Physical Therapy in Neurorehabilitation with an Emphasis on Sports: A Bibliometric Analysis and Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Methods
2.2. Data Analysis
2.3. Performance Analysis
2.4. Scientific Mapping
- (a)
- Co-authorship analysis: countries were the unit of analysis, examining collaborations between countries based on the documents they have co-authored.
- (b)
- Bibliographic coupling: sources were the unit of analysis, examining the extent to which two or more sources cite common references.
- (c)
- Co-citation analysis: authors were the unit of analysis, analyzing the frequency with which two or more authors are cited together in other documents.
- (d)
- Co-occurrence analysis: “all keywords” were the unit of analysis, examining the frequency with which two or more keywords appear together in the same documents. “All keywords” include keywords from the title or abstract and not just those defined by the author as “keywords”.
2.5. Narrative Review
3. Bibliometric Analysis Results
3.1. Performance Analysis
3.2. Science Mapping
4. Narrative Review
4.1. Clinical Approaches and Outcomes in Neurorehabilitation
4.2. Athlete-Centered Neurorehabilitation Techniques
4.3. Specialized Interventions in Sports Medicine and Neurorehabilitation
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kimberley, T.J.; Novak, I.; Boyd, L.; Fowler, E.; Larsen, D. Stepping up to rethink the future of rehabilitation: IV STEP considerations and inspirations. Pediatr. Phys. Ther. 2017, 29, S76–S85. [Google Scholar] [CrossRef] [PubMed]
- Quinn, L.; Morgan, D. From disease to health: Physical therapy health promotion practices for secondary prevention in adult and pediatric neurologic populations. J. Neurol. Phys. Ther. 2017, 41, S46–S54. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Palumbo, M.A.; Fadale, P.D. Catastrophic cervical spine injuries in the collision sport athlete, part 1: Epidemiology, functional anatomy, and diagnosis. Am. J. Sports Med. 2004, 32, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- d’Hemecourt, P.A.; Luke, A. Sport-specific biomechanics of spinal injuries in aesthetic athletes (dancers, gymnasts, and figure skaters). Clin. Sports Med. 2012, 31, 397–408. [Google Scholar] [CrossRef]
- Hallock, H.; Mantwill, M.; Vajkoczy, P.; Wolfarth, B.; Reinsberger, C.; Lampit, A.; Finke, C. Sport-related concussion: A cognitive perspective. Neurol. Clin. Pract. 2023, 13, e200123. [Google Scholar] [CrossRef]
- Sahler, C.S.; Greenwald, B.D. Traumatic brain injury in sports: A review. Rehabil. Res. Pract. 2012, 2012, 659652. [Google Scholar] [CrossRef]
- Green, L.B. The use of imagery in the rehabilitation of injured athletes. Sport Psychol. 1992, 6, 416–428. [Google Scholar] [CrossRef]
- Kraemer, W.; Denegar, C.; Flanagan, S. Recovery from injury in sport: Considerations in the transition from medical care to performance care. Sports Health 2009, 1, 392–395. [Google Scholar] [CrossRef]
- Wiese, D.M.; Weiss, M.R. Psychological rehabilitation and physical injury: Implications for the sportsmedicine team. Sport Psychol. 1987, 1, 318–330. [Google Scholar] [CrossRef]
- Jeyamohan, S.; Harrop, J.S.; Vaccaro, A.; Sharan, A.D. Athletes returning to play after cervical spine or neurobrachial injury. Curr. Rev. Musculoskelet. Med. 2008, 1, 175–179. [Google Scholar] [CrossRef]
- Toth, C. The epidemiology of injuries to the nervous system resulting from sport and recreation. Neurol. Clin. 2008, 26, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.S.; Cantu, R.C.; Kucera, K.L. Catastrophic neurologic injuries in sport. Handb. Clin. Neurol. 2018, 158, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, D.H.; Nowinski, C.J.; McKee, A.C.; Cantu, R.C. The epidemiology of sport-related concussion. Clin. Sports Med. 2011, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gervis, M.; Pickford, H.; Hau, T. Professional footballers’ association counselors’ perceptions of the role long-term injury plays in mental health issues presented by current and former players. J. Clin. Sport Psychol. 2019, 13, 451–468. [Google Scholar] [CrossRef]
- Gervis, M.; Pickford, H.; Hau, T.; Fruth, M. A review of the psychological support mechanisms available for long-term injured footballers in the UK throughout their rehabilitation. Sci. Med. Footb. 2020, 4, 22–29. [Google Scholar] [CrossRef]
- Hochstenbach, J. Rehabilitation is more than functional recovery. Disabil. Rehabil. 2000, 22, 201–204. [Google Scholar] [CrossRef]
- Lorenz, D.S.; Reiman, M.P. Performance enhancement in the terminal phases of rehabilitation. Sports Health 2011, 3, 470–480. [Google Scholar] [CrossRef]
- Bejar, M.P.; Raabe, J.; Zakrajsek, R.A.; Fisher, L.A.; Clement, D. Athletic trainers’ influence on national collegiate athletic association division I athletes’ basic psychological needs during sport injury rehabilitation. J. Athl. Train. 2019, 54, 245–254. [Google Scholar] [CrossRef]
- Clement, D.; Shannon, V.R. Injured athletes’ perceptions about social support. J. Sport Rehabil. 2011, 20, 457–470. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Frizziero, A.; Roi, G.S. Update on Functional Recovery Process for the Injured Athlete: Return to Sport Continuum Redefined; BMJ Publishing Group Ltd. and British Association of Sport and Exercise Medicine: London, UK, 2019; Volume 53, pp. 265–267. [Google Scholar]
- Saumur, T.M.; Gregor, S.; Xiong, Y.; Unger, J. Quantifying the amount of physical rehabilitation received by individuals living with neurological conditions in the community: A scoping review. BMC Health Serv. Res. 2022, 22, 349. [Google Scholar] [CrossRef]
- Ellis, M.J.; Leddy, J.; Cordingley, D.; Willer, B. A physiological approach to assessment and rehabilitation of acute concussion in collegiate and professional athletes. Front. Neurol. 2018, 9, 1115. [Google Scholar] [CrossRef] [PubMed]
- Faltus, J.; Criss, C.R.; Grooms, D.R. Shifting focus: A clinician’s guide to understanding neuroplasticity for anterior cruciate ligament rehabilitation. Curr. Sports Med. Rep. 2020, 19, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Sandrini, G. Specialty Grand Challenge for Neurorehabilitation Research; Frontiers Media SA: Lausanne, Switzerland, 2020; Volume 11, p. 349. [Google Scholar]
- Straudi, S.; Cano-de-la-Cuerda, R. Clinical Application of Physical Therapy in Neurorehabilitation; MDPI: Basel, Switzerland, 2023; Volume 12, p. 2752. [Google Scholar]
- Angius, L.; Mauger, A.; Hopker, J.; Pascual-Leone, A.; Santarnecchi, E.; Marcora, S. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018, 11, 108–117. [Google Scholar] [CrossRef]
- Reardon, S. ‘Brain doping’may improve athletes’ performance. Nature 2016, 531, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Krucoff, M.O.; Rahimpour, S.; Slutzky, M.W.; Edgerton, V.R.; Turner, D.A. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Front. Neurosci. 2016, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Warraich, Z.; Kleim, J.A. Neural plasticity: The biological substrate for neurorehabilitation. PM&R 2010, 2, S208–S219. [Google Scholar] [CrossRef]
- Evancho, A.; Tyler, W.J.; McGregor, K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front. Hum. Neurosci. 2023, 17, 1151218. [Google Scholar] [CrossRef]
- Murray, K.; Aquino, N.; Nugent, J. The role of the physical therapist on the neuro-rehabilitation team. In Acquired Brain Injury: An Integrative Neuro-Rehabilitation Approach; Springer: Berlin/Heidelberg, Germany, 2019; pp. 163–199. [Google Scholar] [CrossRef]
- Schiza, E.; Matsangidou, M.; Neokleous, K.; Pattichis, C.S. Virtual reality applications for neurological disease: A review. Front. Robot. AI 2019, 6, 100. [Google Scholar] [CrossRef]
- Maggio, M.G.; Bonanno, M.; Manuli, A.; Calabrò, R.S. Improving Outcomes in People with Spinal Cord Injury: Encouraging Results from a Multidisciplinary Advanced Rehabilitation Pathway. Brain Sci. 2024, 14, 140. [Google Scholar] [CrossRef]
- Scalise, M.; Bora, T.S.; Zancanella, C.; Safa, A.; Stefini, R.; Cannizzaro, D. Virtual Reality as a Therapeutic Tool in Spinal Cord Injury Rehabilitation: A Comprehensive Evaluation and Systematic Review. J. Clin. Med. 2024, 13, 5429. [Google Scholar] [CrossRef]
- Simon, C.; Bolton, D.A.; Kennedy, N.C.; Soekadar, S.R.; Ruddy, K.L. Challenges and opportunities for the future of brain-computer interface in neurorehabilitation. Front. Neurosci. 2021, 15, 699428. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.J.; Wolpaw, J.R. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, U.; Birbaumer, N.; Ramos-Murguialday, A. Brain–computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 2016, 12, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. Sage Open 2019, 9, 2158244019829575. [Google Scholar] [CrossRef]
- Wiles, L.; Matricciani, L.; Williams, M.; Olds, T. Sixty-five years of Physical Therapy: Bibliometric analysis of research publications from 1945 through 2010. Phys. Ther. 2012, 92, 493–506. [Google Scholar] [CrossRef]
- Coronado, R.A.; Riddle, D.L.; Wurtzel, W.A.; George, S.Z. Bibliometric analysis of articles published from 1980 to 2009 in Physical Therapy, journal of the American Physical Therapy Association. Phys. Ther. 2011, 91, 642–655. [Google Scholar] [CrossRef]
- Coronado, R.A.; Wurtzel, W.A.; Simon, C.B.; Riddle, D.L.; George, S.Z. Content and bibliometric analysis of articles published in the Journal of Orthopaedic & Sports Physical Therapy. J. Orthop. Sports Phys. Ther. 2011, 41, 920–931. [Google Scholar] [CrossRef]
- Moral-Munoz, J.A.; Arroyo-Morales, M.; Herrera-Viedma, E.; Cobo, M.J. An overview of thematic evolution of physical therapy research area from 1951 to 2013. Front. Res. Metr. Anal. 2018, 3, 13. [Google Scholar] [CrossRef]
- Ríos, M.G.; Lorenzo, C.M.; Baños, R.R.; Moreno, R.B. Análisis temático de la disciplina Fisioterapia en la Web of Science. Fisioterapia 2010, 32, 159–164. [Google Scholar] [CrossRef]
- Carballo-Costa, L.; Quintela-Del-Río, A.; Vivas-Costa, J.; Costas, R. Mapping the field of physical therapy and identification of the leading active producers. A bibliometric analysis of the period 2000–2018. Physiother. Theory Pract. 2023, 39, 2407–2419. [Google Scholar] [CrossRef]
- Tilson, J.K.; Marshall, K.; Tam, J.J.; Fetters, L. A bibliometric analysis of statistical terms used in American Physical Therapy Association journals (2011–2012): Evidence for educating physical therapists. BMC Med. Educ. 2016, 16, 118. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.B.; Coronado, R.A.; Wurtzel, W.A.; Riddle, D.L.; George, S.Z. Content and bibliometric analyses of the Journal of Manual & Manipulative Therapy. J. Man. Manip. Ther. 2014, 22, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Fuentes, J.; Ríos-Díaz, J.; Meroño-Gallut, A.J.; Martínez-Payá, J.J.; del-Baño-Aledo, M.E. Caracterización de la base intelectual de la fisioterapia a través del análisis de cocitación de documentos. Fisioterapia 2014, 36, 167–176. [Google Scholar] [CrossRef]
- González-Seguel, F.; Camus-Molina, A.; Sepúlveda, A.J.; Araos, R.P.; Blamey, J.M.; Santos, J.G. Settings and monitoring of mechanical ventilation during physical therapy in adult critically ill patients: Protocol for a scoping review. BMJ Open 2019, 9, e030692. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ren, L.; Xiao, C.; Zhang, K.; Demian, P. Virtual reality aided therapy towards health 4.0: A two-decade bibliometric analysis. Int. J. Environ. Res. Public Health 2022, 19, 1525. [Google Scholar] [CrossRef]
- Huang, K.; Zhu, J.; Xu, S.; Zhu, R.; Chen, X. Bibliometric and visualized analysis of 2011–2020 publications on physical activity therapy for diabetes. Front. Med. 2022, 9, 807411. [Google Scholar] [CrossRef]
- Arnal-Gómez, A.; Navarro-Molina, C.; Espí-López, G.V. Bibliometric analysis of productivity and keyword trends of articles on physical therapy and aging (1990–2014). Physiother. Q. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Jabali, K.A.; Ashiq, M.; Ahmad, S.; Rehman, S.U. A bibliometric analysis of research productivity on diabetes modeling and artificial pancreas 2001 to 2020. Libr. Philos. Pract 2020, 4305, 1–19. [Google Scholar]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Springer: Berlin/Heidelberg, Germany, 2014; pp. 285–320. [Google Scholar]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sports Med. 2020, 54, 949–959. [Google Scholar] [CrossRef]
- Denby, E.; Dempster, T.; White, T.; Brockman, K.; Ellis, H.; Dharm-Datta, S.; Wilkinson, D.; Brunger, H. Dizziness directly influences postconcussion symptoms and is predictive of poorer mental health in UK military personnel: A retrospective analysis. J. Head Trauma Rehabil. 2024, 39, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Flachenecker, P. Clinical implications of neuroplasticity–the role of rehabilitation in multiple sclerosis. Front. Neurol. 2015, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, K.; Byl, N.N.; Abrams, G.M. Neurorehabilitation: Motor recovery after stroke as an example. Ann. Neurol. 2013, 74, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Raymer, A.M.; Beeson, P.; Holland, A.; Kendall, D.; Maher, L.M.; Martin, N.; Murray, L.; Rose, M.; Thompson, C.K.; Turkstra, L. Translational research in aphasia: From neuroscience to neurorehabilitation. J. Speech Lang. Hear. Res. 2008, 51, S259–S275. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Epstein, J.; Stern, E. Neural plasticity after acquired brain injury: Evidence from functional neuroimaging. PM&R 2010, 2, S306–S312. [Google Scholar] [CrossRef]
- Nudo, R.J. Recovery after brain injury: Mechanisms and principles. Front. Hum. Neurosci. 2013, 7, 887. [Google Scholar] [CrossRef]
- Sawaki, L. Emerging approaches in rehabilitation after brain injury. NeuroRehabilitation 2008, 23, 1–2. [Google Scholar] [CrossRef]
- Grefkes, C.; Fink, G.R. Recovery from stroke: Current concepts and future perspectives. Neurol. Res. Pract. 2020, 2, 17. [Google Scholar] [CrossRef]
- Perez-Marcos, D.; Bieler-Aeschlimann, M.; Serino, A. Virtual reality as a vehicle to empower motor-cognitive neurorehabilitation. Front. Psychol. 2018, 9, 2120. [Google Scholar] [CrossRef]
- Lambercy, O.; Lehner, R.; Chua, K.; Wee, S.K.; Rajeswaran, D.K.; Kuah, C.W.K.; Ang, W.T.; Liang, P.; Campolo, D.; Hussain, A. Neurorehabilitation from a distance: Can intelligent technology support decentralized access to quality therapy? Front. Robot. AI 2021, 8, 612415. [Google Scholar] [CrossRef]
- Young, M.J.; Lin, D.J.; Hochberg, L.R. Brain–Computer interfaces in neurorecovery and neurorehabilitation. In Seminars in neurology; Thieme Medical Publishers, Inc.: New York, NY, USA, 2021; pp. 206–216. [Google Scholar]
- Perumparaichallai, R.K.; Husk, K.L.; Myles, S.M.; Klonoff, P.S. The relationship of neuropsychological variables to driving status following holistic neurorehabilitation. Front. Neurol. 2014, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, P.R. Neurorehabilitation of cerebral disorders following lightning and electrical trauma. NeuroRehabilitation 2005, 20, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalloti, N.D.; Dobryakova, E.; Wylie, G.R.; DeLuca, J. Examining the efficacy of the modified story memory technique (mSMT) in persons with TBI using functional magnetic resonance imaging (fMRI): The TBI-MEM trial. J. Head Trauma Rehabil. 2015, 30, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.G.; Willer, B.S.; Leddy, J.J. Integrating neuropsychology services in a multidisciplinary concussion clinic. J. Head Trauma Rehabil. 2019, 34, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.; Troeung, L.; Singh, K.A.; Reddell, C.; Martini, A. Psychosocial functioning mediates change in motor and cognitive function throughout neurorehabilitation for adults with acquired brain injury (ABI-RESTaRT). Neurol. Sci. 2023, 44, 2401–2411. [Google Scholar] [CrossRef]
- Fakolade, A.; Bisson, E.J.; Pétrin, J.; Lamarre, J.; Finlayson, M. Effect of comorbidities on outcomes of neurorehabilitation interventions in multiple sclerosis: A scoping review. Int. J. MS Care 2016, 18, 282–290. [Google Scholar] [CrossRef]
- Demyati, H. Application of the International Classification Functioning, Disability, and Health (ICF) as Clinical Reasoning Tool in Pediatric Neurorehabilitation. In Neuropediatrics-Recent Advances and Novel Therapeutic Approaches; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Last, N.; Packham, T.L.; Gewurtz, R.E.; Letts, L.J.; Harris, J.E. Exploring patient perspectives of barriers and facilitators to participating in hospital-based stroke rehabilitation. Disabil. Rehabil. 2022, 44, 4201–4210. [Google Scholar] [CrossRef]
- Dettmers, C.; Nedelko, V. Mentales Training und lernen durch Bewegungsbeobachtung. Neurol. Rehabil. 2009, 15, 234–241. [Google Scholar]
- Page, S.J.; Cunningham, D.A.; Plow, E.; Blazak, B. It takes two: Noninvasive brain stimulation combined with neurorehabilitation. Arch. Phys. Med. Rehabil. 2015, 96, S89–S93. [Google Scholar] [CrossRef]
- Morya, E.; Monte-Silva, K.; Bikson, M.; Esmaeilpour, Z.; Biazoli, C.E.; Fonseca, A.; Bocci, T.; Farzan, F.; Chatterjee, R.; Hausdorff, J.M. Beyond the target area: An integrative view of tDCS-induced motor cortex modulation in patients and athletes. J. Neuroeng. Rehabil. 2019, 16, 1–29. [Google Scholar] [CrossRef]
- Altavista, M.C.; Barchitta, T.; Garelli, F. Botulinum toxin combined with neurorehabilitation in focal hand dystonia. Ital. J. Neurol. Sci. 1999, 20, 275. [Google Scholar]
- Anderson, K.; Aito, S.; Atkins, M.; Biering-Sørensen, F.; Charlifue, S.; Curt, A.; Ditunno, J.; Glass, C.; Marino, R.; Marshall, R. Functional recovery measures for spinal cord injury: An evidence-based review for clinical practice and research: Report of the National Institute on Disability and Rehabilitation Research spinal cord injury measures meeting. J. Spinal Cord Med. 2008, 31, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, K.D.; Mott, T.; Azulay, J.; Sharlow-Galella, M.A.; Ellmo, W.J.; Paradise, S.; Friel, J.C. A randomized controlled trial of holistic neuropsychologic rehabilitation after traumatic brain injury. Arch. Phys. Med. Rehabil. 2008, 89, 2239–2249. [Google Scholar] [CrossRef] [PubMed]
- Malone, C.; Erler, K.S.; Giacino, J.T.; Hammond, F.M.; Juengst, S.B.; Locascio, J.J.; Nakase-Richardson, R.; Verduzco-Gutierrez, M.; Whyte, J.; Zasler, N. Participation following inpatient rehabilitation for traumatic disorders of consciousness: A TBI model systems study. Front. Neurol. 2019, 10, 1314. [Google Scholar] [CrossRef] [PubMed]
- Albert, S.J.; Kesselring, J. Neurorehabilitation of stroke. J. Neurol. 2012, 259, 817–832. [Google Scholar] [CrossRef]
- Díez-Cirarda, M.; Ibarretxe-Bilbao, N.; Peña, J.; Ojeda, N. Neurorehabilitation in Parkinson’s disease: A critical review of cognitive rehabilitation effects on cognition and brain. Neural Plast. 2018, 2018, 2651918. [Google Scholar] [CrossRef]
- Kumar, J.K. Neuropsychological rehabilitation in neurological conditions: A circuitry approach. In Neuropsychological Rehabilitation: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 103–122. [Google Scholar] [CrossRef]
- Kanzler, C.M.; Lamers, I.; Feys, P.; Gassert, R.; Lambercy, O. Personalized prediction of rehabilitation outcomes in multiple sclerosis: A proof-of-concept using clinical data, digital health metrics, and machine learning. Med. Biol. Eng. Comput. 2022, 60, 249–261. [Google Scholar] [CrossRef]
- Lewis, F.D.; Horn, G.J. Comparison of TBI and CVA outcomes: Durability of gains following post-hospital neurological rehabilitation. NeuroRehabilitation 2023, 52, 425–433. [Google Scholar] [CrossRef]
- Larson, E.B.; Feigon, M.; Gagliardo, P.; Dvorkin, A.Y. Virtual reality and cognitive rehabilitation: A review of current outcome research. NeuroRehabilitation 2014, 34, 759–772. [Google Scholar] [CrossRef]
- Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. Neuroeng. Rehabil. 2018, 15, 46. [Google Scholar] [CrossRef]
- Garcia, N.; Sabater-Navarro, J.M.; Gugliemeli, E.; Casals, A. Trends in Rehabilitation Robotics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 49, pp. 1089–1091. [Google Scholar]
- Zhang, S.; Fu, Q.; Guo, S.; Fu, Y. Coordinative motion-based bilateral rehabilitation training system with exoskeleton and haptic devices for biomedical application. Micromachines 2018, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Reinthal, A.; Szirony, K.; Clark, C.; Swiers, J.; Kellicker, M.; Linder, S. ENGAGE: Guided Activity-Based Gaming in Neurorehabilitation after Stroke: A Pilot Study. Stroke Res. Treat. 2012, 2012, 784232. [Google Scholar] [CrossRef] [PubMed]
- Grunert, R.; Krause, A.; Feig, S.; Meixensberger, J.; Rotsch, C.; Drossel, W.-G.; Themann, P.; Winkler, D. A technical concept of a computer game for patients with Parkinson’s disease–a new form of PC-based physiotherapy. Int. J. Neurosci. 2019, 129, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Broeren, J.; Claesson, L.; Goude, D.; Rydmark, M.; Sunnerhagen, K.S. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke: The possibilities of 3-dimensional computer games. Cerebrovasc. Dis. 2008, 26, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Despotova, D.; Kiriazov, P. Recent control concepts in human motor rehabilitation: A review to its optimization. Ser. Biomech. 2017, 31, 3–15. [Google Scholar]
- Baur, K.; Schättin, A.; de Bruin, E.D.; Riener, R.; Duarte, J.E.; Wolf, P. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: A systematic review of health-related multiplayer games. J. Neuroeng. Rehabil. 2018, 15, 107. [Google Scholar] [CrossRef]
- Brooks, T.J.; Bradstreet, T.C.; Partridge, J.A. Current concepts and practical applications for recovery, growth, and peak performance following significant athletic injury. Front. Psychol. 2022, 13, 929487. [Google Scholar] [CrossRef]
- Bouça-Machado, R.; Venturelli, M.; Tinazzi, M.; Schena, F.; Ferreira, J.J. Treating patients like athletes: Sports science applied to Parkinson’s disease. Front. Neurol. 2020, 11, 228. [Google Scholar] [CrossRef]
- Fogelman, D.; Zafonte, R. Exercise to enhance neurocognitive function after traumatic brain injury. PM&R 2012, 4, 908–913. [Google Scholar] [CrossRef]
- Reuther, P.; Hendrich, A.; Kringler, W.; Vespo, E. Community-based rehabilitation and outpatient care for patients with acquired brain injury and chronic neurological disability in Germany: Continuing support for social participation and re-integration in the neurological care system? Rehabil. 2012, 51, 424–430. [Google Scholar] [CrossRef]
- Park, K.; Ksiazek, T.; Olson, B. Effectiveness of vestibular rehabilitation therapy for treatment of concussed adolescents with persistent symptoms of dizziness and imbalance. J. Sport Rehabil. 2018, 27, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Reese, L.M.S.; Pittsinger, R.; Yang, J. Effectiveness of psychological intervention following sport injury. J. Sport Health Sci. 2012, 1, 71–79. [Google Scholar] [CrossRef]
- Clement, D.; Granquist, M.D.; Arvinen-Barrow, M.M. Psychosocial aspects of athletic injuries as perceived by athletic trainers. J. Athl. Train. 2013, 48, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Podlog, L.; Heil, J.; Schulte, S. Psychosocial factors in sports injury rehabilitation and return to play. Phys. Med. Rehabil. Clin. 2014, 25, 915–930. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.M.; Lotze, M. Plasticity as the basis for recovery after stroke; [Plastizität als Grundlage für die Erholung nach Schlaganfall]. Neurol. Rehabil. 2017, 23, 199–208. [Google Scholar]
- Shah, V.; Cuen, M.; McDaniel, T.; Tadayon, R. A rhythm-based serious game for fine motor rehabilitation using leap motion. In Proceedings of the 2019 58th Annual conference of the society of instrument and control engineers of Japan (SICE), Hiroshima, Japan, 10–13 September 2019; pp. 737–742. [Google Scholar]
- Braun, S.M.; Wade, D.T.; Beurskens, A.J. Use of movement imagery in neurorehabilitation: Researching effects of a complex intervention. Int. J. Rehabil. Res. 2011, 34, 203–208. [Google Scholar] [CrossRef]
- Wang, C.-C.; Hu, T.-M.; Lin, Y.-J.; Chen, C.-L.; Hsu, Y.-C.; Kao, C.-L. Use of noninvasive brain stimulation and neurorehabilitation devices to enhance poststroke recovery: Review of the current evidence and pitfalls. J. Int. Med. Res. 2024, 52, 03000605241238066. [Google Scholar] [CrossRef]
- Felsberg, D.T.; Maher, J.P.; Rhea, C.K. The state of behavior change techniques in virtual reality rehabilitation of neurologic populations. Front. Psychol. 2019, 10, 979. [Google Scholar] [CrossRef]
- Murphy, A.M.; Pradhan, S.; Levin, M.F.; Hancock, N.J. Uptake of technology for neurorehabilitation in clinical practice: A scoping review. Phys. Ther. 2024, 104, pzad140. [Google Scholar] [CrossRef]
- Arlotti, J.S.; Carroll, W.O.; Afifi, Y.; Talegaonkar, P.; Albuquerque, L.; Ball, J.E.; Chander, H.; Petway, A. Benefits of IMU-based wearables in sports medicine: Narrative review. Int. J. Kinesiol. Sports Sci. 2022, 10, 36–43. [Google Scholar] [CrossRef]
- Marklund, N.; Bellander, B.M.; Godbolt, A.; Levin, H.; McCrory, P.; Thelin, E.P. Treatments and rehabilitation in the acute and chronic state of traumatic brain injury. J. Intern. Med. 2019, 285, 608–623. [Google Scholar] [CrossRef] [PubMed]
- Ortega, V.E.; Buetler, K.A.; Aksöz, E.A.; Marchal-Crespo, L. Enhancing touch sensibility with sensory electrical stimulation and sensory retraining. J. NeuroEngineering Rehabil. 2024, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Ahl, L.E.; Johansson, E.; Granat, T.; Carlberg, E.B. Functional therapy for children with cerebral palsy: An ecological approach. Dev. Med. Child Neurol. 2005, 47, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Marcantuono, J.T.; Prigatano, G.P. A holistic brain injury rehabilitation program for school-age children. NeuroRehabilitation 2008, 23, 457–466. [Google Scholar] [CrossRef]
- Eliakim, E.; Morgulev, E.; Lidor, R.; Meckel, Y. Estimation of injury costs: Financial damage of English Premier League teams’ underachievement due to injuries. BMJ Open Sport Exerc. Med. 2020, 6, e000675. [Google Scholar] [CrossRef]
- Hamel, R.E. The dominance of English in the international scientific periodical literature and the future of language use in science. Aila Rev. 2007, 20, 53–71. [Google Scholar] [CrossRef]
- Katsouyanni, K. Collaborative research: Accomplishments & potential. Environ. Health 2008, 7, 1–7. [Google Scholar] [CrossRef]
- Aldieri, L.; Kotsemir, M.; Vinci, C.P. The impact of research collaboration on academic performance: An empirical analysis for some European countries. Socio-Econ. Plan. Sci. 2018, 62, 13–30. [Google Scholar] [CrossRef]
- Benton, A.D.; Benton, D.C. Evolution of physiotherapy scholarship: A comparative bibliometric analysis of two decades of English published work. Physiother. Res. Int. 2019, 24, e1760. [Google Scholar] [CrossRef]
- Schwachula, A. Transnational science cooperation for sustainable development. In The Palgrave Handbook of Development Cooperation for Achieving the 2030 Agenda: Contested Collaboration; Springer: Berlin/Heidelberg, Germany, 2021; pp. 59–88. [Google Scholar]
- Plakias, S.; Tsatalas, T.; Mina, M.A.; Kokkotis, C.; Kellis, E.; Giakas, G. A Bibliometric Analysis of Soccer Biomechanics. Appl. Sci. 2024, 14, 6430. [Google Scholar] [CrossRef]
- Wang, L.; Thijs, B.; Glänzel, W. Characteristics of international collaboration in sport sciences publications and its influence on citation impact. Scientometrics 2015, 105, 843–862. [Google Scholar] [CrossRef]
- Moseley, A.M.; Elkins, M.R.; Janer-Duncan, L.; Hush, J.M. The quality of reports of randomized controlled trials varies between subdisciplines of physiotherapy. Physiother. Can. 2014, 66, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Dwan, K.; Altman, D.G.; Arnaiz, J.A.; Bloom, J.; Chan, A.-W.; Cronin, E.; Decullier, E.; Easterbrook, P.J.; Von Elm, E.; Gamble, C. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS ONE 2008, 3, e3081. [Google Scholar] [CrossRef] [PubMed]
- Milanez, D.H.; Noyons, E.; de Faria, L.I.L. A delineating procedure to retrieve relevant publication data in research areas: The case of nanocellulose. Scientometrics 2016, 107, 627–643. [Google Scholar] [CrossRef]
- Zitt, M. Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation. Scientometrics 2015, 102, 2223–2245. [Google Scholar] [CrossRef]
Source | Documents | Citations | IF |
---|---|---|---|
Journal of Head Trauma Rehabilitation | 5 | 56 | 2.26 |
Journal of Neuroengineering and Rehabilitation | 4 | 205 | 5.61 |
Pm and R | 4 | 153 | 2.03 |
Frontiers in Neurology | 4 | 126 | 2.80 |
Neurologie und Rehabilitation | 4 | 4 | 0.23 |
Brain Injury | 3 | 46 | 1.55 |
Neurorehabilitation | 3 | 35 | 1.68 |
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2 | 75 | 5.44 |
Disability and Rehabilitation | 2 | 34 | 2.65 |
IEEE International Conference on Rehabilitation Robotics | 2 | 25 | 0.86 |
Archives of Physical Medicine and Rehabilitation | 2 | 23 | 3.13 |
Medicine and Science in Sports and Exercise | 2 | 13 | 3.70 |
Rehabilitation | 2 | 13 | 0.75 |
Current Sports Medicine Reports | 2 | 4 | 1.28 |
Neurology | 2 | 4 | 3.79 |
BMJ Open | 2 | 3 | 2.53 |
Journal of Clinical Medicine | 2 | 3 | 3.07 |
Author | Documents | Citations | Total Citations per Author, Regardless of Article Topic |
---|---|---|---|
Dharm-Datta, Shreshth | 2 | 436 | 654 |
Ellis, Henrietta | 2 | 436 | 451 |
Riener, Robert | 3 | 136 | 15,953 |
Sunnerhagen, Katharina S. | 2 | 100 | 14,736 |
Baur, Kilian | 2 | 61 | 229 |
Duarte, Jaime E. | 2 | 61 | 464 |
Wolf, Peter | 2 | 61 | 10,942 |
Gagnon, Isabelle | 3 | 60 | 5192 |
Friedman, Debbie | 2 | 52 | 14,642 |
Grilli, Lisa | 2 | 52 | 535 |
Iosa, Marco | 2 | 32 | 6416 |
Morone, Giovanni | 2 | 32 | 5860 |
Paolucci, Stefano | 2 | 32 | 10,282 |
Wade, Derick T. | 2 | 29 | 34,641 |
Leddy, John J. | 2 | 20 | 12,102 |
Willer, Barry S. | 2 | 20 | 6933 |
Cluster 1 (Red): Athlete-Centered Neurorehabilitation Techniques | Cluster 2 (Green): Clinical Approaches and Outcomes in Neurorehabilitation | Cluster 3 (Blue): Specialized Interventions in Sports Medicine and Neurorehabilitation |
---|---|---|
Athlete, brain–computer interface, cerebrovascular accident, cognition, daily life activity, electromyography, fatigue, gait, human, motor control, motor dysfunction, motor learning, motor performance, multiple sclerosis, nervous system diseases, neurorehabilitation, neurologic disease neurological rehabilitation, neurology, neuromuscular rehabilitation, neuropsychological test, Parkinson’s disease, physical activity, priority journal, procedures, range of motion, rehabilitation care, rehabilitation medicine, robotics, sport, sportsstroke, stroke rehabilitation, telerehabilitation, video game, video games, virtual reality, and walking | Adolescent, aerobic exercise, age, brain concussion, child, clinical effectiveness, clinical outcome, concussion, controlled study, disease severity, dizziness, evidence-based practice, exercise, falling, female, follow up, functional status, headache, healthcare delivery, length of stay, major clinical study, male, occupational therapy, outcome assessment, patient care, Physical therapy modalities, physiotherapy, post-concussion syndrome, quality of life, rehabilitation center, retrospective studies, retrospective study, scoring system, spinal cord injury, systematic review, traffic accident, traumatic brain injury, and treatment outcome | Adult, aged, article, athletic injuries, brain injuries, brain injury, case report, chronic disease, clinical article, cognitive rehabilitation, complication, exercise therapy, feasibility study, kinesiotherapy, middle aged, pathophysiology, psychology, questionnaire, randomized controlled trial, risk factor, sport injury, sports medicine, and young adult |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pamboris, G.M.; Plakias, S.; Tsiakiri, A.; Karakitsiou, G.; Bebeletsi, P.; Vadikolias, K.; Aggelousis, N.; Tsiptsios, D.; Christidi, F. Physical Therapy in Neurorehabilitation with an Emphasis on Sports: A Bibliometric Analysis and Narrative Review. Sports 2024, 12, 276. https://doi.org/10.3390/sports12100276
Pamboris GM, Plakias S, Tsiakiri A, Karakitsiou G, Bebeletsi P, Vadikolias K, Aggelousis N, Tsiptsios D, Christidi F. Physical Therapy in Neurorehabilitation with an Emphasis on Sports: A Bibliometric Analysis and Narrative Review. Sports. 2024; 12(10):276. https://doi.org/10.3390/sports12100276
Chicago/Turabian StylePamboris, George M., Spyridon Plakias, Anna Tsiakiri, Georgia Karakitsiou, Paschalina Bebeletsi, Konstantinos Vadikolias, Nikolaos Aggelousis, Dimitrios Tsiptsios, and Foteini Christidi. 2024. "Physical Therapy in Neurorehabilitation with an Emphasis on Sports: A Bibliometric Analysis and Narrative Review" Sports 12, no. 10: 276. https://doi.org/10.3390/sports12100276
APA StylePamboris, G. M., Plakias, S., Tsiakiri, A., Karakitsiou, G., Bebeletsi, P., Vadikolias, K., Aggelousis, N., Tsiptsios, D., & Christidi, F. (2024). Physical Therapy in Neurorehabilitation with an Emphasis on Sports: A Bibliometric Analysis and Narrative Review. Sports, 12(10), 276. https://doi.org/10.3390/sports12100276