.; Ruby, B.C.; Walker, A.V.A.J.; Sanchez, O.A.; Serfass, R.C.; Leon, A.S. Validity and reliability of combining three methods to determine ventilatory threshold. Med. Sci. Sports Exerc. 2001, 33, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, A.T.; Dascombe, B.J.; Reaburn, P.R.J. Development of the basketball exercise simulation test: A match-specific basketball fitness test. J. Hum. Sport Exerc. 2014, 9, 700–712. [Google Scholar] [CrossRef]
- Bourdas, D.I.; Travlos, A.K.; Souglis, A.; Stavropoulou, G.; Zacharakis, E.; Gofas, D.C.; Bakirtzoglou, P. Effects of a Singular Dose of Mangiferin—Quercetin Supplementation on Basketball Performance: A Double-Blind Crossover Study of High-Level Male Players. Nutrients 2024, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- Calleja-González, J.; Terrados, N.; Mielgo-Ayuso, J.; Delextrat, A.; Jukic, I.; Vaquera, A.; Torres, L.; Schelling, X.; Stojanovic, M.; Ostojic, S.M. Evidence-based post-exercise recovery strategies in basketball. Phys. Sportsmed. 2016, 44, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Mihajlovic, M.; Cabarkapa, D.; Cabarkapa, D.V.; Philipp, N.M.; Fry, A.C. Recovery Methods in Basketball: A Systematic Review. Sports 2023, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Bourdas, D.I.; Souglis, A.; Zacharakis, E.D.; Geladas, N.D.; Travlos, A.K. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years’ Perspective. Nutrients 2021, 13, 4223. [Google Scholar] [CrossRef] [PubMed]
- Deltsidou, A.; Zarikas, V.; Mastrogiannis, D.; Kapreli, E.; Bourdas, D.; Raftopoulos, V.; Noula, M.; Lykeridou, K. Data on advanced glycation end-products concentrations and haemodynamic parameters following caffeine and nicotine consumption in nursing students. Data Br. 2020, 32, 106063. [Google Scholar] [CrossRef]
- Havenetidis, K.; Bourdas, D. Creatine supplementation: Effects on urinary excretion and anaerobic performance. J. Sports Med. Phys. Fit. 2003, 43, 347–355. [Google Scholar]
- Souglis, A.; Bourdas, D.I.; Gioldasis, A.; Ispirlidis, I.; Philippou, A.; Zacharakis, E.; Apostoldis, A.; Efthymiou, G.; Travlos, A.K. Time Course of Performance Indexes, Oxidative Stress, Inflammation, and Muscle Damage Markers after a Female Futsal Match. Sports 2023, 11, 127. [Google Scholar] [CrossRef]
- Glaister, M.; Howatson, G.; Pattison, J.R.; McInnes, G. The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. J. Strength Cond. Res. 2008, 22, 1597–1601. [Google Scholar] [CrossRef]
- Scanlan, A.; Dascombe, B.; Reaburn, P. A comparison of the activity demands of elite and sub-elite Australian men’s basketball competition. J. Sports Sci. 2011, 29, 1153–1160. [Google Scholar] [CrossRef]
- Rupčić, T.; Antekolović, L.; Knjaz, D.; Matković, B.; Cigrovski, V. Reliability analysis of the 94 fifty smart sensor basketball. In Proceedings of the 10th International Conference on Kinanthropology “Sport and Quality of Life”, Brno, Czech Republic, 18–20 November 2015; Zvonař, M., Sajdlová, Z., Eds.; Masarykova Univerzita: Brno, Czech Republic, 2015; pp. 432–438. [Google Scholar]
- Abdelrasoul, E.; Mahmoud, I.; Stergiou, P.; Katz, L. The accuracy of a real time sensor in an instrumented basketball. Procedia Eng. 2015, 112, 202–206. [Google Scholar] [CrossRef]
- Walther, L.H.; Zegers, F.; Nybo, M.; Mogensen, C.B.; Christensen, E.F.; Lassen, A.T.; Mikkelsen, S. Accuracy of a point-of-care blood lactate measurement device in a prehospital setting. J. Clin. Monit. Comput. 2022, 36, 1679–1687. [Google Scholar] [CrossRef]
- Nova Biomedical. Nova StatStrip Xpress Lactate Hospital Meter Instructions for Use Manual; Nova Biomedical Corp.: Waltham, MA, USA, 2011; pp. 1–68. [Google Scholar]
- Nosaka, K.; Sacco, P.; Mawatari, K. Effects of amino acid supplementation on muscle soreness and damage. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 620–635. [Google Scholar] [CrossRef]
- Keppel, G.; Wickens, T.D. Design and Analysis: A Researcher’s Handbook, 4th ed.; SAGE Publications Inc.: Newbury Park, CA, USA, 2004; ISBN 978-0135159415. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 0805802835. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Lyons, M.; Al-Nakeeb, Y.; Nevill, A. The impact of moderate and high intensity total body fatigue on passing accuracy in expert and novice basketball players. J. Sports Sci. Med. 2006, 5, 215–227. [Google Scholar] [PubMed]
- Padulo, J.; Attene, G.; Migliaccio, G.M.; Cuzzolin, F.; Vando, S.; Ardigò, L.P. Metabolic optimisation of the basketball free throw. J. Sports Sci. 2015, 33, 1454–1458. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Knjaz, D.; Rupčić, T. Influence of fatigue on some kinematic parameters of basketball passing. Int. J. Environ. Res. Public Health 2021, 18, 700. [Google Scholar] [CrossRef]
- Sterner, R.L.; Pincivero, D.M.; Lephart, S.M. The effects of muscular fatigue on shoulder proprioception. Clin. J. Sport Med. 1998, 8, 96–101. [Google Scholar] [CrossRef]
- Hiemstra, L.A.; Lo, I.K.Y.; Fowler, P.J. Effect of fatigue on knee proprioception: Implications for dynamic stabilization. J. Orthop. Sports Phys. Ther. 2001, 31, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Skinner, H.B.; Wyatt, M.P.; Hodgdon, J.A.; Conard, D.W.; Barrack, R.L. Effect of fatigue on joint position sense of the knee. J. Orthop. Res. 1986, 4, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lo, S.-L.; Lee, Y.-K.; Wang, J.-S.; Shiang, T.-Y. Effects of Upper Extremity Fatigue on Basketball Shooting Accuracy. In Proceedings of the 23 International Symposium on Biomechanics in Sports, Beijing, China, 22–27 August 2005; ISBS: Beijing, China, 2005; pp. 633–636. [Google Scholar]
- Sudo, M.; Costello, J.T.; McMorris, T.; Ando, S. The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review. Front. Behav. Neurosci. 2022, 16, 957677. [Google Scholar] [CrossRef]
- McMorris, T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int. J. Psychophysiol. 2021, 170, 75–88. [Google Scholar] [CrossRef]
- Tempest, G.D.; Davranche, K.; Brisswalter, J.; Perrey, S.; Radel, R. The differential effects of prolonged exercise upon executive function and cerebral oxygenation. Brain Cogn. 2017, 113, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Travlos, A.K.; Marisi, D.Q. Information processing and concentration as a function of fitness level and exercise-induced activation to exhaustion. Percept. Mot. Ski. 1995, 80, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Cabarkapa, D.; Fry, A.C.; Cabarkapa, D.V.; Myers, C.A.; Jones, G.T.; Philipp, N.M.; Yu, D.; Deane, M.A. Differences in Biomechanical Characteristics between Made and Missed Jump Shots in Male Basketball Players. Biomechanics 2022, 2, 352–360. [Google Scholar] [CrossRef]
- StatMuse. NBA League Average 3 Point Percentage by Position. Available online: https://www.statmuse.com/nba/ask/nba-league-average-3-point-percentage-by-position (accessed on 22 November 2023).
- Committee on Physical Activity and Physical Education in the School Environment; Food and Nutrition Board; Institute of Medicine. Educating the Student Body: Taking Physical Activity and Physical Education to School; Kohl, H.W., III, Cook, H.D., Eds.; National Academies Press (US): Washington, DC, USA, 2013; ISBN 9780309283137. [Google Scholar]
- França, C.; Gouveia, É.R.; Silva, M.J.C.; Gomes, B.B. A kinematic analysis of the basketball shot performance: Impact of distance variation to the basket. Acta Bioeng. Biomech. 2022, 24, 159–166. [Google Scholar] [CrossRef]
Variables | Guards (N = 13) | Forwards (N = 13) | Centers (N = 12) | All Participants (n = 38) |
---|---|---|---|---|
† ‡ § Height (cm) | 194.7 ± 2.7 [193.2–196.2] | 202.7 ± 2.3 [201.4–203.9] | 205.3 ± 0.9 [204.8–205.8] | 200.8 ± 5.0 [199.2–202.4] |
† ‡ § Body mass (kg) | 88.4 ± 3.6 [86.4–90.3] | 98.9 ± 4.1 [96.7–101.2] | 104.0 ± 2.6 [102.5–105.5] | 96.9 ± 7.4 [94.6–99.3] |
† ‡ § Body fat (%) | 9.4 ± 1.1 [8.8–10.0] | 10. 9 ± 1.5 [10.1–11.7] | 12.9 ± 1.2 [12.2–13.6] | 11.0 ± 1.9 [10.4–11.6] |
Age (y) | 24.5 ± 3.0 [22.8–26.1] | 23.8 ± 2.5 [22.4–25.2] | 22.6 ± 2.1 [21.4–23.8] | 23.6 ± 2.7 [22.8–24.5] |
Experience practicing basketball (y) | 13.4 ± 3.3 [11.6–15.2] | 13.1 ± 2.7 [11.6–14.6] | 11.9 ± 1.9 [10.9–13.0] | 12.8 ± 2.7 [11.9–13.7] |
Active in basketball competition (y) | 12.5 ± 3.0 [10.8–14.1] | 11.8 ± 2.5 [10.4–13.2] | 10.6 ± 2.1 [9.4–11.8] | 11.6 ± 2.7 [10.8–12.5] |
Physical exercise training (h·wk−1) | 4.2 ± 0.9 [3.7–4.7] | 3.8 ± 1.1 [3.2–4.4] | 3.6 ± 0.8 [3.2–4.1] | 3.9 ± 1.0 [3.6–4.2] |
Basketball related training (h·wk−1) | 10.8 ± 1.4 [10.1–11.6] | 10.3 ± 0.9 [9.8–10.8] | 10.8 ± 1.1 [10.2–11.5] | 10.7 ± 1.2 [10.3–11.0] |
† § O2max (mL·kg−1·min−1) | 60.9 ± 2.5 [59.6–62.3] | 59.4 ± 2.2 [58.2–60.6] | 57.1 ± 1.6 [56.2–58.0] | 59.2 ± 2.6 [58.3–60.0] |
† ‡ VT2 (%O2max) | 81.1 ± 1.4 [80.3–81.9] | 77.1 ± 2.1 [76.0–78.3] | 75.5 ± 2.2 [74.3–76.7] | 78.0 ± 3.0 [77.0–78.9] |
HRmax (b·min−1) | 195.7 ± 2.3 [194.4–196.9] | 196.0 ± 1.8 [195.0–197.0] | 197.0 ± 1.2 [196.3–197.7] | 196.2 ± 1.9 [195.6–196.8] |
† ‡ § CMJ height (cm) | 51.7 ± 2.5 [50.3–53.0] | 46.5 ± 1.7 [45.6–47.4] | 42.0 ± 1.0 [41.4–42.6] | 46.8 ± 4.4 [45.4–48.2] |
Dependent Variables | Guards (N = 13) | Forwards (N = 13) | Centers (N = 12) | All Participants (n = 38) |
---|---|---|---|---|
† § ST decrease (%) | 27.8 ± 0.6 [27.5–28.2] | 28.2 ± 0.7 [27.8–28.5] | 29.3 ± 1.4 [28.5–30.1] | 28.4 ± 1.1 [28.1–28.8] |
CT decrease (%) | 30.6 ± 2.5 [29.2–31.9] | 30.2 ± 2.7 [28.7–31.7] | 30.4 ± 2.5 [29.0–31.8] | 30.4 ± 2.5 [29.6–31.2] |
HR (%HRmax) | 88.8 ± 2.3 [87.6–90.1] | 90.7 ± 3.6 [88.7–92.7] | 89.6 ± 3.1 [87.8–91.3] | 89.7 ± 3.1 [88.7–90.7] |
La− (mmol·L−1) | 6.5 ± 0.9 [6.0–7.0] | 5.8 ± 1.2 [5.1–6.4] | 6.0 ± 0.7 [5.6–6.4] | 6.1 ± 1.0 [5.8–6.4] |
RPE (Borg scale, 6–20) | 4.0 ± 0.8 [3.55–4.4] | 3.9 ± 0.6 [3.6–4.3] | 3.8 ± 0.8 [3.4–4.3] | 3.9 ± 0.7 [3.7–4.2] |
RPMS (Likert scale, 0–10) | 13.2 ± 1.1 [12.6–13.8] | 12.9 ± 0.9 [12.4–13.4] | 13.5 ± 1.2 [12.8–14.2] | 13.2 ± 1.1 [12.9–13.6] |
Guards (N = 13) | Forwards (N = 13) | Centers (N = 12) | All Participants (n = 38) | |||||
---|---|---|---|---|---|---|---|---|
Dependent Variables | PRE | POST | PRE | POST | PRE | POST | PRE | POST |
RT (s) | * 0.6 ± 0.0 [0.5–0.6] | 0.7 ± 0.0 [0.7–0.7] | * 0.7 ± 0.1 [0.7–0.7] | 0.8 ± 0.0 [0.8–0.9] | * 0.8 ± 0.1 [0.8–0.9] | 0.9 ± 0.1 [0.9–1.0] | * 0.7 ± 0.1 [0.7–0.7] | 0.8 ± 0.1 [0.8–0.9] |
EA (°) | * 45.2 ± 0.9 [44.7–45.7] | 43.4 ± 1.1 [42.8–44.1] | * 43.3 ± 1.4 [42.6–44.1] | 42.0 ± 1.0 [41.4–42.5] | * 41.8 ± 0.8 [41.4–42.3] | 40.4 ± 1.0 [39.8–40.9] | * 43.5 ± 1.7 [43.0–44.1] | 42.0 ± 1.6 [41.4–42.5] |
SSs (frequency) | * 7.8 ± 0.4 [7.5–8.0] | 6.6 ± 0.5 [6.3–6.9] | * 7.1 ± 0.5 [6.8–7.4] | 5.9 ± 0.6 [5.6–6.3] | * 6.3 ± 0.5 [6.0–6.6] | 5.1 ± 0.7 [4.7–5.5] | * 7.1 ± 0.8 [6.9–7.3] | 5.9 ± 0.9 [5.6–6.2] |
SSR (%) | * 51.8 ± 2.9 [50.2–53.4] | 44.1 ± 3.4 [42.3–45.9] | * 47.7 ± 3.7 [45.7–49.7] | 39.5 ± 4.3 [37.2–41.8] | * 42.2 ± 3.3 [40.4–44.1] | 33.9 ± 4.5 [31.4–36.4] | * 47.4 ± 5.1 [45.7–49.0] | 39.3 ± 5.8 [37.5–41.1] |
Dependent Variables | No. | Group, N | Estimated Value in the POST Condition | Significance |
---|---|---|---|---|
¶ RT (s) | 1 | Guards, 13 | 0.7 ± 0.0 [0.6–0.8] | * 1 < 2, 3 |
2 | Forwards, 13 | 0.8 ± 0.0 [0.8–0.9] | * 2 < 3 | |
3 | Centers, 12 | 0.9 ± 0.0 [0.9–1.0] | ||
# EA (°) | 1 | Guards, 13 | 43.4 ± 0.4 [42.6–44.2] | * 1 > 2, 3 |
2 | Forwards, 13 | 42.0 ± 0.3 [41.4–42.6] | * 2 > 3 | |
3 | Centers, 12 | 40.4 ± 0.4 [39.6–41.2] | ||
‖ SSs (frequency) | 1 | Guards, 13 | 6.6 ± 0.2 [6.2–7.1] | * 1 > 2, 3 |
2 | Forwards, 13 | 5.9 ± 0.2 [5.6–6.3] | * 2 > 3 | |
3 | Centers, 12 | 5.0 ± 0.2 [4.6–5.5] |
Dependent Variables | O2max (mL·kg−1·min−1) | VT2 (%O2max) | HR (%HRmax) |
---|---|---|---|
RT (s) | 0.13 | * –0.50 | * 0.75 |
EA (°) | –0.20 | * 0.48 | * –0.64 |
SSs (frequency) | –0.09 | * 0.50 | * –0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourdas, D.I.; Travlos, A.K.; Souglis, A.; Gofas, D.C.; Stavropoulos, D.; Bakirtzoglou, P. Basketball Fatigue Impact on Kinematic Parameters and 3-Point Shooting Accuracy: Insights across Players’ Positions and Cardiorespiratory Fitness Associations of High-Level Players. Sports 2024, 12, 63. https://doi.org/10.3390/sports12030063
Bourdas DI, Travlos AK, Souglis A, Gofas DC, Stavropoulos D, Bakirtzoglou P. Basketball Fatigue Impact on Kinematic Parameters and 3-Point Shooting Accuracy: Insights across Players’ Positions and Cardiorespiratory Fitness Associations of High-Level Players. Sports. 2024; 12(3):63. https://doi.org/10.3390/sports12030063
Chicago/Turabian StyleBourdas, Dimitrios I., Antonios K. Travlos, Athanasios Souglis, Dimitrios C. Gofas, Dimitrios Stavropoulos, and Panteleimon Bakirtzoglou. 2024. "Basketball Fatigue Impact on Kinematic Parameters and 3-Point Shooting Accuracy: Insights across Players’ Positions and Cardiorespiratory Fitness Associations of High-Level Players" Sports 12, no. 3: 63. https://doi.org/10.3390/sports12030063
APA StyleBourdas, D. I., Travlos, A. K., Souglis, A., Gofas, D. C., Stavropoulos, D., & Bakirtzoglou, P. (2024). Basketball Fatigue Impact on Kinematic Parameters and 3-Point Shooting Accuracy: Insights across Players’ Positions and Cardiorespiratory Fitness Associations of High-Level Players. Sports, 12(3), 63. https://doi.org/10.3390/sports12030063