Psychometric Characteristics of the Brazil Mood Scale among Youth and Elite Athletes Using Two Response Time Frames
Abstract
:1. Introduction
1.1. Influence of Response Time Frame on Mood Assessment
1.2. Between-Group Differences in Mood
1.3. Aims and Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Measurement of Mood
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Confirmatory Factor Analysis
3.2. Test–Retest Reliability
3.3. “Right Now” vs. “Past Week” Mood Scores
3.4. Between-Group Comparisons
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reardon, C.L.; Hainline, B.; Aron, C.M.; Baron, D.; Baum, A.L.; Bindra, A.; Budgett, R.; Campriani, N.; Castaldelli-Maia, J.M.; Currie, A.; et al. Mental health in elite athletes: International Olympic Committee consensus statement. Br. J. Sports Med. 2019, 53, 667–699. [Google Scholar] [CrossRef] [PubMed]
- Purcell, R.; Pilkington, V.; Carberry, S.; Reid, D.; Gwyther, K.; Hall, K.; Deacon, A.; Manon, R.; Walton, C.C.; Rice, S. An evidence-informed framework to promote mental wellbeing in elite sport. Front. Psychol. 2022, 13, e780359. [Google Scholar] [CrossRef] [PubMed]
- Morgan, W.P. Selected psychological factors limiting performance: A mental health model. In Limits of Human Performance; Clarke, D.H., Eckert, H.M., Eds.; Human Kinetics: Champaign, IL, USA, 1985; pp. 70–80. [Google Scholar]
- Morgan, W.P.; Brown, D.R.; Raglin, J.S.; O’Connor, P.J.; Ellickson, K. Psychological monitoring of overtraining and staleness. Br. J. Sports Med. 1987, 21, 107–114. [Google Scholar] [CrossRef]
- Beedie, C.J.; Terry, P.C.; Lane, A.M. The Profile of Mood States and athletic performance: Two meta-analyses. J. Appl. Sport Psychol. 2000, 12, 49–68. [Google Scholar] [CrossRef]
- Lochbaum, M.; Zanatta, T.; Kirschling, D.; May, E. The Profile of Moods States and athletic performance: A meta-analysis of published studies. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 50–70. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.M.; Terry, P.C. The nature of mood: Development of a conceptual model with a focus on depression. J. Appl. Sport Psychol. 2000, 12, 16–33. [Google Scholar] [CrossRef]
- Feldman Barrett, L.; Russell, J.A. Independence and bipolarity in the structure of current affect. J. Pers. Soc. Psychol. 1998, 74, 967–984. [Google Scholar] [CrossRef]
- Terry, P.C.; Parsons-Smith, R.L. Mood profiling for sustainable mental health among athletes. Sustainability 2021, 13, 6116. [Google Scholar] [CrossRef]
- Rohlfs, I.C.P.M.; Carvalho, T.; Rotta, T.M.; Krebs, R.J. Application of mood assessment instruments in the detection of overtraining syndrome. Rev. Bras. Med. Esporte 2004, 10, 111–116. [Google Scholar] [CrossRef]
- Terry, P.C.; Lane, A.M.; Lane, H.J.; Keohane, L. Development and validation of a mood measure for adolescents. J. Sports Sci. 1999, 17, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Lane, A.M.; Fogarty, G.J. Construct validity of the Profile of Mood States–Adolescents for use with adults. Psychol. Sport Exerc. 2003, 4, 125–139. [Google Scholar] [CrossRef]
- McNair, D.M.; Lorr, M.; Droppleman, L.F. Manual for the Profile of Mood States; Educational and Industrial Testing are Services: San Diego, CA, USA, 1971. [Google Scholar]
- Rohlfs, I.C.P.M.; Rotta, T.M.; Luft, C.D.B.; Andrade, A.; Krebs, R.J.; Carvalho, T.D. Brunel Mood Scale (BRUMS): An instrument for early detection of overtraining syndrome. Rev. Bras. Med. Esporte 2008, 14, 176–181. [Google Scholar] [CrossRef]
- Andrade, A.; Bevilacqua, G.; Casagrande, P.; Brandt, R.; Coimbra, D. Sleep quality associated with mood in elite athletes. Phys. Sportsmed. 2019, 47, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.E.; Brandão, M.R.F. Training volume, perceived exertion, and mood states during a training macrocycle. Rev. Bras. Psicol. Esporte 2010, 3, 63–78. [Google Scholar] [CrossRef]
- Wilke, C.F.; Wanner, S.P.; Santos, W.H.M.; Penna, E.M.; Ramos, G.P.; Nakamura, F.Y.; Duffield, R. Influence of faster and slower recovery-profile classifications, self-reported sleep, acute training load, and phase of the microcycle on perceived recovery in futsal players. Int. J. Sports Physiol. Perform. 2020, 15, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.F.; Wanner, S.P.; Penna, E.M.; Maia-Lima, A.; Santos, W.H.M.; Müller-Ribeiro, F.C.; Mendes, T.T.; Bruzzi, R.S.; Ramos, G.P.; Nakamura, F.Y.; et al. Preseason training improves perception of fatigue and recovery from a futsal training session. Int. J. Sports Physiol. Perform. 2021, 16, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Bevilacqua, G.G.; Coimbra, D.R.; Pereira, F.S.; Brandt, R. Sleep quality, mood and performance: A study of elite Brazilian volleyball athletes. J. Sports Sci. Med. 2016, 15, 601–605. [Google Scholar]
- Bevilacqua, G.G.; Viana, M.S.; Gutierres Filho, P.J.B.; da Silveira Borges, V.; Brandt, R. Estados de Humor e Resultado Esportivo de Uma Equipe ao Longo da Segunda Fase da Liga Nacional de Futsal. Psicol. Teor. Pesqui. 2019, 35, e3537. [Google Scholar] [CrossRef]
- Brandt, R.; Bevilacqua, G.G.; Andrade, A. Perceived sleep quality, mood states, and their relationship with performance among Brazilian elite athletes during a competitive period. J. Strength. Cond. Res. 2017, 31, 1033–1039. [Google Scholar] [CrossRef]
- Brandt, R.; Viana, M.S.; Crocetta, T.B.; Andrade, A. Association between mood states and performance of Brazilian elite sailors: Winners vs. non-winners. Cult. Cienc. Y Deporte 2016, 11, 119–125. [Google Scholar] [CrossRef]
- Andrade, A.; Steffens, R.D.A.K.; Sieczkowska, S.M.; Coimbra, D.R.; Vilarino, G.T. Acute effect of strength training on mood of patients with fibromyalgia syndrome. Reumatismo 2019, 71, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Steffens, R.; Vilarino, G.T.; Miranda, R.; Benetti, M.; Coimbra, D.R. Preferred exercise and mental health of the patients with fibromyalgia syndrome. Complement. Ther. Clin. Pract. 2020, 40, 101–195. [Google Scholar] [CrossRef] [PubMed]
- Noce, F.; Castro, H.d.O.; Ferreira, T.S.; Guo, J.; de Andrade, A.G.P.; da Costa, V.T. A 6-month comparison of quality of life and mood states between physically active and sedentary college students. Medicina 2016, 49, 9–16. [Google Scholar] [CrossRef]
- Brandt, R.; Viana, M.D.S.; Steffens, R.D.A.K.; Silva, R.B.; Sties, S.W.; Gonzáles, A.I.; Carvalho, T.D.; Andrade, A. Profile of mood and associated factors among participants of a program of cardiopulmonary and metabolic rehabilitation. J. Bra. Psiquiatr. 2012, 61, 72–77. [Google Scholar] [CrossRef]
- Sties, S.W.; Gonzáles, A.I.; Netto, A.S.; Wittkopf, P.G.; Lima, D.P.; Carvalho, T. Validation of the Brunel Mood Scale for cardiac rehabilitation program. Brazil J. Sports Med. 2014, 20, 281–284. [Google Scholar] [CrossRef]
- Terry, P.C.; Stevens, M.J.; Lane, A.M. Influence of response time frame on mood assessment. Anxiety Stress. Coping. 2005, 18, 279–285. [Google Scholar] [CrossRef]
- Roberts, R.J.; Lane, A.M. Mood responses and regulation strategies used during COVID-19 among boxers and coaches. Front. Psychol. 2021, 12, e624119. [Google Scholar] [CrossRef]
- Masumoto, K.; Taishi, N.; Shiozaki, M. Age and gender differences in relationships among emotion regulation, mood, and mental health. Gerontol. Geriatr. Med. 2016, 2, e2333721416637022. [Google Scholar] [CrossRef]
- Sanchis-Sanchis, A.; Grau, M.D.; Moliner, A.R.; Morales-Murillo, C.P. Effects of age and gender in emotion regulation of children and adolescentes. Front. Psychol. 2020, 11, e946. [Google Scholar] [CrossRef]
- Terry, P.C.; Parsons-Smith, R.L.; King, R.; Terry, V.R. Influence of sex, age, and education on mood profile clusters. PLoS ONE 2021, 16, e0245341. [Google Scholar] [CrossRef] [PubMed]
- Mezzina, R.; Gopikumar, V.; Jenkins, J.; Saraceno, B.; Sashidharan, S.P. Social vulnerability and mental health inequalities in the “Syndemic”: Call for action. Front. Psychiatry 2022, 13, 894370. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Risks to Mental Health: An Overview of Vulnerabilities and Risk Factors; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Cruz, M.S.; Silva, E.S.; Jakaite, Z.; Krenzinger, M.; Valiati, L.; Gonçalves, D.; Ribeiro, E.; Heritage, P.; Priebe, S. Experience of neighbourhood violence and mental distress in Brazilian favelas: A cross-sectional household survey. Lancet Glob. Health 2021, 4, e100067. [Google Scholar] [CrossRef]
- Çakiroğlu, A.A.; Demir, E.; Güçlü, M. The validity and reliability study of the Brunel Mood Scale with the adult athletes (Turkish adaptation). Int. J. Appl. Exerc. Physiol. 2020, 9, 126–140. Available online: https://www.proquest.com/scholarly-journals/validity-reliablity-study-brunel-mood-scale-with/docview/2501930466/se-2 (accessed on 1 November 2023).
- Cañadas, E.; Monleón, C.; Sanchis, C.; Fargueta, M.; Blasco, E. Spanish validation of BRUMS in sporting and non-sporting populations. Euro. J. Hum. Move. 2017, 38, 105–117. [Google Scholar]
- Hasan, M.M.; Mozibul, H.A.K. Bangla version of the Brunel Mood Scale (BRUMS): Validity, measurement invariance and normative data in non-clinical sample. Heliyon 2022, 8, e09666. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.M.; Soos, I.; Leibinger, E.; Karsai, I.; Hamar, P. Validity of the Brunel Mood Scale for use with UK, Italian and Hungarian athletes. In Mood and Human Performance: Conceptual, Measurement, and Applied Issues; Lane, A.M., Ed.; Nova Science: Hauppauge, NY, USA, 2007; pp. 119–130. [Google Scholar]
- Lew, P.C.F.; Parsons-Smith, R.L.; Lamont-Mills, A.; Terry, P.C. Cross-cultural validation of the Malaysian Mood Scale and tests of between-group mood differences. Int. J. Environ. Res. Public Health 2023, 20, 3348. [Google Scholar] [CrossRef] [PubMed]
- Kvĕton, P.; Jelínek, M.; Burešová, I.; Bartošová, K. Czech adaptation of the Brunel Mood States for adolescent athletes. Stud. Sport. 2020, 14, e12758. [Google Scholar] [CrossRef]
- Quartiroli, A.; Terry, P.C.; Fogarty, G.J. Development and initial validation of the Italian Mood Scale (ITAMS) for use in sport and exercise contexts. Front. Psychol. 2017, 8, e1483. [Google Scholar] [CrossRef]
- Rajkovic, I. Translation and Validation of the Brunel Mood Scale for a Serbian Athlete Population. Master’s Thesis, University of Jyväskylä, Jyväskylä, Finland, 2014. [Google Scholar]
- Rouveix, M.; Duclos, M.; Gouarne, C.; Beauvieux, M.C.; Filaire, E. The 24 h urinary cortisol/cortisone ratio and epinephrine/norepinephrine ratio for monitoring training in young female tennis players. Int. J. Sports Med. 2006, 27, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Sahli, H.; Sahli, F.; Saidane, M.; Rebhi, M.; Guelmami, N.; Trabelsi, K.; Jahrami, H.; Ammar, A.; Terry, P.C.; Zghibi, M. Testing the psychometric properties of an Arabic version of the Brunel Mood Scale among physical education students. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1539–1552. [Google Scholar] [CrossRef]
- Terry, P.C.; Malekshahi, M.; Delva, H.A. Development and initial validation of the Farsi Mood Scale. Int. J. Sport Exerc. Psychol. 2012, 10, 112–122. [Google Scholar] [CrossRef]
- Terry, P.C.; Potgieter, J.R.; Fogarty, G.J. The Stellenbosch Mood Scale: A dual-language measure of mood. Int. J. Sport Exerc. Psychol. 2003, 1, 231–245. [Google Scholar] [CrossRef]
- Terry, P.C.; Skurvydas, A.; Lisinskiene, A.; Majauskiene, D.; Valanciene, D.; Cooper, S.; Lochbaum, M. Validation of a Lithuanian-language version of the Brunel Mood Scale: The BRUMS-LTU. Int. J. Environ. Res. Public Health 2022, 19, 4867. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, K.; Oyama, T.; Fujiya, H.; Kato, H.; Seki, H.; Kohno, T. Development and validation of the preliminary Japanese version of the Profile of Mood States for adolescents. St. Marian. Med. J. 2006, 32, 539–547. Available online: https://www.semanticscholar.org/paper/Development-and-Validation-of-the-Preliminary-of-of-Yatabe-Oyama/c2d17d970b896541a8c2d82fe3efa9452b378608 (accessed on 1 November 2023).
- Zhang, C.Q.; Si, G.; Chung, P.K.; Du, M.; Terry, P.C. Psychometric properties of the Brunel Mood Scale in Chinese adolescents and adults. J. Sports Sci. 2014, 32, 1465–1476. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM Corp: Armonk, NY, USA, 2022. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford: New York, NY, USA, 2015. [Google Scholar]
- Bentler, P.M. Comparative fit indexes in structural models. Psych. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef]
- Tucker, L.R.; Lewis, C. A reliability coefficient for maximum likelihood factor analysis. Psychometrika 1973, 38, 1–10. [Google Scholar] [CrossRef]
- Steiger, J.H. Structural model evaluation and modification: An interval estimation approach. Multivar. Beh. Res. 1990, 25, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Parsons-Smith, R.L.; Fogarty, G.J.; Terry, P.C. Psychometric properties of the Brunel Mood Scale in a Singaporean sporting context. Int. J. Sport Exerc. Psychol. 2021, 19, 1–17. [Google Scholar] [CrossRef]
- Nevill, A.; Lane, A.M. Why self-report “Likert” scale data should not be log-transformed. J. Sports Sci. 2007, 25, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Leiner, D.J. Too fast, too straight, too weird: Non-reactive indicators for meaningless data in Internet surveys. Surv. Res. Meth. 2019, 13, e7403. [Google Scholar] [CrossRef]
- Meisenberg, G.; Williams, A. Are acquiescent and extreme response styles related to low intelligence and education? Pers. Indiv. Diff. 2008, 44, 1539–1550. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Amin, Z.; Canli, T.; Epperson, C.N. Effect of estrogen-serotonin interactions on mood and cognition. Behav. Cog. Neuro. Rev. 2005, 4, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, A.N.V.; Salimi-Khorshidi, G.; Lai, M.C.; Baron-Cohen, S.; Lombardo, M.V.; Tait, R.J.; Suckling, J. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2014, 39, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Dorius, S.F.; Firebaugh, G. Trends in global gender inequality. Soc. Force. 2010, 88, 1941–1968. [Google Scholar] [CrossRef] [PubMed]
- Stamarski, C.S.; Son Hing, L.S. Gender inequalities in the workplace: The effects of organizational structures, processes, practices, and decision makers’ sexism. Front. Psychol. 2015, 6, e1400. [Google Scholar] [CrossRef] [PubMed]
- Brandão, R.F.; Correa, M.; Sermarine, M.; Angelo, D.L.; Parsons-Smith, R.L.; Terry, P.C. Psychometric re-evaluation of the Brazil Mood Scale and evidence of mood profile clusters among youth athletes in Brazil. Int. J. Sport Exerc. Psychol. 2021, 19, S183–S184. [Google Scholar] [CrossRef]
- Global Burden of Disease 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiat. 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Aldao, A.; Nolen-Hoeksema, S.; Schweizer, S. Emotion-regulation strategies across psychopathology: A meta-analytic review. Clin. Psychol. Rev. 2010, 30, 217–237. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamzawi, A.; Alonso, J.; Bruffaerts, R.; de Almeida, J.M.C.; Chardoul, S.; Chiu, W.T.; Degenhardt, L.; Demler, O.V.; Ferry, F.; Gureje, O.; et al. Age of onset and cumulative risk of mental disorders: A cross-national analysis of population surveys from 29 countries. Lancet Psychiat. 2023, 10, 668–681. [Google Scholar] [CrossRef]
- Ozba, F.; Johnson, D.C.; Dimoulas, E.; Morgan, C.A.; Charney, D.; Southwick, S. Social support and resilience to stress: From neurobiology to clinical practice. Psychiatry 2007, 4, 35–40. [Google Scholar]
- Ozbay, F.; Fitterling, H.; Charney, D.; Southwick, S. Social support and resilience to stress across the life span: A neurobiologic framework. Curr. Psychiatry Rep. 2008, 10, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Løseth, G.E.; Eikemo, M.; Trøstheim, M.; Meier, I.M.; Bjørnstad, H.; Asratian, A.; Pazmandi, C.; Tangen, V.W.; Heilig, M.; Leknes, S. Stress recovery with social support: A dyadic stress and support task. Psychoneuroendocrinology 2022, 146, e105949. [Google Scholar] [CrossRef]
- Terry, P.C.; Parsons-Smith, R.L.; Skurvydas, A.; Lisinskienė, A.; Majauskienė, D.; Valančienė, D.; Cooper, S.; Lochbaum, M. Physical activity and healthy habits influence mood profile clusters in a Lithuanian population. Sustainability 2022, 14, 10006. [Google Scholar] [CrossRef]
- Noce, F.; da Costa, V.T.; Zanetti, M.C.; Brandão, M.R.F.; Winckler, C.; Rodrigues, F.V.; Wolff, A.A.; de Melo, C.C. Mental health in Brazilian sport: Olympic, Paralympic, and soccer athletes. In Mental Health in Elite Sport; Routledge: London, UK, 2021; pp. 45–56. [Google Scholar]
Source | Group | Right Now | Past Week | ||
---|---|---|---|---|---|
n | % | n | % | ||
Sex | Male | 282 | 58.6 | 229 | 54.9 |
Female | 199 | 41.4 | 188 | 45.1 | |
Age Group | 12–17 years | 303 | 63.0 | 252 | 60.4 |
18+ years | 178 | 37.0 | 165 | 39.6 | |
Social Vulnerability | Vulnerable | 258 | 55.6 | 232 | 57.9 |
Not vulnerable | 206 | 44.4 | 169 | 42.1 | |
Sport | Artistic Swimming | 27 | 5.6 | 24 | 5.8 |
Basketball | 55 | 11.4 | 22 | 5.3 | |
Gymnastics | 10 | 2.1 | 10 | 2.4 | |
Judo | 40 | 8.3 | 35 | 8.4 | |
Rowing | 104 | 21.6 | 98 | 23.5 | |
Swimming | 75 | 15.6 | 70 | 16.8 | |
Volleyball | 93 | 19.3 | 83 | 19.9 | |
Water Polo | 77 | 16.0 | 75 | 18.0 | |
Total | All | 481 | 100.0 | 417 | 100.0 |
Time Frame | Subscale | M | SD | Range | T-Score | α | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|---|---|---|
Right now | 1 Anger | 1.29 | 2.46 | 0–14 | 45–137 | 0.87 | 0.56 * | 0.69 * | 0.50 * | 0.54 * | −0.11 |
2 Confusion | 1.32 | 2.20 | 0–13 | 42–115 | 0.79 | 0.65 * | 0.46 * | 0.67 * | −0.05 | ||
3 Depression | 1.05 | 2.00 | 0–14 | 45–120 | 0.80 | 0.51 * | 0.58 * | −0.22 * | |||
4 Fatigue | 3.22 | 3.12 | 0–16 | 40–93 | 0.83 | 0.47 * | −0.27 * | ||||
5 Tension | 2.13 | 2.42 | 0–12 | 37–76 | 0.72 | 0.04 | |||||
6 Vigor | 7.39 | 3.52 | 0–16 | 29–70 | 0.80 | ||||||
Past week | 1 Anger | 1.74 | 2.89 | 0–16 | 45–150 | 0.90 | 0.58 * | 0.71 * | 0.36 * | 0.58 * | −0.05 |
2 Confusion | 1.69 | 2.43 | 0–15 | 42–102 | 0.79 | 0.65 * | 0.37 * | 0.69 * | 0.02 | ||
3 Depression | 1.49 | 2.57 | 0–15 | 45–139 | 0.87 | 0.37 * | 0.54 * | −0.20 * | |||
4 Fatigue | 5.26 | 3.83 | 0–16 | 40–93 | 0.85 | 0.35 * | −0.26 * | ||||
5 Tension | 2.63 | 2.76 | 0–14 | 37–80 | 0.75 | 0.12 | |||||
6 Vigor | 6.89 | 3.48 | 0–16 | 29–67 | 0.78 |
Group | n | x2 | df | x2/df | CFI | TLI | RMSEA | SRMR |
---|---|---|---|---|---|---|---|---|
Right now 6-factor model | 481 | 733.48 * | 237 | 3.09 | 0.916 | 0.902 | 0.066 | 0.063 |
Past week 6-factor model | 417 | 617.78 * | 237 | 2.61 | 0.932 | 0.921 | 0.063 | 0.067 |
Multisample (right now/past week) | 898 | 1360.47 * | 474 | 2.87 | 0.924 | 0.912 | 0.046 | 0.052 |
Subscale | Right Now (n = 481) | Past Week (n = 417) | F | |||
---|---|---|---|---|---|---|
M | SD | M | SD | |||
Anger | 51.94 | 14.13 | 54.42 | 16.51 | 5.90 | 0.16 |
Confusion | 48.15 | 10.11 | 49.35 | 9.69 | 3.26 | 0.12 |
Depression | 50.31 | 10.54 | 52.53 | 13.40 | 7.74 * | 0.19 |
Fatigue | 50.55 | 10.43 | 57.34 | 12.76 | 76.97 † | 0.56 |
Tension | 44.69 | 7.34 | 46.13 | 8.34 | 7.59 * | 0.18 |
Vigor | 47.14 | 8.62 | 45.90 | 8.50 | 4.68 | 0.14 |
Right Now (n = 481) | ||||||
Subscale | Male (n = 282) | Female (n = 199) | F | |||
M | SD | M | SD | |||
Anger | 51.22 | 13.43 | 52.95 | 15.04 | 1.75 | 0.12 |
Confusion | 47.54 | 9.53 | 49.01 | 10.84 | 2.48 | 0.15 |
Depression | 49.58 | 10.27 | 51.34 | 10.86 | 3.27 | 0.17 |
Fatigue | 49.52 | 9.40 | 52.01 | 11.62 | 6.67 | 0.24 |
Tension | 43.95 | 6.80 | 45.73 | 7.95 | 6.93 | 0.24 |
Vigor | 49.45 | 8.02 | 43.88 | 8.39 | 54.09 † | 0.65 |
Subscale | U-18 year. (n = 303) | 18+ year. (n = 178) | F | |||
M | SD | M | SD | |||
Anger | 49.33 | 8.90 | 56.38 | 0.12 | 29.59 † | 0.50 |
Confusion | 48.33 | 10.76 | 47.83 | 0.15 | 0.28 | 0.05 |
Depression | 48.31 | 6.95 | 53.71 | 0.17 | 31.30 † | 0.51 |
Fatigue | 49.64 | 9.42 | 52.10 | 0.24 | 6.26 | 0.04 |
Tension | 44.95 | 7.31 | 44.24 | 0.24 | 1.04 | 0.10 |
Vigor | 47.32 | 8.56 | 46.85 | 0.65 | 0.33 | 0.05 |
Subscale | Vulnerable (n = 258) | Not vulnerable (n = 206) | F | |||
M | SD | M | SD | |||
Anger | 52.54 | 15.52 | 51.45 | 12.66 | 0.67 | 0.08 |
Confusion | 48.39 | 11.73 | 47.88 | 7.84 | 0.29 | 0.05 |
Depression | 51.00 | 12.01 | 49.43 | 8.13 | 2.60 | 0.15 |
Fatigue | 50.73 | 11.53 | 50.59 | 9.21 | 0.02 | 0.01 |
Tension | 44.31 | 7.52 | 45.32 | 7.26 | 2.11 | 0.14 |
Vigor | 46.66 | 8.83 | 47.76 | 8.40 | 1.88 | 0.13 |
Past Week (n = 417) | ||||||
Subscale | Male (n = 229) | Female (n = 188) | F | |||
M | SD | M | SD | |||
Anger | 52.66 | 15.11 | 56.56 | 17.88 | 5.83 | 0.24 |
Confusion | 48.51 | 9.83 | 50.37 | 9.44 | 3.83 | 0.19 |
Depression | 51.29 | 13.10 | 54.05 | 13.64 | 4.43 | 0.21 |
Fatigue | 56.37 | 12.29 | 58.53 | 13.24 | 2.96 | 0.17 |
Tension | 45.34 | 8.26 | 47.09 | 8.35 | 4.61 | 0.21 |
Vigor | 48.35 | 8.62 | 42.92 | 7.34 | 46.81 † | 0.64 |
Subscale | U-18 yr. (n = 252) | 18+ yr. (n = 165) | F | |||
M | SD | M | SD | |||
Anger | 51.04 | 10.98 | 59.58 | 21.50 | 28.43 † | 0.52 |
Confusion | 48.97 | 8.36 | 49.92 | 11.44 | 0.96 | 0.10 |
Depression | 49.73 | 9.26 | 56.81 | 17.15 | 29.74 † | 0.53 |
Fatigue | 55.80 | 12.28 | 59.70 | 13.15 | 9.53 * | 0.31 |
Tension | 46.27 | 8.05 | 45.92 | 8.77 | 0.18 | 0.04 |
Vigor | 46.26 | 8.52 | 45.36 | 8.47 | 1.13 | 0.11 |
Subscale | Vulnerable (n = 232) | Not vulnerable (n = 169) | F | |||
M | SD | M | SD | |||
Anger | 54.31 | 15.92 | 55.09 | 17.84 | 0.22 | 0.05 |
Confusion | 49.00 | 9.80 | 49.89 | 9.80 | 0.80 | 0.09 |
Depression | 52.94 | 12.86 | 52.40 | 14.57 | 0.15 | 0.04 |
Fatigue | 56.97 | 12.84 | 58.47 | 12.53 | 1.36 | 0.12 |
Tension | 45.24 | 7.76 | 47.46 | 9.15 | 6.86 | 0.26 |
Vigor | 45.17 | 8.89 | 46.64 | 7.84 | 2.98 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohlfs, I.C.P.d.M.; Noce, F.; Gabbett, T.J.; Wilke, C.; Vido, M.; Terry, V.R.; Terry, P.C. Psychometric Characteristics of the Brazil Mood Scale among Youth and Elite Athletes Using Two Response Time Frames. Sports 2023, 11, 244. https://doi.org/10.3390/sports11120244
Rohlfs ICPdM, Noce F, Gabbett TJ, Wilke C, Vido M, Terry VR, Terry PC. Psychometric Characteristics of the Brazil Mood Scale among Youth and Elite Athletes Using Two Response Time Frames. Sports. 2023; 11(12):244. https://doi.org/10.3390/sports11120244
Chicago/Turabian StyleRohlfs, Izabel Cristina Provenza de Miranda, Franco Noce, Tim J. Gabbett, Carolina Wilke, Marcelo Vido, Victoria R. Terry, and Peter C. Terry. 2023. "Psychometric Characteristics of the Brazil Mood Scale among Youth and Elite Athletes Using Two Response Time Frames" Sports 11, no. 12: 244. https://doi.org/10.3390/sports11120244
APA StyleRohlfs, I. C. P. d. M., Noce, F., Gabbett, T. J., Wilke, C., Vido, M., Terry, V. R., & Terry, P. C. (2023). Psychometric Characteristics of the Brazil Mood Scale among Youth and Elite Athletes Using Two Response Time Frames. Sports, 11(12), 244. https://doi.org/10.3390/sports11120244