Anaerobic Sport-Specific Tests for Taekwondo: A Narrative Review with Guidelines for the Assessment
Abstract
:1. Introduction
2. The Role of the Anaerobic Energy Systems in Taekwondo
3. General Anaerobic Assessment in Taekwondo
4. Sport-Specific Anaerobic Assessment in Taekwondo
4.1. Taekwondo Anaerobic Test (TAT), Adapted Anaerobic Kick Test (AAKT)
4.2. Frequency Speed of Kick Tests (FSKT10s and FSKTmult)
4.3. Taekwondo Anaerobic Intermittent Kick Tests (TAIKTchest and TAIKThead)
4.4. Taekwondo-Specific Aerobic–Anaerobic–Agility (TAAA) Test
5. Practical Applications
6. Discussion
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Taekwondo General Assembly Unites on 50th Anniversary. Available online: http://www.worldtaekwondo.org/wtnews/view.html?nid=140009&mcd=C03&page=2 (accessed on 20 October 2023).
- WT Grand Prix Standing Procedure (In Force as of 16 January 2023). Available online: http://www.worldtaekwondo.org/rules-wt/rules.html (accessed on 11 December 2023).
- WT Competition Rules & Interpretation (In Force as of 1 September 2023). Available online: http://www.worldtaekwondo.org/rules-wt/rules.html (accessed on 11 December 2023).
- Santos, J.F.S.; Wilson, V.D.; Herrera-Valenzuela, T.; Machado, F.S.M. Time-motion analysis and physiological responses to taekwondo combat in juvenile and adult athletes: A systematic review. Strength Cond. J. 2020, 42, 103–121. [Google Scholar] [CrossRef]
- Apollaro, G.; Moreira, P.; Herrera-Valenzuela, T.; Franchini, E.; Falcó, C. Time-motion analysis of taekwondo matches in the Tokyo 2020 Olympic Games. J. Sports Med. Phys. Fitness 2023, 63, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Bridge, C.A.; Jones, M.A.; Drust, B. The activity profile in international taekwondo competition is modulated by weight category. Int. J. Sports Physiol. Perform. 2011, 6, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Bridge, C.A.; McNaughton, L.R.; Close, G.L.; Drust, B. Taekwondo exercise protocols do not recreate the physiological responses of championship combat. Int. J. Sports Med. 2013, 34, 573–581. [Google Scholar] [CrossRef]
- Santos, V.G.; Franchini, E.; Lima-Silva, A.E. Relationship between attack and skipping in taekwondo contests. J. Strength Cond. Res. 2011, 25, 1743–1751. [Google Scholar] [CrossRef]
- Apollaro, G.; Franchini, E.; Falcó, C.; Detanico, D.; Kons, R.L. Sport-specific tests for endurance in taekwondo: A narrative review with guidelines for the assessment. Strength Cond. J. 2023, 10, 1519. [Google Scholar] [CrossRef]
- Janowski, M.; Zieliński, J.; Kusy, K. Exercise response to real combat in elite taekwondo athletes before and after competition rule changes. J. Strength Cond. Res. 2021, 35, 2222–2229. [Google Scholar] [CrossRef]
- Bridge, C.A.; Jones, M.A.; Drust, B. Physiological responses and perceived exertion during international taekwondo competition. Int. J. Sports Physiol. Perform. 2009, 4, 485–493. [Google Scholar] [CrossRef]
- Chiodo, S.; Tessitore, A.; Cortis, C.; Lupo, C.; Ammendolia, A.; Iona, T.; Capranica, L. Effects of official taekwondo competitions on all-out performances of elite athletes. J. Strength Cond. Res. 2011, 25, 334–339. [Google Scholar] [CrossRef]
- Herrera-Valenzuela, T.; Zapata-Bastias, J.; Guajardo-Medrano, M.; Pons-Vargas, G.; Valdes-Badilla, P.; da Silva Santos, J.F.; Garcia-Hermoso, A.; Lopez-Fuenzalida, A.; Franchini, E.; Orihuela, P. Can simulation tasks reproduce the taekwondo match physiological responses? Arch. Budo Sci. Martial Arts Extrem. Sports 2018, 14, 25–31. [Google Scholar]
- Markovic, G.; Vucetic, V.; Cardinale, M. Heart rate and lactate responses to taekwondo fight in elite women performers. Biol. Sport 2008, 25, 135–146. [Google Scholar]
- Bridge, C.A.; Ferreira da Silva Santos, J.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Janowski, M.; Zieliński, J.; Ciekot-Sołtysiak, M.; Schneider, A.; Kusy, K. The effect of sports rules amendments on exercise intensity during taekwondo-specific workouts. Int. J. Environ. Res. Public Health 2020, 17, 6779. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.A.; Bertuzzi, R.; Dourado, A.C.; Santos, V.G.; Franchini, E. Energy demands in taekwondo athletes during combat simulation. Eur. J. Appl. Physiol. 2012, 112, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Silva, J.P.; da Silva Santos, J.F.; Artioli, G.G.; Loturco, I.; Abbiss, C.; Franchini, E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur. J. Sport Sci. 2018, 18, 431–440. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Silva Santos, J.F.; Branco, B.H.; Abad, C.C.; Oliveira, L.F.; Loturco, I.; Franchini, E. Caffeine ingestion increases estimated glycolytic metabolism during taekwondo combat simulation but does not improve performance or parasympathetic reactivation. PLoS ONE 2015, 10, e0142078. [Google Scholar] [CrossRef]
- Yang, W.H.; Heine, O.; Grau, M. Rapid weight reduction does not impair athletic performance of taekwondo athletes—A pilot study. PLoS ONE 2018, 13, e0196568. [Google Scholar] [CrossRef]
- Franchini, E. Energy system contributions during olympic combat sports: A narrative review. Metabolites 2023, 13, 297. [Google Scholar] [CrossRef]
- Bridge, C.A.; Sparks, A.S.; McNaughton, L.R.; Close, G.L.; Hausen, M.; Gurgel, J.; Drust, B. Repeated exposure to taekwondo combat modulates the physiological and hormonal responses to subsequent bouts and recovery periods. J. Strength Cond. Res. 2018, 32, 2529–2541. [Google Scholar] [CrossRef]
- Herrera-Valenzuela, T.; Lopez, J.C.; Franchini, E.; Henriquez-Olguin, C.; Munuz, E.A. Physiological and physical profile of taekwondo athletes of different age categories during simulated combat. Ido Mov. Cult. 2014, 14, 36–40. [Google Scholar] [CrossRef]
- Hausen, M.; Soares, P.P.; Araújo, M.P.; Porto, F.; Franchini, E.; Bridge, C.A.; Gurgel, J. Physiological responses and external validity of a new setting for taekwondo combat simulation. PLoS ONE 2017, 12, e0171553. [Google Scholar] [CrossRef]
- Bartel, C.; Coswig, V.S.; Protzen, G.V.; Del Vecchio, F.B. Energy demands in high-intensity intermittent taekwondo specific exercises. PeerJ 2022, 10, e13654. [Google Scholar] [CrossRef] [PubMed]
- Würdig, R.C.; da Veiga, R.S.; Del Vecchio, F.B. Contribuição dos sistemas energéticos no taekwondo anaerobic intermittent kick test: Um estudo piloto. Rev. Bras. Prescr. Fisiol. Exerc. 2023, 17, 296–306. [Google Scholar]
- Tayech, A.; Mejri, M.A.; Chaabene, H.; Chaouachi, M.; Behm, D.G.; Chaouachi, A. Test-retest reliability and criterion validity of a new taekwondo anaerobic intermittent kick test. J. Sports Med. Phys. Fitness 2019, 59, 230–237. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Cormack, S.J.; Gill, N.D. Strength and power profiling of athletes: Selecting tests and how to use the information for program design. Strength Cond. J. 2013, 35, 7–14. [Google Scholar] [CrossRef]
- Weakley, J.; Black, G.; McLaren, S.; Scantlebury, S.; Suchomel, T.; McMahon, E.; Watts, D.; Read, D.B. Testing and profiling athletes: Recommendations for test selection, implementation, and maximizing information. Strength Cond. J. 2024, 46, 159–179. [Google Scholar] [CrossRef]
- Bar-Or, O. The wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Lin, W.; Yen, K.; Doris Lu, C.; Huang, Y.; Chang, C. Anaerobic capacity of elite Taiwanese taekwondo athletes. Sci. Sports 2006, 21, 291–293. [Google Scholar] [CrossRef]
- Taaffe, D.; Pieter, W. Physical and physiological characteristics of elite taekwondo athletes. In Proceedings of the Commonwealth and International Proceedings, Auckland, New Zealand, 18–23 January 1990; pp. 80–88. [Google Scholar]
- Melhim, A.F. Aerobic and anaerobic power responses to the practice of taekwon-do. Br. J. Sports Med. 2001, 35, 231–234. [Google Scholar] [CrossRef]
- Zacharogiannis, E.; Paradisis, G.; Tziortzis, S. An evaluation of tests of anaerobic power and capacity. Med. Sci. Sports Exerc. 2004, 36, S116. [Google Scholar] [CrossRef]
- Khayyat, H.N.; Sağır, S.G.; Hataş, Ö.; Marcin Smolarczyk, M.; Akalan, C. Physical, physiological and psychological profiles of elite Turkish taekwondo athletes. Biomed. Hum. Kinet. 2020, 12, 187–196. [Google Scholar] [CrossRef]
- Taskin, M.; Akkoyunlu, Y. Effect of anaerobic power on quickness in woman national taekwondo athletes. Ser. Phys. Educ. Sport Sci. Mov. Health 2016, 16, 701–705. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Capranica, L.; Franchini, E.; Prieske, O.; Hbacha, H.; Granacher, U. Tests for the assessment of sport-specific performance in Olympic combat sports: A systematic review with practical recommendations. Front. Physiol. 2018, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, J.; Diefenthaeler, F.; Dal Pupo, J.; Detanico, D.; Guglielmo, L.G.A.; Santos, S.G. Anaerobic evaluation of taekwondo athletes. Int. Sport Med. J. 2014, 15, 492–499. [Google Scholar]
- Taati, B.; Arazi, H.; Bridge, C.A.; Franchini, E. A new taekwondo-specific field test for estimating aerobic power, anaerobic fitness, and agility performance. PLoS ONE 2022, 17, e0264910. [Google Scholar] [CrossRef]
- Alp, M.; Gorur, B. Comparison of explosive strength and anaerobic power performance of taekwondo and karate athletes. J. Educ. Learn. 2020, 9, 149–155. [Google Scholar] [CrossRef]
- Boutios, S.; di Cagno, A.; Buonsenso, A.; Centorbi, M.; Iuliano, E.; Calcagno, G.; Fiorilli, G. Does the type of anaerobic test matter? A comparison between the anaerobic intermittent kick test and wingate anaerobic test in taekwondo athletes. Sports 2022, 10, 154. [Google Scholar] [CrossRef]
- Chacón-Torrealba, T.; Aranda Araya, J.; Benoit, N.; Deldicque, L. Effects of high-intensity interval training in hypoxia on taekwondo performance. Int. J. Sports Physiol. Perform. 2020, 15, 1125–1131. [Google Scholar] [CrossRef]
- Ju-Sik, P. The effect of functional training on the physical strength factor of elite taekwondo athletes. Kinesiology 2019, 4, 1–7. [Google Scholar]
- Jung, H.C.; Seo, M.W.; Lee, S.; Jung, S.W.; Song, J.K. Correcting vitamin D insufficiency improves some but not all aspects of physical performance during winter training in taekwondo athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 635–643. [Google Scholar] [CrossRef]
- Khazaei, L.; Parnow, A.; Amani-Shalamzari, S. Comparing the effects of traditional resistance training and functional training on the bio-motor capacities of female elite taekwondo athletes. BMC Sports Sci. Med. Rehabil. 2023, 15, 139. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.; Lee, S.; Park, J.; Johnson, J.A. An estimation model for anaerobic power of taekwondo athletes based on field tests. Ido Mov. Cult. 2019, 14, 34–50. [Google Scholar] [CrossRef]
- Nabilpour, M.; Samanipour, M.H.; Bragazzi, N.L.; Haddad, M.; Herrera-Valenzuela, T.; Tao, D.; Baker, J.S.; Šimenko, J. An investigation into the associations between psychological skills, anaerobic fitness, and aerobic fitness in elite Iranian taekwondo athletes. PLoS ONE 2023, 18, e0288227. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.P.; Szmuchrowski, L.A.; Gomes Flor, C.A.; Gonçalves, R.; Couto, B.P. Correlation between the performance of taekwondo athletes in an adapted anaerobic kick test and wingate anaerobic test. In Proceedings of the 1st World Congress on Health and Martial Arts in Interdisciplinary Approach, HMA, Czestochowa, Poland, 17–19 September 2015; Kalina, R.M., Ed.; Arch. Budo: Warsaw, Poland, 2015; pp. 130–134. [Google Scholar]
- Ozan, M.; Kiliç, M.; Çakmakçı, O. Assessment of anaerobic power with arm and leg wingate tests in athletes. EJPESS 2018, 4, 49–60. [Google Scholar] [CrossRef]
- Rhyu, H.S.; Cho, S.Y. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of taekwondo athletes. J. Exerc. Rehabil. 2014, 10, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Rocha, F.; Louro, H.; Matias, R.; Costa, A. Anaerobic fitness assessment in taekwondo athletes. A new perspective. Motricidade 2016, 12, 4–11. [Google Scholar] [CrossRef]
- Seo, M.W.; Lee, J.M.; Jung, H.C.; Jung, S.W.; Song, J.K. Effects of various work-to-rest ratios during high-intensity interval training on athletic performance in adolescents. Int. J. Sports Med. 2019, 40, 503–510. [Google Scholar] [CrossRef]
- Seo, M.W.; Song, J.K.; Jung, H.C.; Kim, S.W.; Kim, J.H.; Lee, J.M. The associations of vitamin D status with athletic performance and blood-borne markers in adolescent athletes: A cross-sectional study. Int. J. Environ. Res. Public Health 2019, 16, 3422. [Google Scholar] [CrossRef]
- Sun, F.; Siu, A.Y.; Wang, K.; Zhang, B.; Chan, M.H.; Chan, K.H.; Kong, P.S.; Man, K.Y.; Chow, G.C. Effects of caffeine on performances of simulated match, wingate anaerobic test, and cognitive function test of elite taekwondo athletes in Hong Kong. Nutrients 2022, 14, 3398. [Google Scholar] [CrossRef]
- Tayech, A.; Mejri, M.A.; Chaouachi, M.; Chaabene, H.; Hambli, M.; Brughelli, M.; Behm, D.G.; Chaouachi, A. Taekwondo anaerobic intermittent kick test: Discriminant validity and an update with the gold-standard wingate test. J. Hum. Kinet. 2020, 71, 229–242. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Lopes-Silva, J.P.; Loturco, I.; Franchini, E. Test-retest reliability, sensibility and construct validity of the frequency speed of kick test in male black-belt taekwondo athletes. Ido Mov. Cult. 2020, 20, 38–46. [Google Scholar] [CrossRef]
- Tayech, A.; Mejri, M.A.; Makhlouf, I.; Uthoff, A.; Hambli, M.; Behm, D.G.; Chaouachi, A. Reliability, criterion-concurrent validity, and construct-discriminant validity of a head-marking version of the taekwondo anaerobic intermittent kick test. Biol. Sport 2022, 39, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Villani, R.; De Petrillo, D.; Distaso, M. Influence of four different methods of training on the specific rapidity of taekwondo. In Book of Abstracts of the 12th Annual Congress of the European College of Sport Science; Kallio, J., Komi, P., Komulainen, J., Avela, J., Eds.; European College of Sport Science: Jyväskylä, Finland, 2007; pp. 458–459. [Google Scholar]
- Villani, R.; Ruggieri, F.; Tomasso, A.; Distaso, M. Increase of the specific rapidity in the tae-kwon-do through a contrast method. In Book of Abstracts of the 10th Annual Congress of the European College of Sport Science; Dikic, N., Zivanic, S., Ostojic, S., Tornjanski, Z., Eds.; European College of Sport Science: Belgrade, Serbia, 2005; pp. 419–420. [Google Scholar]
- da Silva Santos, J.F.; Herrera-Valenzuela, T.; Ribeiro da Mota, G.; Franchini, E. Influence of half-squat intensity and volume on the subsequent countermovement jump and frequency speed of kick test performance in taekwondo athletes. Kinesiology 2016, 48, 95–102. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Valenzuela, T.H.; Franchini, E. Can different conditioning activities and rest intervals affect the acute performance of taekwondo turning kick? J. Strength Cond. Res. 2015, 29, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, J.F.; Franchini, E. Is frequency speed of kick test responsive to training? A study with taekwondo athletes. Sport Sci. Health 2016, 12, 377–382. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Franchini, E. Frequency speed of kick test performance comparison between female taekwondo athletes of different competitive levels. J. Strength Cond. Res. 2018, 32, 2934–2938. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Herrera-Valenzuela, T.; Franchini, E. Establishing frequency speed of kick test classificatory tables in male and female taekwondo athletes. Kinesiology 2019, 51, 213–218. [Google Scholar] [CrossRef]
- Aravena Tapia, D.E.; Roman Barrera, V.; da Silva Santos, J.F.; Franchini, E.; Valdes-Badilla, P.; Orihuela, P.; Herrera-Valenzuela, T. High-intensity interval training improves specific performance in taekwondo athletes. RAMA 2020, 15, 4–13. [Google Scholar] [CrossRef]
- Chen, A.-H.; Chiu, C.-H.; Hsu, C.-H.; Wang, I.-L.; Chou, K.-M.; Tsai, Y.-S.; Lin, Y.-F.; Chen, C.-H. Acute effects of vibration foam rolling warm-up on jump and flexibility asymmetry, agility and frequency speed of kick test performance in taekwondo athletes. Symmetry 2021, 13, 1664. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Loturco, I.; Franchini, E. Relationship between frequency speed of kick test performance, optimal load, and anthropometric variables in black-belt taekwondo athletes. Ido Mov. Cult. 2018, 18, 39–44. [Google Scholar] [CrossRef]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Ballmann, C.G.; Ardigò, L.P.; Chtourou, H. Effects of caffeine consumption combined with listening to music during warm-up on taekwondo physical performance, perceived exertion and psychological aspects. PLoS ONE 2023, 18, e0292498. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Delleli, S.; Bridge, C.A.; Messaoudi, H.; Chtourou, H.; Ballmann, C.G.; Ardigò, L.P.; Franchini, E. Acute effects of caffeine supplementation on taekwondo performance: The influence of competition level and sex. Sci. Rep. 2023, 13, 13795. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Delleli, S.; Messaoudi, H.; Chtourou, H.; Bouassida, A.; Bouhlel, E.; Franchini, E.; Ardigò, L.P. Acute effects of different activity types and work-to-rest ratio on post-activation performance enhancement in young male and female taekwondo athletes. Int. J. Environ. Res. Public Health 2022, 19, 1764. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Delleli, S.; Messaoudi, H.; Bridge, C.A.; Chtourou, H.; Franchini, E.; Ardigò, L.P. Effects of conditioning activity mode, rest interval and effort to pause ratio on post-activation performance enhancement in taekwondo: A randomized study. Front. Physiol. 2023, 14, 1179309. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Jebabli, A.; Messaoudi, H.; Delleli, S.; Chtourou, H.; Bouassida, A.; Bouhlel, E.; Franchini, E.; Ardigò, L.P. The effects of tempo and loudness variations during warm-up with music on perceived exertion, physical enjoyment and specific performances in male and female taekwondo athletes. PLoS ONE 2023, 18, e0284720. [Google Scholar] [CrossRef]
- Ouergui, I.; Jebabli, E.; Delleli, S.; Messaoudi, H.; Bridge, C.A.; Chtourou, H.; Franchini, E.; Ballmann, C.G.; Ardigò, L.P. Listening to preferred and loud music enhances taekwondo physical performances in adolescent athletes. Percept. Mot. Skills 2023, 130, 1644–1662. [Google Scholar] [CrossRef]
- Ouergui, I.; Mahdi, N.; Delleli, S.; Messaoudi, H.; Chtourou, H.; Sahnoun, Z.; Bouassida, A.; Bouhlel, E.; Nobari, H.; Ardigò, L.P.; et al. Acute effects of low dose of caffeine ingestion combined with conditioning activity on psychological and physical performances of male and female taekwondo athletes. Nutrients 2022, 14, 571. [Google Scholar] [CrossRef]
- Antonaccio, F.R.; Machado, M.F.S.; da Silva Santos, J.F. Intra- and inter-rater objectivity of the frequency speed of kick test. Ido Mov. Cult. 2022, 22, 1–5. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Franchini, E. Trainers’ understanding of chosing the frequency speed of kick test (FSKT) for taekwondo practitioners. Ido Mov. Cult. 2021, 21, 1–5. [Google Scholar] [CrossRef]
- Ribeiro, A.I.S.; Franchini, E.; Mesquita, P.H.C.; Amaral Junior, P.A.; Albuquerque, M.R. Development and reliability of a kick test system for taekwondo athletes. Ido Mov. Cult. 2020, 20, 31–39. [Google Scholar] [CrossRef]
- Pak, İ.E.; Cuğ, M.; Volpe, S.L.; Beaven, C.M. The effect of carbohydrate and caffeine mouth rinsing on kicking performance in competitive taekwondo athletes during Ramadan. J. Sports Sci. 2020, 38, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Aravena, A.; Azocar-Gallardo, J.; Galle, F.; García-García, J.M. Relationship between the characteristics of body composition and general and specific physical performance in Chilean national taekwondo competitors of both sexes: An observational study. Rev. Esp. Nutr. Hum. Diet. 2020, 24, 154–164. [Google Scholar] [CrossRef]
- Albuquerque, M.R.; Tavares, L.D.; Longo, A.R.; Caldeira Mesquita, P.H.; Franchini, E. Relationship between indirect measures of aerobic and muscle power with frequency speed of kick test multiple performance in taekwondo athletes. Int. J. Sports Med. 2022, 43, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E. High-intensity interval training prescription for combat-sport athletes. Int. J. Sports Physiol. Perform. 2020, 15, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Castro-Garrido, N.; Valderas-Maldonado, C.; Herrera-Valenzuela, T.; da Silva, J.F.; Guzman-Munoz, E.; Vasquez-Gomez, J.; Branco, B.M.; Zapata-Bastias, J.; Valdes-Badilla, P.; Lopez-Fuenzalida, A. Effects of post-activation potentiation exercises on kicking frequency, fatigue rate and jump performance in taekwondo athletes: A case study. Retos 2020, 38, 679–683. [Google Scholar] [CrossRef]
- Chiu, C.H.; Chen, C.H.; Yang, T.J.; Chou, K.M.; Chen, B.W.; Lin, Z.Y.; Lin, Y.C. Carbohydrate mouth rinsing decreases fatigue index of taekwondo frequency speed of kick test. Chin. J. Physiol. 2022, 65, 46–50. [Google Scholar] [CrossRef]
- Mesquita, P.H.C.; Lage, G.M.; Franchini, E.; Romano-Silva, M.A.; Albuquerque, M.R. Bi-hemispheric anodal transcranial direct current stimulation worsens taekwondo-related performance. Hum. Mov. Sci. 2019, 66, 578–586. [Google Scholar] [CrossRef]
- Miraftabi, H.; Avazpoor, Z.; Berjisian, E.; Sarshin, A.; Rezaei, S.; Domínguez, R.; Reale, R.; Franchini, E.; Samanipour, M.H.; Koozehchian, M.S.; et al. Effects of beetroot juice supplementation on cognitive function, aerobic and anaerobic performances of trained male taekwondo athletes: A pilot study. Int. J. Environ. Res. Public Health 2021, 18, 10202. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Cancino-López, J.; Zapata-Bastias, J.; García-García, J.M. Effects of 4 weeks of a technique-specific protocol with high-intensity intervals on general and specific physical fitness in taekwondo athletes: An inter-individual analysis. Int. J. Environ. Res. Public Health 2021, 18, 3643. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Cancino-López, J.; Zapata-Bastias, J.; García-García, J.M. Inter-individual variability of a high-intensity interval training with specific techniques vs. repeated sprints program in sport-related fitness of taekwondo athletes. Front. Physiol. 2021, 12, 766153. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Warnier-Medina, A.; Brand, C.; Morales-Zúñiga, J.; Orellana-Lepe, G.; Zapata-Bastias, J.; Tuesta, M. Relationship between body composition asymmetry and specific performance in taekwondo athletes: A cross-sectional study. Symmetry 2023, 15, 2087. [Google Scholar] [CrossRef]
- Orellana-Lepe, G.; Warnier-Medina, A.; Olivares-Fernández, P.; Aguilar-Gajardo, S.; Olivares-Arancibia, J.; Yánez-Sepúlveda, R.A. Acute effect of whole-body vibration training on the roundhouse kick in taekwondo athletes. Retos 2023, 48, 667–673. [Google Scholar] [CrossRef]
- Sarshin, A.; Fallahi, V.; Forbes, S.C.; Rahimi, A.; Koozehchian, M.S.; Candow, D.G.; Kaviani, M.; Khalifeh, S.N.; Abdollahi, V.; Naderi, A. Short-term co-ingestion of creatine and sodium bicarbonate improves anaerobic performance in trained taekwondo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 10. [Google Scholar] [CrossRef] [PubMed]
Study | Athlete Characteristics (n°, Sex, Country) | Exercise (Duration) | Round | ATP-PCr Energy System | Glycolytic Energy System | [La] (mmol·L−1) | ||
---|---|---|---|---|---|---|---|---|
Absolute (kJ) | Relative (%) | Absolute (kJ) | Relative (%) | |||||
Bartel et al. (2022) [25] | NR (9 Brazilian males) | Training protocol (3 rounds × 2 min/ 1 min recovery) | ||||||
15:10:5 | Round 1 | 79 ± 28 | 50 ± 5 | 20 ± 6 | 13 ± 4 | 5.8 ± 1.7 | ||
Round 2 | 77 ± 29 | 43 ± 7 | 8 ± 5 | 5 ± 2 | 7.6 ± 1.6 | |||
Round 3 | 75 ± 28 | 41 ± 7 | 4 ± 3 | 2 ± 1 | 8.3 ± 0.9 | |||
Total | 232 ± 81 | 44 ± 5 | 32 ± 7 | 7 ± 1 | NR | |||
100%TKDtest | Round 1 | 79 ± 16 | 50 ± 6 | 11 ± 3 | 7 ± 2 | 3.8 ± 1.0 | ||
Round 2 | 80 ± 14 | 42 ± 3 | 7 ± 3 | 3 ± 1 | 5.4 ± 1.2 | |||
Round 3 | 74 ± 22 | 39 ± 6 | 6 ± 3 | 3 ± 1 | 6.7 ± 1.2 | |||
Total | 232 ± 49 | 43 ± 4 | 23 ± 6 | 4 ± 1 | NR | |||
35:5 | Round 1 | 87 ± 27 | 58 ± 8 | 11 ± 4 | 7 ± 2 | 3.6 ± 1.2 | ||
Round 2 | 85 ± 32 | 44 ± 7 | 10 ± 6 | 5 ± 3 | 6.0 ± 2.3 | |||
Round 3 | 80 ± 19 | 44 ± 4 | 4 ± 6 | 2 ± 3 | 6.7 ± 2.4 | |||
Total | 253 ± 72 | 49 ± 5 | 25 ± 10 | 5 ± 2 | NR | |||
Campos et al. (2012) [17] | National and international (10 Brazilian males) | Simulated match (3 rounds × 2 min/ 1 min recovery) | ||||||
Round 1 | 49 ± 11 | 31 ± 7 | 11 ± 4 | 7 ± 2 | 4.2 ± 0.7 | |||
Round 2 | 49 ± 10 | 26 ± 5 | 7 ± 4 | 4 ± 2 | 5.9 ± 1.2 | |||
Round 3 | 63 ± 32 | 30 ± 12 | 6 ± 5 | 3 ± 3 | 7.0 ± 1.5 | |||
Total | 54 ± 21 | 30 ± 6 | 8 ± 5 | 4 ± 2 | 5.7 ± 1.6 | |||
Lopes-Silva et al. (2018) [18] | National (9 Brazilian males) | Simulated match (3 rounds × 2 min/ 1 min recovery) | ||||||
Round 1 | 40 ± 11 a | 25 ± 4 a | 9 ± 3 a | 6 ± 2 a | 3.4 ± 0.7 a | |||
Round 2 | 41 ± 12 a | 25 ± 4 a | 6 ± 2 a | 4 ± 1 a | 4.8 ± 0.8 a | |||
Round 3 | 50 ± 14 a | 28 ± 5 a | 6 ± 4 a | 4 ± 2 a | 6.2 ± 1.0 a | |||
Total | 43 ± 10 a | 26 ± 2 a | 7 ± 1 a | 5 ± 1 a | NR | |||
Lopes-Silva et al. (2015) [19] | National and international (10 Brazilian males) | Simulated match (3 rounds × 2 min/ 1 min recovery) | ||||||
Round 1 | 43 ± 7 a | 27 ± 3 a | 13 ± 7 a | 9 ± 5 a | 5.6 ± 2.2 a | |||
Round 2 | 43 ± 9 a | 26 ± 2 a | 8 ± 6 a | 4 ± 3 a | 6.8 ± 2.1 a | |||
Round 3 | 55 ± 24 a | 33 ± 9 a | 6 ± 3 a | 3 ± 2 a | 8.0 ± 2.3 a | |||
Total | NR | NR | NR | NR | NR | |||
Würdig et al. (2023) [26] | NR (5 Brazilian males) | Test protocol (80 s) | ||||||
TAIKTchest | Total | 72 ± 25 | 48 ± 9 | 34 ± 9 | 23 ± 3 | 9.7 ± 1.6 | ||
Yang et al. (2018) [20] | Regional (5 German males) | Simulated match (3 rounds × 2 min/ 1 min recovery) | ||||||
Total | 19 ± 4 b | 19 ± 3 b | 10 ± 6 b | 9 ± 4 b | 9.2 ± 3.9 b¶ | |||
Total | 20 ± 3 b | 20 ± 4 b | 8 ± 6 b | 7 ± 4 b | 7.2 ± 4.2 b¶ | |||
Total | 20 ± 2 b | 21 ± 3 b | 6 ± 5 b | 5 ± 4 b | 5.6 ± 4.2 b¶ |
Study | Athlete Characteristics (n°, Sex, Country) | Test Details | Ppeak (W) | Ppeak (W/kg) | Pmean (W) | Pmean (W/kg) |
---|---|---|---|---|---|---|
Alp and Gorur (2020) [40] | International (Korean, 5 males, 5 females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 644.8 ± 161.1 | 9.3 ± 2.4 | 469.5 ± 127.3 | 6.5 ± 1.3 |
Boutios et al. (2022) [41] | NR (Greek, 5 males, 10 females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 596.4 ± 157.2 | NR | 469.5 ± 113.2 | NR |
Chacón-Torrealba et al. (2020) [42] | National (18 Belgian males and females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 718.5 ± 139.8 *a 728.3 ± 146.6 *a | 9.9 ± 1.5 *a 9.9 ± 1.9 *a | 579.7 ± 107.9 *a 564.1 ± 109.1 *a | 7.9 ± 1.1 *a 7.7 ± 1.3 *a |
Ju-Sik (2019) [43] | National and international (8 NR) | 30 s Wingate test (Load: NR kp/kg of body mass) | 495.1 ± 131.5 | NR | 364.9 ± 111.9 | NR |
Jung et al. (2018) [44] | NR (Korean, 21 males, 14 females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | NR | 10.4 ± 0.2 *a 10.6 ± 0.3 *a | 505.1 ± 18.1 *a 494.7 ± 20.9 *a | NR |
Khayyat et al. (2020) [35] | International (12 Turkish males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 893.1 ± 105.0 | 12.0 ± 1.4 | 673.8 ± 51.8 | 9.0 ± 0.7 |
Khazaei et al. (2023) [45] | National and international (17 Iranian females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | NR | 8.8 ± 1.3 a 8.2 ± 1.3 a | NR | 6.2 ± 0.5 a 6.0 ± 0.8 a |
Kwon et al. (2019) [46] | NR (20 Korean males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 751.2 ± 122.0 | 10.2 ± 0.6 | 633.7 ± 84.3 | 8.6 ± 0.5 |
Nabilpour et al. (2023) [47] | National and international (10 Iranian males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 572.1 ± 8.3 | 11.8 ± 1.1 | NR | NR |
Oliveira et al. (2015) [48] | National and international (Brazilian, 10 males, 5 females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 649.7 ± 92.4 | 10.3 ± 1.3 | 546.8 ± 80.1 | 8.8 ± 0.9 |
Ozan and Kiliç (2018) [49] | National and international (10 Turkish males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 748.5 ± 136.4 | 10.5 ± 1.2 | 571.1 ± 112.95 | NR |
Rhyu and Cho (2014) [50] | NR (20 Korean males) | 30 s Wingate test (Load: NR kp/kg of body mass) | NR | 9.6 ± 0.5 a 9.1 ± 0.8 a | NR | 7.9 ± 0.3 a 7.6 ± 0.6 a |
Rocha et al. (2016) [51] | National and international (17 Portuguese males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 663.8 ± 89.3 c | 10.7 ± 1.3 c | 470.6 ± 75.1 c | 7.6 ± 0.9 c |
Seo et al. (2019) [52] | National (47 Korean males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 686.9 ± 124.4 a 702.0 ± 143.1 a 697.8 ± 60.6 a 709.4 ± 100.1 a | 10.4 ± 0.7 a 10.6 ± 0.5 a 10.7 ± 0.5 a 10.6 ± 0.8 a | 492.3 ± 38.8 a 502.9 ± 94.4 a 492.3 ± 46.1 a 501.5 ± 60.4 a | 7.6 ± 0.5 a 7.6 ± 0.6 a 7.5 ± 0.4 a 7.6 ± 0.7 a |
Seo et al. (2019) [53] | National (47 Korean males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 620.8 ± 75.8 715.4 ± 117.9 689.9 ± 81.8 | 10.1 ± 0.6 10.6 ± 0.9 10.7 ± 0.5 | 455.1 ± 38.9 502.1 ± 60.7 502.5 ± 69.4 | 7.5 ± 0.4 7.5 ± 0.8 7.8 ± 0.4 |
Sun et al. (2022) [54] | National and international (Chinese, 6 males, 4 females) | 30 s Wingate test (Load: 0.090 kp/kg of body mass) | 1006.0 ± 366.8 b | 14.6 ± 3.5 b | 527.3 ± 152.7 b | 7.7 ± 1.2 b |
Taati et al. (2022) [39] | Regional and national (48 Iranian males) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | NR | NR | NR | 7.3 ± 0.7 |
Taskin and Akkoyunlu (2016) [36] | National and international (14 Turkish females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 442.4 ± 74.5 | 7.5 ± 0.8 | 337.2 ± 48.2 | 5.7 ± 0.5 |
Tayech et al. (2019) [27] | National and international (Tunisian, 7 males, 2 females) | Running Anaerobic Sprint Test (RAST) | 541.4 ± 191.8 | 34.0 ± 9.1 ¶ | 439.3 ± 141.7 | 27.7 ± 6.7 ¶ |
Tayech et al. (2020) [55] | National and international (Tunisian, 14 males, 4 females) | 30 s Wingate test (Load: 0.075 kp/kg of body mass) | 623.0 ± 188.6 | 39.0 ± 9.0 ¶ | 443.7 ± 122.9 | 27.8 ± 5.7 ¶ |
Study | Athlete Characteristics (n°, Sex, Country) | FSKT10s (n° Kicks) | FSKTmult | HRpeak (b·min−1) | [La]peak (mmol·l−1) | RPE (a.u.) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FSKT1 (n° Kicks) | FSKT2 (n° Kicks) | FSKT3 (n° Kicks) | FSKT4 (n° Kicks) | FSKT5 (n° Kicks) | FSKTtotal (n° Kicks) | KDI (%) | ||||||
Albuquerque et al. (2022) [80] | National and international (Brazilian, 29 males, 13 females) | NR | 24 ± 3 | 23 ± 2 | 23 ± 4 | 21 ± 2 | 21 ± 3 | 112 ± 12 | 9.1 ± 4.2 | NR | NR | NR |
Antonaccio et al. (2022) [75] | Regional, state, national and international (14 Brazilian males) | 21 ± 2 | 21 ± 3 | 20 ± 2 | 19 ± 2 | 18 ± 2 | 18 ± 2 | 97 ± 10 | 8.0 ± 3.0 | NR | NR | NR |
Aravena Tapia et al. (2020) [65] | National (Chilean, 10 males, 2 females) | NR | 18 ± 2 a 18 ± 4 ac | 17 ± 1 a 18 ± 3 ac | 16 ± 1 a 17 ± 3 ac | 16 ± 2 a 17 ± 3 ac | 15 ± 2 a 16 ± 4 ac | 81 ± 8 a 86 ± 16 ac | 7.7 ± 4.9 a 7.6 ± 2.5 ac | NR | NR | NR |
Castro-Garrida et al. (2020) [82] | National (8 Chilean males)
| NR | 18 ± 1 c 21 ± 2 c | 16 ± 2 c 18 ± 1 c | 15 ± 2 c 17 ± 2 c | 14 ± 2 c 16 ± 2 c | 13 ± 2 c 16 ± 1 c | 75 ± 6 c 87 ± 7 c | RF c RF c | NR | NR | NR |
Chacón-Torrealba et al. (2020) [42] | National (18 Belgian males and females) | RF a RF a | 13 ± 5 a 10 ± 5 a | 13 ± 4 a 12 ± 3 a | 12 ± 5 a 13 ± 3 a | 13 ± 4 a 11 ± 4 a | 11 ± 5 a 10 ± 5 a | 61 ± 21 a 56 ± 17 a | 17.3 ± 9.9 a 19.3 ± 14.4 a | 154 ± 25 a 155 ± 24 a | 15.3 ± 3.1 a 13.4 ± 3.9 a | NR |
Chen et al. (2021) [66] | National (15 Taiwanese males) | NR | 23 ± 2 c | 22 ± 2 c | 21 ± 2 c | 20 ± 2 c | 19 ± 2 c | 105 ± 8 c | 9.5 ± 5.0 c | 173 ± 12 c | NR | 6.8 ± 1.1 c† |
Chiu et al. (2022) [83] | State and national (13 Taiwanese males) | NP | 28 ± 7 ac | 25 ± 6 ac | 24 ± 6 ac | 24 ± 5 ac | 24 ± 5 ac | 107 ± 51 ac | RF ac | NR | NR | NR |
Santos and Franchini (2018) [63] | Regional, state, national and international (42 Brazilian females)
| 19 (17–20) NP 20 (19–21) NP | 19 (18–20) NP 20 (19–21) NP | 18 (17–19) NP 19 (18–20) NP | 17 (16–18) NP 18 (17–19) NP | 16 (16–17) NP 17 (16–18) NP | 16 (15–17) NP 17 (16–18) NP | 86 (82–90) NP 91 (86–96) NP | 8.4 (4.6–10.3) NP 9.5 (5.6–11.0) NP | NR | NR | NR |
Santos and Franchini (2016) [62] | State, national and international (Brazilian, 4 males, 4 females) | 20 ± 1 a | 20 ± 1 a | 19 ± 2 a | 18 ± 2 a | 17 ± 2 a | 17 ± 2 a | 90 ± 9 a | 7.6 ± 3.2 a | NR | NR | NR |
Santos et al. (2019) [64] | Recreational, regional, state, national and international (Brazilian, 115 males, 70 females)
| 20 (19–22) NP 20 (18–22) NP 19 (18–21) NP 19 (19–21) NP 18 (17–20) NP 19 (18–20) NP 19 (17–20) NP 18 (17–20) NP | 21 (19–23) NP 19 (19–22) NP 20 (18–21) NP 19 (18–21) NP 18 (17–20) NP 19 (18–20) NP 19 (17–20) NP 19 (18–20) NP | 19 (18–21) NP 19 (18–21) NP 19 (18–20) NP 18 (17–20) NP 18 (17–19) NP 18 (18–19) NP 18 (17–20) NP 18 (17–19) NP | 19 (18–20) NP 18 (18–20) NP 18 (17–19) NP 18 (17–19) NP 17 (16–18) NP 18 (17–18) NP 17 (16–18) NP 17 (16–18) NP | 18 (17–19) NP 18 (17–19) NP 17 (16–18) NP 17 (16–18) NP 17 (15–18) NP 17 (16–18) NP 17 (16–18) NP 16 (15–17) NP | 17 (16–19) NP 17 (16–19) NP 16 (16–18) NP 16 (16–18) NP 16 (15–17) NP 17 (16–17) NP 16 (16–17) NP 15 (15–16) NP | 93 (88–101) NP 91 (87–100) NP 89 (85–95) NP 88 (83–95) NP 85 (82–90) NP 88 (82–90) NP 87 (82–93) NP 85 (80–89) NP | 9.5 (8.1–12.2) NP 7.1 (4.5–10.3) NP 8.6 (6.0–11.7) NP 7.1 (5.5–12.1) NP 6.4 (5.1–8.3) NP 8.3 (3.2–10.5) NP 7.8 (3.5–9.5) NP 10.0 (3.4–11.1) NP | NR | NR | NR |
Santos et al. (2016) [60] | State, national and international (9 Brazilian males) | NR | RF | RF | RF | RF | RF | 82 ± 9 c | 19.2 ± 7.9 c | NR | NR | NR |
Santos et al. (2020) [56] | Regional, state, national and international (14 Brazilian males) Non-competitors, regional, state, national and international (153 Brazilian males)
| 21 ± 2 19 (18–20) NP 20 (19–21) NP 20 (19–21) NP | 21 ± 2 19 (18–20) NP 19 (18–21) NP 20 (19–22) NP | 20 ± 2 18 (17–20) NP 19 (17–20) NP 19 (18–21) NP | 19 ± 2 17 (16–19) NP 18 (17–19) NP 19 (17–20) NP | 18 ± 1 17 (16–18) NP 17 (16–19) NP 18 (16–19) NP | 18 ± 1 16 (15–17) NP 17 (16–18) NP 17 (16–18) NP | 97 ± 8 87 (82–94) NP 90 (85–96) NP 93 (86–96) NP | 8.3 ± 3.1 8.0 (5.7–10.6) NP 7.8 (5.0–11.0) NP 8.3 (6.0–12.0) NP | NR | NR | NR |
Santos et al. (2018) [67] | Regional, state, national and international (16 Brazilian males) | 20 ± 3 | 21 ± 2 | 20 ± 2 | 19 ± 2 | 18 ± 2 | 18 ± 2 | 95 ± 9 | 7.5 ± 3.6 | NR | NR | NR |
Santos et al. (2015) [61] | State, national and international (11 Brazilian males) | 19 ± 3 c | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Delleli et al. (2023) [68] | National and international (16 Tunisian males) | 26 ± 1 c | NR | NR | NR | NR | NR | 125 ± 2 c | NR | NR | NR | 9.6 ± 0.5 c† |
Mesquita et al. (2019) [84] | National and international (Brazilian, 12 males, 7 females) | NR | RF b | RF b | RF b | RF b | RF b | RF b | RF b | NR | NR | RF b † |
Miraftabi et al. (2021) [85] | National (8 Iranian males) | NP | RF b RF c | RF b RF c | RF b RF c | RF b RF c | RF b RF c | RF b RF c | RF b RF c | 190 ± 5 b 190 ± 8 c | 13.4 ± 3.0 b 12.1 ± 2.9 c | 15.0 ± 2.0 b¶ 13.0 ± 2.0 c¶ |
Ojeda-Aravena et al. (2020) [79] | Regional and national (14 Chilean males and females) | NR | NR | NR | NR | NR | NR | 96 ± 7 | 9.5 ± 3.3 | NR | NR | NR |
Ojeda-Aravena et al. (2021) [86] | National (Chilean, 11 males, 5 females) | NP | NP | NP | NP | NP | NP | 96 ± 8 a 95 ± 7 ac | 11.1 ± 4.3 a 7.9 ± 3.9 ac | NR | NR | NR |
Ojeda-Aravena et al. (2021) [87] | National and international (Chilean, 8 males, 4 females) | NR | NR | NR | NR | NR | NR | 93 ± 10 a 93 ± 10 a | 6.1 ± 2.5 a 3.4 ± 2.4 a | NR | NR | NR |
Ojeda-Aravena et al. (2023) [88] | National and international (Chilean, 8 males, 9 females) | NR | 19 ± 2 | 18 ± 2 | 18 ± 2 | 17 ± 2 | 17 ± 2 | 91 ± 10 | 4.8 ± 3.4 | NR | NR | NR |
Orellana-Lepe et al. (2023) [89] | National (10 Chilean males) | NR | 18 ± 2 c | 18 ± 2 c | 18 ± 2 c | 18 ± 2 c | 17 ± 2 c | 88 ± 9 c | 6.5 ± 4.1 c | NR | NR | NR |
Ouergui et al. (2023) [69] | Regional, national and international (Tunisian, 26 males, 26 females) | 25 ± 1 b 24 ± 2 b 25 ± 1 c 23 ± 2 c | NR | NR | NR | NR | NR | 124 ± 2 b 111 ± 9 b 123 ± 2 c 101 ± 10 c | NR | NR | NR | NR |
Ouergui et al. (2022) [70] | Regional and national (Tunisian, 14 males, 13 females) | 20 ± 2 c | 21 ± 2 c | 19 ± 2 c | 19 ± 1 c | 18 ± 1 c | 17 ± 1 c | 95 ± 6 c | 8.9 ± 3.5 c | NR | NR | NR |
Ouergui et al. (2023) [71] | Regional and national (Tunisian, 13 males, 8 females) | 20 ± 1 c | 22 ± 1 c | 20 ± 1 c | 20 ± 1 c | 19 ± 1 c | 18 ± 1 c | 99 ± 6 c | 10.0 ± 4.0 c | NR | NR | NR |
Ouergui et al. (2023) [72] | Regional and national (Tunisian, 10 males, 10 females) | 24 ± 2 c | 24 ± 2 c | 22 ± 2 c | 20 ± 2 c | 20 ± 1 c | 20 ± 2 c | 106 ± 7 c | 13.0 ± 2.0 c | NR | NR | 7.0 (7.0–8.0) c NP † |
Ouergui et al. (2023) [73] | Regional and national (Tunisian, 10 males, 10 females) | 22 ± 2 c | 24 ± 2 c | 22 ± 3 c | 21 ± 2 c | 20 ± 2 c | 19 ± 2 c | 105 ± 9 c | 13.0 ± 2.0 c | NR | NR | 6.9 ± 1.0 c† |
Ouergui et al. (2022) [74] | Regional and national (Tunisian, 10 males, 10 females) | 23 ± 1 c | 23 ± 2 c | 21 ± 2 c | 20 ± 2 c | 19 ± 2 c | 18 ± 2 c | 101 ± 8 c | 12.0 ± 3.0 c | NR | NR | 7.4 ± 1.0 c† |
Ribeiro et al. (2020) [77] | National and international (Brazilian, 15 males, 2 females) | – | 9420 ± 776 ms | 9719 ± 746 ms | 10237 ± 754 ms | 10711 ± 756 ms | 11006 ± 713 ms | 51094 ± 3565 ms | 9.0 ± 3.0 | NR | NR | 10.0 ± 1.0 NP † |
Study | Athlete Characteristics (n°, Sex, Country) | Ppeak (W) (W·kg−0.67) | Pmean (W) (W·kg−0.67) | FI (W·s−1) | Skicks (n) | HRpeak (b·min−1) | [La]peak (mmol·l−1) | RPE (a.u.) |
---|---|---|---|---|---|---|---|---|
Boutios et al. (2022) [41] TAIKTchest | National and international (Greek, 5 males, 10 females) | 346.5 ± 80.2 NR | 284.1 ± 63.7 NR | 32.7 ± 7.0 * | NR | NR | 12.6 ± 1.4 | NR |
Pak et al. (2020) [78] TAIKTchest | State (Turkish, 18 males, 9 females) | NR | NR | NR | 40 ± 7 ab | NR | NR | RF ab¶ |
Sarshin et al. (2021) [90] TAIKTchest | National (40 Iranian males) | NR | NR | NR | RF | NR | ||
1.3 ± 0.2 a | 1.1 ± 0.2 a | 21.4 ± 6.7 a | 59 ± 3 a | |||||
1.4 ± 0.1 a | 1.2 ± 0.1 a | 25.1 ± 7.4 a | 61 ± 1 a | |||||
1.3 ± 0.2 a | 1.1 ± 0.1 a | 26.2 ± 9.3 a | 60 ± 1 a | |||||
1.3 ± 0.1 ab | 1.1 ± 0.2 ab | 26.1 ± 5.8 ab | 60 ± 2 ab | |||||
1.4 ± 0.1 ac | 1.1 ± 0.1 ac | 29.1 ± 9.4 ac | 59 ± 2 ac | |||||
Tayech et al. (2019) [27] TAIKTchest | National and international (Tunisian, 15 males, 5 females) | 14.6 ± 6.5 | 9.8 ± 5.1 | 14.4 ± 6.3 | NR | 187 ± 9 | 10.6 ± 1.6 | 14.0 ± 1.4 ¶ |
0.9 ± 0.3 | 0.6 ± 0.3 | |||||||
Tayech et al. (2020) [55] TAIKTchest | National and international (Tunisian, 15 males, 5 females) | 14.6 ± 6.2 | 9.7 ± 4.4 | 0.3 ± 0.1 | 189 ± 9 | 11.0 ± 1.6 | 13.8 ± 0.9 ¶ | |
0.9 ± 0.3 | 0.6 ± 0.2 | |||||||
| 19.0 ± 5.1 | 13.0 ± 3.3 | 0.4 ± 0.1 | NR | 188 ± 8 | 11.2 ± 1.6 | 13.6 ± 1.1 ¶ | |
1.1 ± 0.2 | 0.8 ± 0.2 | |||||||
| 10.7 ± 3.2 | 6.8 ± 2.2 | 0.3 ± 0.1 | 192 ± 8 | 10.8 ± 1.6 | 14.0 ± 0.7 ¶ | ||
0.7 ± 0.2 | 0.5 ± 0.2 | |||||||
Tayech et al. (2022) [57] TAIKTchest | National and international (Tunisian, 21 males, 6 females) | 11.7 ± 5.6 | 7.7 ± 4.5 | 62.1 ± 18.4 * | 183 ± 9 | 10.5 ± 2.2 | 6.0 ± 1.0 † | |
0.7 ± 0.3 | 0.5 ± 0.3 | |||||||
TAIKThead | 16.3 ± 4.7 | 14.5 ± 4.3 | 25.2 ± 4.3 * | 182 ± 10 | 9.8 ± 2.8 | 5.0 ± 2.0 † | ||
1.0 ± 0.2 | 0.9 ± 0.2 | |||||||
| 18.5 ± 4.7 | 16.2 ± 4.5 | 24.9 ± 5.4 * | NR | 181 ± 12 | 9.7 ± 2.9 | 5.0 ± 2.0 † | |
1.1 ± 0.2 | 1.0 ± 0.2 | |||||||
| 13.6 ± 2.9 | 12.3 ± 3.1 | 25.6 ± 2.2 * | 184 ± 7 | 10.0 ± 2.8 | 5.0 ± 1.0 † | ||
0.9 ± 0.2 | 0.8 ± 0.2 | |||||||
Würdig et al. (2023) [26] TAIKTchest | NR (5 Brazilian males) | 21.4 ± 6.3 | 18.9 ± 5.1 | 10.5 ± 6.9 | NR | 187 ± 14 | 9.7 ± 1.6 | 14.4 ± 2.0 ¶ |
0.5 ± 0.1 | 0.4 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apollaro, G.; Ouergui, I.; Rodríguez, Y.Q.; Kons, R.L.; Detanico, D.; Franchini, E.; Ruggeri, P.; Falcó, C.; Faelli, E. Anaerobic Sport-Specific Tests for Taekwondo: A Narrative Review with Guidelines for the Assessment. Sports 2024, 12, 278. https://doi.org/10.3390/sports12100278
Apollaro G, Ouergui I, Rodríguez YQ, Kons RL, Detanico D, Franchini E, Ruggeri P, Falcó C, Faelli E. Anaerobic Sport-Specific Tests for Taekwondo: A Narrative Review with Guidelines for the Assessment. Sports. 2024; 12(10):278. https://doi.org/10.3390/sports12100278
Chicago/Turabian StyleApollaro, Gennaro, Ibrahim Ouergui, Yarisel Quiñones Rodríguez, Rafael L. Kons, Daniele Detanico, Emerson Franchini, Piero Ruggeri, Coral Falcó, and Emanuela Faelli. 2024. "Anaerobic Sport-Specific Tests for Taekwondo: A Narrative Review with Guidelines for the Assessment" Sports 12, no. 10: 278. https://doi.org/10.3390/sports12100278
APA StyleApollaro, G., Ouergui, I., Rodríguez, Y. Q., Kons, R. L., Detanico, D., Franchini, E., Ruggeri, P., Falcó, C., & Faelli, E. (2024). Anaerobic Sport-Specific Tests for Taekwondo: A Narrative Review with Guidelines for the Assessment. Sports, 12(10), 278. https://doi.org/10.3390/sports12100278