Isometric Force–Time Curve Assessment: Accuracy, Precision, and Repeatability of a Mobile Application and Portable and Lightweight Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calibration
2.2. Study Design and Protocol
2.3. Synchronization and Data Extraction
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramírez-delaCruz, M.; Bravo-Sánchez, A.; Esteban-García, P.; Jiménez, F.; Abián-Vicén, J. Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-analysis. Sports Med. Open 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.L.; Santos, B.C.; Medeiros, L.H.; Gonçalves, T.C.P.; Júnior, C.R.B. Effects of Different Periodization Strategies of Combined Aerobic and Strength Training on Heart Rate Variability in Older Women. J. Strength Cond. Res. 2021, 35, 2033–2039. [Google Scholar] [CrossRef] [PubMed]
- Baltzopoulos, V.; Brodie, D.A. Isokinetic dynamometry. Applications and limitations. Sports Med. 1989, 8, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Jiménez-Reyes, P.; Montaño-Munuera, J.A. Validity and reliability of a low-cost digital dynamometer for measuring isometric strength of lower limb. J. Sports Sci. 2017, 35, 2179–2184. [Google Scholar] [CrossRef]
- Lum, D.; Barbosa, T.M. Brief Review: Effects of Isometric Strength Training on Strength and Dynamic Performance. Int. J. Sports Med. 2019, 40, 363–375. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Maffiuletti, N.A.; Saner, H.; Schütz, N.; Rudin, B.; Nef, T.; Urwyler, P. Isometric Strength Measures are Superior to the Timed Up and Go Test for Fall Prediction in Older Adults: Results from a Prospective Cohort Study. Clin. Interv. Aging 2020, 15, 2001–2008. [Google Scholar] [CrossRef]
- Tuttle, N.; Jacuinde, G. Design and construction of a novel low-cost device to provide feedback on manually applied forces. J. Orthop. Sports Phys. Ther. 2011, 41, 174–179. [Google Scholar] [CrossRef]
- Hogrel, J.Y.; Benveniste, O.; Bachasson, D. Routine monitoring of isometric knee extension strength in patients with muscle impairments using a new portable device: Cross-validation against a standard isokinetic dynamometer. Physiol. Meas. 2020, 41, 015003. [Google Scholar] [CrossRef]
- Krause, M.; Crognale, D.; Cogan, K.; Contarelli, S.; Egan, B.; Newsholme, P.; De Vito, G. The effects of a combined bodyweight-based and elastic bands resistance training, with or without protein supplementation, on muscle mass, signaling and heat shock response in healthy older people. Exp. Gerontol. 2019, 115, 104–113. [Google Scholar] [CrossRef]
- Hintermeister, R.A.; Bey, M.J.; Lange, G.W.; Steadman, J.R.; Dillman, C.J. Quantification of elastic resistance knee rehabilitation exercises. J. Orthop. Sports Phys. Ther. 1998, 28, 40–50. [Google Scholar] [CrossRef]
- Santos, D.; Barboza, R.; Domínguez, J.; Fernández, A.; Veirano, F.; Pérez, P.; Motta, F.; Simini, F. DINABANG: Explosive Force Hamstring Rehabilitation Biomechanics Instrument. In Proceedings of the 6th International Conference on Biotechnology and Bioengineering, Offenburg, Germany, 26–28 September 2017; pp. 26–28. Available online: http://www.nib.fmed.edu.uy/sitio_nib/BibliotecaNIB/PublNIB234.pdf (accessed on 12 May 2024).
- Simini, F.; Santos, D.; Dominguez, J.; Barboza, R. DINABANG: A portable measurement device to monitor lower limb explosive torque and velocity with validation. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Singapore, 12–17 June 2022; pp. 1480–1482. [Google Scholar] [CrossRef]
- Silva, R.; Rico-González, M.; Lima, R.; Akyildiz, Z.; Pino-Ortega, J.; Clemente, F.M. Validity and Reliability of Mobile Applications for Assessing Strength, Power, Velocity, and Change-of-Direction: A Systematic Review. Sensors 2021, 21, 2623. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, H.; Katoh, M.; Hiiragi, Y.; Kawasaki, T.; Kurihara, T.; Ohmi, Y. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt. J. Phys. Ther. Sci. 2016, 28, 2123–2127. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Massa, F.; Dominguez, J.; Morales, I.; Del Castillo, J.; Mattiozzi, A.; Simini, F. Hamstring Torque, Velocity and Power Elastic Band Measurements during Hip Extension and Knee Flexion. Appl. Sci. 2021, 11, 10509. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Hopkins, W.G.; A Scale of Magnitudes for Effect Statistics. A New View of Statistics. Available online: http://sportsci.org/resource/stats/effectmag.html (accessed on 4 August 2024).
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Noteboom, L.; Nijs, A.; Beek, P.J.; van der Helm, F.C.T.; Hoozemans, M.J.M. A Muscle Load Feedback Application for Strength Training: A Proof-of-Concept Study. Sports 2023, 11, 170. [Google Scholar] [CrossRef]
- Claudino, J.G.; Afonso, J.; Sarvestan, J.; Lanza, M.B.; Pennone, J.; Filho, C.A.C.; Serrão, J.C.; Espregueira-Mendes, J.; Vasconcelos, A.L.V.; de Andrade, M.P.; et al. Strength Training to Prevent Falls in Older Adults: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 3184. [Google Scholar] [CrossRef]
- Guirguis-Blake, J.M.; Michael, Y.L.; Perdue, L.A.; Coppola, E.L.; Beil, T.L.; Thompson, J.H. Interventions to Prevent Falls in Community-Dwelling Older Adults: A Systematic Review for the U.S. Preventive Services Task Force; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2018. [Google Scholar]
- Jukic, I.; Prnjak, K.; McGuigan, M.R.; Helms, E.R. One Velocity Loss Threshold Does Not Fit All: Consideration of Sex, Training Status, History, and Personality Traits When Monitoring and Controlling Fatigue During Resistance Training. Sports Med. Open 2023, 9, 80. [Google Scholar] [CrossRef]
- Hartog, J.; Dijkstra, S.; Fleer, J.; van der Harst, P.; Mariani, M.A.; van der Woude, L.H.V. A portable isometric knee extensor strength testing device: Test-retest reliability and minimal detectable change scores of the Q-Force II in healthy adults. BMC Musculoskelet. Disord. 2021, 22, 966. [Google Scholar] [CrossRef] [PubMed]
Right Lower Limb | ||||||
---|---|---|---|---|---|---|
Serie | Repetition 1 | Repetition 2 | Repetition 3 | |||
System | BIODEX | DINABANG | BIODEX | DINABANG | BIODEX | DINABANG |
Force (Nm) | 246.46 ± 75.66 | 246.06 ± 75.46 | 252.41 ± 73.58 | 252.84 ± 73.69 | 250.84 ± 73.69 | 250.58 ± 73.63 |
Δ (Nm) | 0.40 ± 2.51 | 0.40 ± 2.51 | 0.26 ± 2.39 | |||
Sig. | 0.508 | 0.508 | 0.653 | |||
Left Lower Limb | ||||||
Serie | Repetition 1 | Repetition 2 | Repetition 3 | |||
System | BIODEX | DINABANG | BIODEX | DINABANG | BIODEX | DINABANG |
Force (Nm) | 248.02 ± 88.06 | 248.23 ± 87.90 | 239.17 ± 82.93 | 239.41 ± 82.09 | 245.34 ± 79.43 | 245.22 ± 78.73 |
Δ (Nm) | 0.22 ± 2.38 | 0.23 ± 2.57 | 0.12 ± 2.59 | |||
Sig. | 0.705 | 0.707 | 0.845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.; Bravo-Sánchez, A.; Peyré-Tartaruga, L.A.; Simini, F.; Zacca, R. Isometric Force–Time Curve Assessment: Accuracy, Precision, and Repeatability of a Mobile Application and Portable and Lightweight Device. Sports 2024, 12, 268. https://doi.org/10.3390/sports12100268
Santos D, Bravo-Sánchez A, Peyré-Tartaruga LA, Simini F, Zacca R. Isometric Force–Time Curve Assessment: Accuracy, Precision, and Repeatability of a Mobile Application and Portable and Lightweight Device. Sports. 2024; 12(10):268. https://doi.org/10.3390/sports12100268
Chicago/Turabian StyleSantos, Dario, Alfredo Bravo-Sánchez, Leonardo Alexandre Peyré-Tartaruga, Franco Simini, and Rodrigo Zacca. 2024. "Isometric Force–Time Curve Assessment: Accuracy, Precision, and Repeatability of a Mobile Application and Portable and Lightweight Device" Sports 12, no. 10: 268. https://doi.org/10.3390/sports12100268
APA StyleSantos, D., Bravo-Sánchez, A., Peyré-Tartaruga, L. A., Simini, F., & Zacca, R. (2024). Isometric Force–Time Curve Assessment: Accuracy, Precision, and Repeatability of a Mobile Application and Portable and Lightweight Device. Sports, 12(10), 268. https://doi.org/10.3390/sports12100268