Optimal Drop Height in Prepubertal Boys Is Revealed by the Performance in Squat Jump
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Instrumentation
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Squat Jump Performance
3.2. Drop Jump Performance and Gain
3.3. Vertical Ground Reaction Force
3.4. Contact Time
3.5. Knee Angular Velocity
3.6. Knee Angle
3.7. Reactive Strength Index
3.8. Knee Joint Stiffness
4. Discussion
5. Conclusions—Practical Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosco, C. Strength Assessment with the Bosco's Test; Società Stampa Sportiva: Rome, Italy, 1992. [Google Scholar]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar] [PubMed]
- Tufano, J.J.; Walker, S.; Seitz, L.B.; Newton, R.U.; Häkkinen, K.; Blazevich, A.J.; Haff, G.G. Reliability of the reactive strength index, eccentric utilisation ratio, and pre-stretch augmentation in untrained, novice jumpers. J. Aust. Strength Cond. 2013, 21 (Suppl. 2), 31–33. [Google Scholar]
- Bosco, C.; Komi, P.V.; Ito, A. Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol. Scand. 1981, 111, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Aura, O.; Komi, P. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise. Int. J. Sports Med. 1986, 7, 137–143. [Google Scholar] [CrossRef]
- Ishikawa, M.; Komi, P.V. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J. Appl. Physiol. 2004, 96, 848–852. [Google Scholar] [CrossRef]
- Asmussen, E.; Bonde-Petersen, F. Storage of elastic energy in skeletal muscles in man. Acta Physiol. Scand. 1974, 91, 385–392. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Huijing, P.A.; Schenau, G.J.V.I. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med. Sci. Sports Exerc. 1987, 19, 339–346. [Google Scholar] [CrossRef]
- Walsh, M.; Arampatzis, A.; Schade, F.; Brüggemann, G.P. The effect of drop jump starting height and contact time on power, work performed, and moment of force. J. Strength Cond. Res. 2004, 18, 561–566. [Google Scholar] [CrossRef]
- Peng, H.T.; Khuat, C.T.; Kernozek, T.W.; Wallace, B.J.; Lo, S.L.; Song, C.Y. Optimum drop jump height in division iii athletes: Under 75% of vertical jump height. Int. J. Sports Med. 2017, 38, 842–846. [Google Scholar] [CrossRef]
- Peng, H.T.; Song, C.Y.; Wallace, B.J.; Kernozek, T.W.; Wang, M.H.; Wang, Y.H. Effects of relative drop heights of drop jump biomechanics in male volleyball players. Int. J. Sports Med. 2019, 40, 863–870. [Google Scholar] [CrossRef]
- Torres-Banduc, M.; Ramirez-Campillo, R.; Andrade, D.C.; Calleja-González, J.; Nikolaidis, P.T.; McMahon, J.J.; Comfort, P. Kinematic and neuromuscular measures of intensity during drop jumps in female volleyball players. Front. Psychol. 2021, 12, 724070. [Google Scholar] [CrossRef]
- Lees, A.; Fahmi, E. Optimal drop heights for plyometric training. Ergonomics 1994, 37, 141–148. [Google Scholar] [CrossRef]
- Matic, M.S.; Pazin, N.R.; Mrdakovic, V.D.; Jankovic, N.N.; Ilic, D.B.; Stefanovic, D.L. Optimum drop height for maximizing power output in drop jump: The effect of maximal muscle strength. J. Strength Cond. Res. 2015, 29, 3300–3310. [Google Scholar] [CrossRef]
- McBride, J.M.; McCaulley, G.O.; Cormie, P. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. J. Strength Cond. Res. 2008, 22, 750–757. [Google Scholar] [CrossRef]
- Gillen, Z.M.; Jahn, L.E.; Shoemaker, M.E.; McKay, B.D.; Mendez, A.I.; Bohannon, N.A.; Cramer, J.T. Effects of eccentric preloading on concentric vertical jump performance in youth athletes. J. Appl. Biomech. 2019, 35, 327–335. [Google Scholar] [CrossRef]
- Gillen, Z.M.; Jahn, L.E.; Shoemaker, M.E.; McKay, B.D.; Mendez, A.I.; Bohannon, N.A.; Cramer, J.T. Effects of eccentric pre-loading on concentric vertical jump performance in young female athletes. J. Sci. Sport Exerc. 2021, 3, 98–106. [Google Scholar] [CrossRef]
- Peng, H.T. Changes in biomechanical properties during drop jumps of incremental height. J. Strength Cond. Res. 2011, 25, 2510–2518. [Google Scholar] [CrossRef]
- Addie, C.D.; Arnett, J.E.; Neltner, T.J.; Straughn, M.K.; Greska, E.K.; Cosio-Lima, L.; Brown, L.E. Effects of drop height on drop jump performance. Int. J. Kinesiol. Sports Sci. 2019, 7, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Bobbert, M.F.; Casius, L.J.R. Is the effect of a countermovement on jump height due to active state development? Med. Sci. Sports Exerc. 2005, 37, 440–446. [Google Scholar] [CrossRef]
- Temfemo, A.; Hugues, J.; Chardon, K.; Mandengue, S.H.; Ahmaidi, S. Relationship between vertical jumping performance and anthropometric characteristics during growth in boys and girls. Eur. J. Pediatr. 2009, 168, 457–464. [Google Scholar] [CrossRef]
- Lazaridis, S.N.; Bassa, E.I.; Patikas, D.A.; Hatzikotoulas, K.; Lazaridis, F.K.; Kotzamanidis, C.M. Biomechanical comparison in different jumping tasks between untrained boys and men. Pediatr. Exerc. Sci. 2013, 25, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Kollias, I.; Panoutsakopoulos, V.; Papaiakovou, G. Comparing jumping ability among athletes of various sports: Vertical drop jumping from 60 centimeters. J. Strength Cond. Res. 2004, 18, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, S.N.; Bassa, E.I.; Patikas, D.A.; Giakas, G.; Gollhofer, A.; Kotzamanidis, C.M. Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur. J. Appl. Physiol. 2010, 110, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Ishigaki, T.; Ikebukuro, T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol. Rep. 2017, 5, 13374. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Growth changes in the elastic properties of human tendon structures. Int. J. Sports Med. 2001, 22, 138–143. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.D.; Reeves, N.D.; Baltzopoulos, V.; Jones, D.A.; Maganaris, C.N. In vivo measurements of muscle specific tension in adults and children. Exp. Physiol. 2010, 95, 202–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waugh, C.M.; Blazevich, A.J.; Fath, F.; Korff, T. Age-related changes in mechanical properties of the Achilles tendon. J. Anat. 2012, 220, 144–155. [Google Scholar] [CrossRef]
- Katsikari, K.; Bassa, E.I.; Skoufas, D.; Lazaridis, S.N.; Kotzamanidis, C.M.; Patikas, D.A. Kinetic and kinematic changes in vertical jump in prepubescent girls after 10 weeks of plyometric training. Pediatr. Exerc. Sci. 2020, 32, 81–88. [Google Scholar] [CrossRef]
- Bassa, E.I.; Patikas, D.A.; Panagiotidou, A.I.; Papadopoulou, S.D.; Pylianidis, T.C.; Kotzamanidis, C.M. The effect of dropping height on jumping performance in trained and untrained prepubertal boys and girls. J. Strength Cond. Res. 2012, 26, 2258–2264. [Google Scholar] [CrossRef]
- Birat, A.; Sebillaud, D.; Bourdier, P.; Doré, E.; Duché, P.; Blazevich, A.J.; Patikas, D.; Ratel, S. Effect of drop height on vertical jumping performance in pre-, circa-, and post-pubertal boys and girls. Pediatr. Exerc. Sci. 2020, 32, 23–29. [Google Scholar] [CrossRef]
- Dotan, R.; Mitchell, C.; Cohen, R.; Klentrou, P.; Gabriel, D.; Falk, B. Child—Adult differences in muscle activation—A review. Pediatr. Exerc. Sci. 2012, 24, 2–21. [Google Scholar] [CrossRef]
- Byrne, D.J.; Browne, D.T.; Byrne, P.J.; Richardson, N. Interday reliability of the reactive strength index and optimal drop height. J. Strength Cond. Res. 2017, 31, 721–726. [Google Scholar] [CrossRef]
- Tanner, J.M. Normal growth and techniques of growth assessment. Clin. Endocrinol. Metab. 1986, 15, 411–451. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Wilder, J.N.; Riggins, E.R.; Noble, R.A.; Lelito, C.M.; Widenhoefer, T.L.; Almonroeder, T.G. The effects of drop vertical jump technique on landing and jumping kinetics and jump performance. J. Electromyogr. Kinesiol. 2021, 56, 102504. [Google Scholar] [CrossRef]
- Õunpuu, S.; Gage, J.R.; Davis, R.B. Three-dimensional extremity joint kinetics in normal pediatric gait. J. Pediatr. Orthop. 1991, 11, 341–349. [Google Scholar] [CrossRef]
- Topley, M.; Richards, J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020, 106, 109820. [Google Scholar] [CrossRef]
- van der Kruk, E.; Reijne, M.M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 806–819. [Google Scholar] [CrossRef]
- Hassani, A.; Kotzamanidou, M.C.; Panoutsakopoulos, V.; Bassa, E.; Lazaridis, S.N.; Patikas, D.A. Neuromuscular, kinetic and kinematic differences in drop jumping between male adolescents with and without intellectual disability. Gait Posture 2022, 96, 117–122. [Google Scholar] [CrossRef]
- Gerodimos, V.; Karatrantou, K.; Dipla, K.; Zafeiridis, A.; Tsiakaras, N.; Sotiriadis, S. Age-related differences in peak handgrip strength between wrestlers and nonathletes during the developmental years. J. Strength Cond. Res. 2013, 27, 616–623. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Ebben, W.P.; Jensen, R.L. Reliability of the reactive strength index and time to stabilization during depth jumps. J. Strength Cond. Res. 2008, 22, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Stefanyshyn, D.; Nigg, B. Dynamic angular stiffness of the ankle joint during running and sprinting. J. Appl. Biomech. 1998, 14, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Snyder, B.W.; Munford, S.N.; Connaboy, C.; Lamont, H.S.; Davis, S.E.; Moir, G.L. Assessing plyometric ability during vertical jumps performed by adults and adolescents. Sports 2018, 6, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosco, C.; Montanari, G.; Ribacchi, R.; Giovenali, P.; Latteri, F.; Iachelli, G.; Faina, M.; Colli, R.; Dal Monte, A.; La Rosa, M.; et al. Relationship between the efficiency of muscular work during jumping and the energetics of running. Eur. J. Appl. Physiol. Occupat. Physiol. 1987, 56, 138–143. [Google Scholar] [CrossRef]
- Van Hooren, B.; Bosch, F. Influence of muscle slack on high-intensity sport performance: A review. Strength Cond. J. 2016, 38, 75–87. [Google Scholar] [CrossRef]
- Van Hooren, B.; Zolotarjova, J. The difference between countermovement and squat jump performances: A review of underlying mechanisms with practical applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
- Panoutsakopoulos, V.; Chalitsios, C.; Nikodelis, T.; Kollias, I.A. Kinetic time-curves can classify individuals in distinct levels of drop jump performance. J. Sports Sci. 2022, in press. [Google Scholar] [CrossRef]
- McKay, H.; Tsang, G.; Heinonen, A.; MacKelvie, K.; Sanderson, D.; Khan, K.M. Ground reaction forces associated with an effective elementary school based jumping intervention. Br. J. Sports Med. 2005, 39, 10–14. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, C.R.; Weiss, L.W.; Ferreira, L.C.; Schilling, B.K.; Hammond, K.G. Reactive Strength Index and Ground Contact Time: Reliability, Precision, and Association with Drop Vertical Jump Displacement. J. Strength Cond. Res. 2011, 26, 1215–1225. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. The effects of 4-weeks of plyometric training on reactive strength index and leg stiffness in male youths. J. Strength Cond. Res. 2012, 26, 2812–2819. [Google Scholar] [CrossRef]
- Kipp, K.; Kiely, M.T.; Giordanelli, M.D.; Malloy, P.J.; Geiser, C.F. Biomechanical determinants of the reactive strength index during drop jumps. Int. J. Sports Physiol. Perform 2018, 13, 44–49. [Google Scholar] [CrossRef]
- Arampatzis, A.; Schade, F.; Walsh, M.; Bruggemann, G.P. Influence of leg stiffness and its effect on myodynamic jumping performance. J. Electromyogr. Kinesiol. 2001, 11, 355–364. [Google Scholar] [CrossRef]
- Moir, G.L.; Snyder, B.W.; Connaboy, C.; Lamont, H.S.; Davis, S.E. Using drop jumps and jump squats to assess eccentric and concentric force-velocity characteristics. Sports 2018, 6, 125. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Lee, H.D. Influence of eccentric strength of knee extensor muscles on biomechanical factors of a vertical drop jump. J. Electromyogr. Kinesiol. 2022, 64, 102648. [Google Scholar] [CrossRef]
- Voigt, M.; Simonsen, E.B.; Dyhre-Poulsen, P.; Klausen, K. Mechanical and muscular factors influencing the performance in maximal vertical jumping after different prestretch loads. J. Biomech. 1995, 28, 293–307. [Google Scholar] [CrossRef]
- Leukel, C.; Taube, W.; Gruber, M.; Hodapp, M.; Gollhofer, A. Influence of falling height on the excitability of the soleus H-reflex during drop-jumps. Acta Physiol. 2008, 192, 569–576. [Google Scholar] [CrossRef]
- Wang, L.I.; Lin, D.C.; Huang, C. Age effect on jumping techniques and lower limb stiffness during vertical jump. Res. Sports Med. 2004, 12, 209–219. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, W.; Xu, H.; Zhai, F. Optimal loading height: A practical research of drop jump from biomechanics. J. Healthc. Eng. 2022, 2022, 4173639. [Google Scholar] [CrossRef]
Parameter | Adults (n = 15) | Boys (n = 15) |
---|---|---|
Age (y) | 24.07 ± 3.41 | 10.50 ± 0.64 |
Height (cm) | 179.87 ± 5.54 | 144.79 ± 5.81 |
Body mass (kg) | 80.13 ± 8.63 | 40.79 ± 5.51 |
DJ75 | DJ100 | DJ125 | DJ150 | ||||||
---|---|---|---|---|---|---|---|---|---|
Boys | Men | Boys | Men | Boys | Men | Boys | Men | ||
Peak vGRF (times body weight) | |||||||||
Braking phase | 2.73 (1.02) | 1.81 (1.32) | 2.66 (1.09) | 2.39 (1.47) | 3.48 (1.74) | 2.58 (1.07) | 3.97 (1.79) | 3.11 (1.50) | Age: p > 0.05 Height: p < 0.001 Height × Age: p > 0.05 |
Propulsive phase | 1.23 (0.23) | 1.51 (0.26) | 1.20 (0.20) | 1.48 (0.23) | 1.14 (0.21) | 1.44 (0.17) | 1.12 (0.23) | 1.42 (0.19) | Age: p < 0.005 Height: p < 0.05 Height × Age: p > 0.05 |
Contact time (ms) | |||||||||
Braking phase | 297 (72) | 246 (73) | 336 (55) | 243 (44) | 340 (43) | 250 (42) | 345 (44) | 253 (36) | Age: p < 0.001 Height: p < 0.05 Height × Age: p > 0.05 |
Propulsive phase | 185 (38) | 170 (55) | 201 (52) | 172 (60) | 192 (57) | 175 (42) | 265 (95) | 223 (48) | Age: p > 0.05 Height: p < 0.001 Height × Age: p > 0.05 |
Total | 483 (98) | 406 (106) | 537 (89) | 415 (87) | 525 (71) | 425 (75) | 536 (106) | 455 (58) | Age: p < 0.05 Height: p < 0.05 Height × Age: p > 0.05 |
DJ75 | DJ100 | DJ125 | DJ150 | ||||||
---|---|---|---|---|---|---|---|---|---|
Boys | Men | Boys | Men | Boys | Men | Boys | Men | ||
Knee angular velocity (deg·s−1) | |||||||||
Braking phase | 507 (164) | 554 (163) | 456 (211) | 573 (149) | 505 (169) | 625 (146) | 487 (229) | 680 (271) | Age: p > 0.05 Height: p > 0.05 Height × Age: p > 0.05 |
Propulsive phase | 621 (142) | 776 (190) | 523 (191) | 739 (168) | 613 (206) | 800 (159) | 552 (185) | 815 (168) | Age: p < 0.05 Height: p > 0.05 Height × Age: p > 0.05 |
Knee angle flexion (deg) | |||||||||
100 ms before touchdown | 15.3 (13.1) | 17.2 (10.6) | 13.4 (12.1) | 21.8 (13.5) | 15.3 (12.2) | 18.9 (11.4) | 14.8 (12.0) | 15.8 (13.6) | Age: p > 0.05 Height: p > 0.05 Height × Age: p > 0.05 |
50 ms before touchdown | 26.5 (16.4) | 18.9 (12.1) | 24.4 (14.2) | 22.2 (14.9) | 24 (12.5) | 17.7 (10.4) | 23.8 (11.9) | 16.6 (13.6) | Age: p > 0.05 Height: p > 0.05 Height × Age: p > 0.05 |
At touchdown | 18.4 (9.6) | 33.2 (5.7) | 19.4 (8.6) | 30.3 (5.1) | 19.7 (5.9) | 30.9 (6.5) | 21.4 (6.5) | 24.1 (9.7) | Age: p < 0.001 Height: p > 0.05 Height × Age: p > 0.05 |
Maximum knee flexion | 69.3 (12.1) | 77.6 (13.7) | 79.7 (15.0) | 78.4 (11.0) | 74.7 (12.4) | 77.6 (9.5) | 82.4 (14.2) | 87.5 (10.7) | Age: p > 0.05 Height: p < 0.001 Height × Age: p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassa, E.; Adamopoulos, I.; Panoutsakopoulos, V.; Xenofondos, A.; Yannakos, A.; Galazoulas, C.; Patikas, D.A. Optimal Drop Height in Prepubertal Boys Is Revealed by the Performance in Squat Jump. Sports 2023, 11, 1. https://doi.org/10.3390/sports11010001
Bassa E, Adamopoulos I, Panoutsakopoulos V, Xenofondos A, Yannakos A, Galazoulas C, Patikas DA. Optimal Drop Height in Prepubertal Boys Is Revealed by the Performance in Squat Jump. Sports. 2023; 11(1):1. https://doi.org/10.3390/sports11010001
Chicago/Turabian StyleBassa, Eleni, Ilias Adamopoulos, Vassilios Panoutsakopoulos, Anthi Xenofondos, Athanasios Yannakos, Christos Galazoulas, and Dimitrios A. Patikas. 2023. "Optimal Drop Height in Prepubertal Boys Is Revealed by the Performance in Squat Jump" Sports 11, no. 1: 1. https://doi.org/10.3390/sports11010001
APA StyleBassa, E., Adamopoulos, I., Panoutsakopoulos, V., Xenofondos, A., Yannakos, A., Galazoulas, C., & Patikas, D. A. (2023). Optimal Drop Height in Prepubertal Boys Is Revealed by the Performance in Squat Jump. Sports, 11(1), 1. https://doi.org/10.3390/sports11010001