Perceived Pain in Athletes: A Comparison between Endurance Runners and Powerlifters through a Cold Experimental Stimulation and Two Sessions of Various Physical Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, D.; Nijs, J.; Kosek, E.; Wideman, T.; Hasenbring, M.I.; Koltyn, K.; Graven-Nielsen, T.; Polli, A. Exercise-Induced Hypoalgesia in Pain-Free and Chronic Pain Populations: State of the Art and Future Directions. J. Pain 2019, 20, 1249–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltyn, K.F. Analgesia following exercise. Sports Med. 2000, 29, 85–98. [Google Scholar] [CrossRef]
- Vaegter, H.B.; Lyng, K.D.; Yttereng, F.W.; Christensen, M.H.; Sørensen, M.B.; Graven-Nielsen, T. Exercise-induced hypoalgesia after isometric wall squat exercise: A test-retest reliabilty study. Pain Med. 2019, 20, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Vaegter, H.B.; Jones, M.D. Exercise-induced hypoalgesia after acute and regular exercise: Experimental and clinical manifestations and possible mechanisms in individuals with and without pain. Pain Rep. 2020, 5, e823. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D.; Shepanski, M.A.; Ruble, S.B.; Valic, Z.; Buckwalter, J.B.; Clifford, P.S. Intensity and duration threshold for aerobic exercise-induced analgesia to pressure pain. Arch. Phys. Med. Rehabil. 2004, 85, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Micalos, P.S.; Arendt-Nielsen, L. Differential pain response at local and remote muscle sites following aerobic cycling exercise at mild and moderate intensity. Springerplus 2016, 5, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naugle, K.M.; Naugle, K.E.; Fillingim, R.B.; Samuels, B.; Riley, J.L., III. Intensity thresholds for aerobic exercise–induced hypoalgesia. Med. Sci. Sports Exerc. 2014, 46, 817–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeger Bement, M.K.; Dicapo, J.; Rasiarmos, R.; Hunter, S.K. Dose response of isometric contractions on pain perception in healthy adults. Med. Sci. Sports Exerc. 2008, 40, 1880–1889. [Google Scholar] [CrossRef]
- Misra, G.; Paris, T.A.; Archer, D.B.; Coombes, S.A. Dose-response effect of isometric force production on the perception of pain. PLoS ONE 2014, 9, e88105. [Google Scholar] [CrossRef]
- Ring, C.; Edwards, L.; Kavussanu, M. Effects of isometric exercise on pain are mediated by blood pressure. Biol. Psychol. 2008, 78, 123–128. [Google Scholar] [CrossRef]
- Foxen-Craft, E.; Dahlquist, L.M. Brief submaximal isometric exercise improves cold pressor pain tolerance. J Behav. Med. 2017, 40, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Stolzman, S.; Bement, M.H. Does exercise decrease pain via conditioned pain modulation in adolescents? Pediatr. Phys. Ther. 2016, 28, 470–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janal, M.N.; Colt, E.W.D.; Clark, W.C.; Gusman, M. Pain sensitivity, mood and plasma endocrine levels in man following long distance running: Effects of naloxone. Pain 1984, 19, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Ruble, S.B.; Hoffman, M.D.; Shepanski, M.A.; Valic, Z.; Buckwalter, J.B.; Clifford, P.S. Thermal pain perception after aerobic exercise. Arch. Phys. Med. Rehabil. 2005, 86, 1019–1023. [Google Scholar] [CrossRef]
- Sternberg, W.; Bokat, C.; Kass, L.; Alboyadjian, A.; Gracely, R. Sex-dependent components of the analgesia produced by athletic competition. J. Pain 2001, 2, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Samuelly-Leichtag, G.; Kodesh, E.; Meckel, Y.; Weissman-Fogel, I.A. Fast Track to Hypoalgesia–The Anaerobic Exercise Effect on Pain Sensitivity. Int. J. Sports Med. 2018, 39, 473–481. [Google Scholar] [CrossRef]
- Schwarz, L.; Kindermann, W. Changes in β-endorphin levels in response to aerobic and anaerobic exercise. Sports Med. 1992, 13, 25–36. [Google Scholar] [CrossRef]
- Pacheco-Barrios, K.; Carolyna Gianlorenço, A.; Machado, R.; Queiroga, M.; Zeng, H.; Shaikh, E.; Yang, Y.; Nogueira, B.; Castelo-Branco, L.; Fregni, F. Exercise-induced pain threshold modulation in healthy subjects: A systematic review and meta-analysis. Princ. Pract. Clin. Res. 2020, 6, 11–28. [Google Scholar] [CrossRef]
- Jones, M.D.; Booth, J.; Taylor, J.L.; Barry, B.K. Aerobic training increases pain tolerance in healthy individuals. Med. Sci. Sports Exerc. 2014, 46, 1640–1647. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, I.; Lunardi, A.C.; de Oliveira, N.T.B.; de Almeida, M.O.; Costa, L.O.P. Effects of aerobic exercise on pain and disability in patients with non-specific chronic low back pain: A systematic review protocol. Syst. Rev. 2019, 8, 101. [Google Scholar] [CrossRef]
- Scheef, L.; Jankowski, J.; Daamen, M.; Weyer, G.; Klingenberg, M.; Renner, J.; Mueckter, S.; Schürmann, B.; Musshoff, F.; Wagner, M.; et al. An fMRI study on the acute effects of exercise on pain processing in trained athletes. Pain 2012, 153, 1702–1714. [Google Scholar] [CrossRef] [PubMed]
- Assa, T.; Geva, N.; Zarkh, Y.; Defrin, R. The type of sport matters: Pain perception of endurance athletes versus strength athletes. Eur. J. Pain 2019, 23, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Koltyn, K.F.; Arbogast, R.W. Perception of pain after resistance exercise. Br. J. Sports Med. 1998, 32, 20–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaegter, H.B.; Handberg, G.; Graven-Nielsen, T. Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans. Pain 2014, 155, 158–167. [Google Scholar] [CrossRef]
- Tesarz, J.; Schuster, A.K.; Hartmann, M.; Gerhardt, A.; Eich, W. Pain perception in athletes compared to normally active controls: A systematic review with meta-analysis. Pain 2012, 153, 1253–1262. [Google Scholar] [CrossRef]
- Abbott, F.V.; Etienne, P.; Franklin, K.B.; Morgan, M.J.; Sewitch, M.J.; Young, S.N. Acute tryptophan depletion blocks morphine analgesia in the cold-pressor test in humans. Psychopharmacology 1992, 108, 60–66. [Google Scholar] [CrossRef]
- Edwards, R.R.; Fillingim, R.B. Styles of pain coping predict cardiovascular function following a cold pressor test. Pain Res. Manag. 2005, 10, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Mourot, L.; Bouhaddi, M.; Regnard, J. Effects of the cold pressor test on cardiac autonomic control in normal subjects. Physiol. Res. 2009, 58, 83–91. [Google Scholar] [CrossRef]
- Moro, P.J.; Flavian, A.; Jacquier, A.; Kober, F.; Quilici, J.; Gaborit, B.; Bonnet, J.L.; Moulin, G.; Cozzone, P.J.; Bernard, M. Gender differences in response to cold pressor test assessed with velocity-encoded cardiovascular magnetic resonance of the coronary sinus. J. Cardiovasc. Magn. Reson. 2011, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Engebretsen, S.; Frigessi, A.; Engø-Monsen, K.; Furberg, A.S.; Stubhaug, A.; De Blasio, B.F.; Nielsen, C.S. The peer effect on pain tolerance. Scand. J Pain 2018, 18, 467–477. [Google Scholar] [CrossRef]
- Silverthorn, D.U.; Michael, J. Cold stress and the cold pressor test. Adv. Physiol. Educ. 2013, 37, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Wong, N.S.M. The historical roots of visual analog scale in psychology as revealed by reference publication year spectroscopy. Front. Hum. Neurosci. 2019, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.A.; Lambert, B.S.; Boutris, N.; McCulloch, P.C.; Robbins, A.B.; Moreno, M.R.; Harris, J.D. Validation of Digital Visual Analog Scale Pain Scoring With a Traditional Paper-based Visual Analog Scale in Adults. J. Am. Acad. Orthop. Surg. 2018, 2, e088. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test–retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Open Access J. Sports Med. 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Ronan, J.T.; Shafer, A.B. Concurrent validity of the five-minute pyramid test for VO2max estimation in healthy young adults. Hum. Mov. 2019, 20, 41–45. [Google Scholar] [CrossRef]
- Olson, C.L. On choosing a test statistic in multivariate analysis of variance. Psychol. Bull. 1976, 83, 579–586. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- De Pascalis, V.; Magurano, M.R.; Bellusci, A. Pain perception, somatosensory event-related potentials and skin conductance responses to painful stimuli in high, mid, and low hypnotizable subjects: Effects of differential pain reduction strategies. Pain 1999, 83, 499–508. [Google Scholar] [CrossRef]
- Patterson, D.R.; Jensen, M.P. Hypnosis and clinical pain. Psychol. Bull. 2003, 129, 495–521. [Google Scholar] [CrossRef]
- Flor, H. Psychological pain interventions and neurophysiology: Implications for a mechanism-based approach. Am. Psychol. 2014, 69, 188–196. [Google Scholar] [CrossRef]
- Dumoulin, S.; Bouchard, S.; Loranger, C.; Quintana, P.; Gougeon, V.; Lavoie, K.L. Are Cognitive Load and Focus of Attention Differentially Involved in Pain Management: An Experimental Study Using a Cold Pressor Test and Virtual Reality. J. Pain Res. 2020, 13, 2213–2222. [Google Scholar] [CrossRef]
- Diotaiuti, P.; Corrado, S.; Mancone, S.; Falese, L.; Rodio, A.; Siqueira, T.C.; Andrade, A. Influence of Cognitive Orientation and Attentional Focus on Pain Perception. Int. J. Environ. Res. Public Health 2021, 18, 7176. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.; Jourdan, D.; Eschalier, A.; Dubray, C. Impact of age, gender and cognitive functioning on pain perception. Gerontology 2002, 48, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Tashani, O.A.; Astita, R.; Sharp, D.; Johnson, M.I. Body mass index and distribution of body fat can influence sensory detection and pain sensitivity. Eur. J. Pain 2017, 21, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Årnes, A.P.; Nielsen, C.S.; Stubhaug, A.; Fjeld, M.K.; Hopstock, L.A.; Horsch, A.; Johansen, A.; Morseth, B.; Wilsgaard, T.; Steingrímsdóttir, Ó.A. Physical activity and cold pain tolerance in the general population. Eur. J. Pain 2021, 25, 637–650. [Google Scholar] [CrossRef]
- Diotaiuti, P.; Corrado, S.; Mancone, S.; Palombo, M.; Rodio, A.; Falese, L.; Langiano, E.; Siqueira, T.C.; Andrade, A. Both Gender and Agonistic Experience Affect Perceived Pain during the Cold Pressor Test. Int. J. Environ. Res. Public Health 2022, 19, 2336. [Google Scholar] [CrossRef]
- Focht, B.C.; Koltyn, K.F. Alterations in pain perception after resistance exercise performed in the morning and evening. J. Strength Cond. Res. 2009, 23, 891–897. [Google Scholar] [CrossRef]
- Jones, M.D.; Nuzzo, J.L.; Taylor, J.L.; Barry, B.K. Aerobic exercise reduces pressure more than heat pain sensitivity in healthy adults. Pain Med. 2019, 20, 1534–1546. [Google Scholar] [CrossRef]
- Umeda, M.; Okifuji, A. Comparable conditioned pain modulation and augmented blood pressure responses to cold pressor test among resistance exercisers compared to healthy controls. Biol. Psychol. 2020, 153, 107889. [Google Scholar] [CrossRef]
- Szikszay, T.M.; Adamczyk, W.M.; Hoegner, A.; Woermann, N.; Luedtke, K. The effect of acute-experimental pain models on offset analgesia. Eur. J Pain 2021, 25, 1150–1161. [Google Scholar] [CrossRef]
- Bond, V.; Mills, R.M.; Caprarola, M.; Vaccaro, P.; Adams, R.G.; Blakely, R.; Roltsch, M.; Hatfield, B.; Davis, G.C.; Franks, B.D.; et al. Aerobic exercise attenuates blood pressure reactivity to cold pressor test in normotensive, young adult African-American women. Ethn. Dis. 1999, 9, 104–110. [Google Scholar]
- Gideon, N.; Hawkes, N.; Mond, J.; Saunders, R.; Tchanturia, K.; Serpell, L. Correction: Development and Psychometric Validation of the EDE-QS, a 12 Item Short Form of the Eating Disorder Examination Questionnaire (EDE-Q). PLoS ONE 2018, 13, e0207256. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.J.; Kim, Y.K.; Kim, H.R.; Kim, S.E.; Lee, Y.; Shin, H.I. Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: A mechanistic PET study. Neurorehabil. Neural. Repair. 2014, 28, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Alschuler, K.N.; Krabak, B.J.; Kratz, A.L.; Jensen, M.P.; Pomeranz, D.; Burns, P.; Bautz, J.; Nordeen, C.; Irwin, C.; Lipman, G.S. Pain Is Inevitable But Suffering Is Optional: Relationship of Pain Coping Strategies to Performance in Multistage Ultramarathon Runners. Wilderness Environ. Med. 2020, 31, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, K.; Ravn, S. ‘It has to hurt’: A phenomenological analysis of elite runners’ experiences in handling non-injuring running-related pain. Qual. Res. Sport Exerc. Health 2022, 14, 216–231. [Google Scholar] [CrossRef]
- Geva, N.; Defrin, R. Enhanced pain modulation among triathletes: A possible explanation for their exceptional capabilities. Pain 2013, 154, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Gagnon-Dolbec, A.; Fortier, M.; Cormier, S. Pain intensity and pain unpleasantness in triathletes: A study examining their associations with pain catastrophizing and pain expectations. Psychol. Sport Exerc. 2021, 55, 101928. [Google Scholar] [CrossRef]
- Méndez-Alonso, D.; Prieto-Saborit, J.A.; Bahamonde, J.R.; Jiménez-Arberás, E. Influence of Psychological Factors on the Success of the Ultra-Trail Runner. Int. J. Environ. Res. Public Health 2021, 18, 2704. [Google Scholar] [CrossRef]
- Burrows, N.J.; Booth, J.; Sturnieks, D.L.; Barry, B.K. Acute resistance exercise and pressure pain sensitivity in knee osteoarthritis: A randomised crossover trial. Osteoarthr. Cartil. 2014, 22, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Baiamonte, B.A.; Kraemer, R.R.; Chabreck, C.N.; Reynolds, M.L.; McCaleb, K.M.; Shaheen, G.L.; Hollander, D.B. Exercise-induced hypoalgesia: Pain tolerance, preference and tolerance for exercise intensity, and physiological correlates following dynamic circuit resistance exercise. J. Sports Sci. 2017, 35, 1831–1837. [Google Scholar] [CrossRef]
- McKean, C.C.; Baiamonte, B.A.; Kraemer, R.R.; Hollander, D.B. Attention-deficit/hyperactivity disorder medication does not alter exercise-induced hypoalgesia following an acute bout of dynamic circuit resistance exercise. Biol. Sport 2018, 35, 321–327. [Google Scholar] [CrossRef]
- Naugle, K.M.; Fillingim, R.B.; Riley, J.L. A meta-analytic review of the hypoalgesic effects of exercise. J. Pain 2012, 13, 1139–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracely, R.H. Studies of pain in normal man. In Textbook of Pain; Melzack, R., Wall, P.D., Eds.; Churchill Livingstone: London, UK, 1994; pp. 315–336. [Google Scholar]
- Tashani, O.; Burnett, D.; Phillips, G. The effect of brief mindfulness meditation on cold-pressor InducedPain responses in healthy adults. Pain Stud. Treat 2017, 5, 11–19. [Google Scholar]
- Awali, A.; Alsouhibani, A.M.; Hoeger Bement, M. Lean mass mediates the relation between temporal summation of pain and sex in young healthy adults. Biol. Sex Differ. 2018, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, Q.; Mills, K.T.; Chen, J.; Li, J.; Cao, J.; Gu, D.; He, J. Factors associated with blood pressure response to the cold pressor test: The GenSalt Study. Am. J. Hypertens. 2013, 26, 1132–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltyn, K.F.; Jone, M. Exercise, hypoalgesia and blood pressure. Sports Med. 2006, 36, 207–214. [Google Scholar] [CrossRef]
- Babaee Bigi, M.A.; Aslani, A. Aortic root size and prevalence of aortic regurgitation in elite strength trained athletes. Am. J. Cardiol. 2007, 100, 528–530. [Google Scholar] [CrossRef]
- Jost, J.; Weiss, M.; Weicker, H. Comparison of sympatho-adrenergic regulation at rest and of the adrenoceptor system in swimmers, long-distance runners, weight lifters, wrestlers and untrained men. Eur. J. Appl. Physiol. 1989, 58, 596–604. [Google Scholar] [CrossRef]
- Umeda, M.; Newcomb, L.W.; Ellingson, L.D.; Koltyn, K.F. Examination of the dose-response relationship between pain perception and blood pressure elevations induced by isometric exercise in men and women. Biol. Psychol. 2010, 85, 90–96. [Google Scholar] [CrossRef]
- Makovac, E.; Porciello, G.; Palomba, D.; Basile, B.; Ottaviani, C. Blood pressure-related hypoalgesia: A systematic review and meta-analysis. J Hypertens. 2020, 38, 1420–1435. [Google Scholar] [CrossRef]
- Andrade, A.; Vilarino, G.T.; Sieczkowska, S.M.; Coimbra, D.R.; Steffens, R.D.A.K.; Vietta, G.G. Acute effects of physical exercises on the inflammatory markers of patients with fibromyalgia syndrome: A systematic review. J. Neuroimmunol. 2018, 316, 40–49. [Google Scholar] [CrossRef]
- Kayo, A.H.; Peccin, M.S.; Sanches, C.M.; Trevisani, V.F. Effectiveness of physical activity in reducing pain in patients with fibromyalgia: A blinded randomized clinical trial. Rheumatol. Int. 2012, 32, 2285–2292. [Google Scholar] [CrossRef] [PubMed]
- Hooten, W.M.; Qu, W.; Townsend, C.O.; Judd, J.W. Effects of strength vs aerobic exercise on pain severity in adults with fibromyalgia: A randomized equivalence trial. Pain 2012, 153, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Peckerman, A.; Hurwitz, B.E.; Saab, P.G.; Llabre, M.M.; McCabe, P.M.; Schneiderman, N. Stimulus dimensions of the cold pressor test and the associated patterns of cardiovascular response. J Psychophysiol. 1994, 31, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Laton, M.; Backlund, H.; Toy, E.; Matango, M.; Sippl, K.; Tao, Y. Effect of Cold Pressor Test on Reaction Time. J. Adv. Stud. Sci. 2014. Available online: http://digital.library.wisc.edu/1793/80054 (accessed on 24 July 2022).
- Schwabe, L.; Schächinger, H. Ten years of research with the Socially Evaluated Cold Pressor Test: Data from the past and guidelines for the future. Psychoneuroendocrinology 2018, 92, 155–161. [Google Scholar] [CrossRef]
- Matylda, L.; Joseph, S.; Frédérike, B.L.; Fadi, T.; Aneet, J.; Darlington, P.J.; Dover, G. Pain catastrophizing in athletes correlates with pain and cardiovascular changes during a painful cold pressor test. J. Athl. Train. 2020. [Google Scholar] [CrossRef]
- da Cunha Nascimento, D.; Neto, I.; Saraiva, B.; Lima, A.; Navalta, J.W.; Pereira, G.B.; Willardson, J.M.; Rodrigues Beal, F.L.; Prestes, J. Advancements and critical steps for statistical analyses in blood pressure response to resistance training in hypertensive older women: A methodological approach. Blood Press. Monit. 2021, 26, 135–145. [Google Scholar] [CrossRef]
Endurance Runners (n = 22) (Mean ± SD) | Powerlifters (n = 22) (Mean ± SD) | Controls (n = 22) (Mean ± SD) | p-Value | |
---|---|---|---|---|
Age (years) | 22.36 ± 2.59 | 23.09 ± 4.83 | 22.70 ± 3.68 | 0.82 |
Height (cm) | 175.57 ± 2.78 | 178.21 ± 3.72 | 169.03 ± 3.24 | <0.001 |
Weight (kg) | 64.22 ± 1.75 | 80.32 ± 9.81 | 71.34 ± 6.20 | <0.001 |
Body mass index (kg/m2) | 20.82 ± 0.31 | 25.29 ± 4.08 | 24.05 ± 1.22 | <0.001 |
Training hours (h*week) | 10.21 ± 2.30 | 11.42 ± 2.80 | <0.01 | |
Sessions (sessions per week) | 3.38 ± 0.77 | 4.93 ± 1.41 | <0.001 | |
Training experience (years) | 6.18 ± 4.29 | 5.23 ± 6.92 | 0.59 |
Powerlifters | Runners | Controls | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRE CPT | POST CPT | PRE CPT | POST CPT | PRE CPT | POST CPT | |||||||||||||
DBP | SBP | HR | DBP | SBP | HR | DBP | SBP | HR | DBP | SBP | HR | DBP | SBP | HR | DBP | SBP | HR | |
HR | DBP | SBP | HR | DBP | SBP | HR | DBP | SBP | HR | DBP | SBP | DBP | SBP | HR | ||||
M | 80.5 | 138.8 | 82.7 | 82.7 | 141.9 | 81.5 | 73.4 | 123.9 | 67.0 | 74.4 | 120.9 | 69.4 | 74.6 | 119.4 | 68.5 | 90.3 | 137.7 | 69.7 |
SD | ±3.5 | ±6.9 | ±3.6 | ±3.6 | ±6.3 | ±3.5 | ±3.7 | ±4.6 | ±4.6 | ±2.5 | ±4.6 | ±4.8 | ±2.4 | ±2.1 | ±1.8 | ±3.2 | ±3.7 | ±2.6 |
Powerlifters (n = 22) (Mean ± SD) | Endurance Runners (n = 22) (Mean ± SD) | Controls (n = 22) (Mean ± SD) | F | p-Value | ηp2 | ||
---|---|---|---|---|---|---|---|
DBP (mmHg) | 79.73 ± 3.83 | 72.23 ± 3.02 | 74.90 ± 4.19 | 22.892 | <0.001 | 0.425 | |
PRE Aerobic Training | SBP (mmHg) | 142.27 ± 4.47 | 119.55 ± 5.04 | 124.90 ± 8.80 | 76.698 | <0.001 | 0.712 |
HR (bpm) | 76.23 ± 3.77 | 63.27 ± 5.09 | 69.90 ± 3.66 | 51.563 | <0.001 | 0.625 | |
Body temp. (°C) | 36.06 ± 0.42 | 36.13 ± 0.25 | 36.23 ± 0.25 | 1.826 | >0.05 | 0.056 | |
DBP (mmHg) | 78.00 ± 3.88 | 66.32 ± 2.88 | 73.14 ± 4.36 | 53.895 | <0.001 | 0.635 | |
POST Aerobic Training | SBP (mmHg) | 140.59 ± 4.81 | 114.68 ± 4.05 | 123.24 ± 7.75 | 116.852 | <0.001 | 0.790 |
HR (bpm) | 110.68 ± 5.51 | 93.27 ± 5.82 | 103.86 ± 10.34 | 30.135 | <0.001 | 0.493 | |
Body temp. (°C) | 36.58 ± 0.18 | 36.59 ± 0.19 | 36.61 ± 0.18 | 0.176 | >0.05 | 0.006 | |
DBP (mmHg) | 79.18 ± 4.11 | 68.32 ± 2.99 | 74.23 ± 4.12 | 45.559 | <0.001 | 0.591 | |
PRE CPT | SBP (mmHg) | 141.64 ± 3.57 | 115.86 ± 3.83 | 124.82 ± 6.81 | 153.199 | <0.001 | 0.829 |
HR (bpm) | 99.00 ± 6.56 | 88.73 ± 6.45 | 92.32 ± 7.93 | 13.221 | <0.001 | 0.296 | |
Body temp. (°C) | 36.44 ± 0.14 | 36.48 ± 0.18 | 36.53 ± 0.16 | 1.803 | >0.05 | 0.053 | |
DBP (mmHg) | 79.05 ± 4.12 | 69.73 ± 2.64 | 74.23 ± 3.88 | 36.641 | <0.001 | 0.538 | |
POST CPT | SBP (mmHg) | 140.73 ± 3.86 | 113.64 ± 4.51 | 124.05 ± 7.58 | 132.987 | <0.001 | 0.808 |
HR (bpm) | 89.55 ± 4.97 | 89.09 ± 4.76 | 85.95 ± 6.86 | 2.670 | >0.05 | 0.078 | |
Body temp. (°C) | 36.43 ± 0.15 | 36.44 ± 0.19 | 36.46 ± 0.12 | 0198 | >0.05 | 0.006 | |
DBP (mmHg) | 80.27 ± 4.04 | 71.68 ± 3.14 | 76.68 ± 3.26 | 33.427 | <0.001 | 0.515 | |
PRE Strength Training | SBP (mmHg) | 140.91 ± 4.44 | 119.50 ± 5.25 | 126.36 ± 7.59 | 75.206 | <0.001 | 0.705 |
HR (bpm) | 77.05 ± 2.64 | 65.95 ± 4.55 | 70.73 ± 4.04 | 48.413 | <0.001 | 0.596 | |
Body temp. (°C) | 36.09 ± 0.25 | 36.22 ± 0.27 | 36.24 ± 0.31 | 1.949 | >0.05 | 0.058 | |
DBP (mmHg) | 83.77 ± 4.91 | 68.77 ± 3.25 | 74.55 ± 3.58 | 79.565 | <0.001 | 0.716 | |
POST Strength Training | SBP (mmHg) | 139.95 ± 4.05 | 116.41 ± 5.06 | 123.77 ± 7.82 | 92.827 | <0.001 | 0.747 |
HR (bpm) | 105.18 ± 4.72 | 77.95 ± 6.36 | 95.82 ± 9.26 | 85.073 | <0.001 | 0.730 | |
Body temp. (°C) | 36.59 ± 0.22 | 36.51 ± 0.23 | 36.50 ± 0.24 | 0.939 | >0.05 | 0.029 | |
DBP (mmHg) | 80.09 ± 5.19 | 70.23 ± 3.32 | 76.14 ± 3.55 | 32.151 | <0.001 | 0.505 | |
PRE CPT | SBP (mmHg) | 137.05 ± 3.47 | 117.91 ± 4.86 | 126.32 ± 8.29 | 58.182 | <0.001 | 0.649 |
HR (bpm) | 94.14 ± 4.39 | 72.73 ± 5.42 | 84.95 ± 7.13 | 76.579 | <0.001 | 0.709 | |
Body temp. (°C) | 36.44 ± 0.24 | 36.41 ± 0.18 | 36.42 ± 0.18 | 0.182 | >0.05 | 0.006 | |
DBP (mmHg) | 82.68 ± 4.71 | 71.73 ± 2.64 | 76.77 ± 3.68 | 44.451 | <0.001 | 0.596 | |
POST CPT | SBP (mmHg) | 133.86 ± 2.90 | 119.64 ± 5.02 | 127.82 ± 7.77 | 35.816 | <0.001 | 0.532 |
HR (bpm) | 86.18 ± 6.28 | 69.32 ± 4.93 | 76.32 ± 5.92 | 47.857 | >0.05 | 0.603 | |
Body temp. (°C) | 36.39 ± 0.21 | 36.34 ± 0.13 | 36.33 ± 0.16 | 0.966 | >0.05 | 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diotaiuti, P.; Rodio, A.; Corrado, S.; Mancone, S.; Bellizzi, F.; Siqueira, T.C.; Andrade, A. Perceived Pain in Athletes: A Comparison between Endurance Runners and Powerlifters through a Cold Experimental Stimulation and Two Sessions of Various Physical Activation. Sports 2022, 10, 211. https://doi.org/10.3390/sports10120211
Diotaiuti P, Rodio A, Corrado S, Mancone S, Bellizzi F, Siqueira TC, Andrade A. Perceived Pain in Athletes: A Comparison between Endurance Runners and Powerlifters through a Cold Experimental Stimulation and Two Sessions of Various Physical Activation. Sports. 2022; 10(12):211. https://doi.org/10.3390/sports10120211
Chicago/Turabian StyleDiotaiuti, Pierluigi, Angelo Rodio, Stefano Corrado, Stefania Mancone, Fernando Bellizzi, Thais Cristina Siqueira, and Alexandro Andrade. 2022. "Perceived Pain in Athletes: A Comparison between Endurance Runners and Powerlifters through a Cold Experimental Stimulation and Two Sessions of Various Physical Activation" Sports 10, no. 12: 211. https://doi.org/10.3390/sports10120211
APA StyleDiotaiuti, P., Rodio, A., Corrado, S., Mancone, S., Bellizzi, F., Siqueira, T. C., & Andrade, A. (2022). Perceived Pain in Athletes: A Comparison between Endurance Runners and Powerlifters through a Cold Experimental Stimulation and Two Sessions of Various Physical Activation. Sports, 10(12), 211. https://doi.org/10.3390/sports10120211