Usefulness of Skin Autofluorescence as a Biomarker of Acute Oxidative Stress in Young Male Japanese Long-Distance Runners: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometry
2.3. SAF
2.4. Biochemical Measurements
2.5. Self-Administered Questionnaire Survey
2.6. Statistical Analysis
3. Results
3.1. Subjects’ Characteristics (Study 1)
3.2. Correlation between SAF and Anthropometric Values (Study 1)
3.3. Correlation between SAF and Plasma Pentosidine and Markers of Oxidative Stress and Muscle Damage (Study 2)
3.4. Correlation between SAF and Plasma Pentosidine in Runners (Study 3)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichhold, S.; Neubauer, O.; Bulmer, A.C.; Knasmüller, S.; Wagner, K.H. Endurance exercise and DNA stability: Is there a link to duration and intensity? Mutat. Res. 2009, 682, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Barclay, J.K.; Hansel, M. Free radicals may contribute to oxidative skeletal muscle fatigue. Can. J. Physiol. Pharmacol. 1991, 69, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid. Med. Cell Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757. [Google Scholar] [CrossRef] [Green Version]
- Sell, D.R.; Monnier, V.M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J. Biol. Chem. 1989, 264, 21597–21602. [Google Scholar] [CrossRef]
- Sugiyama, S.; Miyata, T.; Ueda, Y.; Tanaka, H.; Maeda, K.; Kawashima, S.; Van Ypersele de Strihou, C.; Kurokawa, K. Plasma levels of pentosidine in diabetic patients: An advanced glycation end product. J. Am. Soc. Nephrol. 1998, 9, 1681–1688. [Google Scholar] [CrossRef]
- Kerkeni, M.; Saïdi, A.; Bouzidi, H.; Letaief, A.; Ben Yahia, S.; Hammami, M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diab. Vasc. Dis. Res. 2013, 10, 239–245. [Google Scholar] [CrossRef]
- Meerwaldt, R.; Graaff, R.; Oomen, P.H.N.; Links, T.P.; Jager, J.J.; Alderson, N.L.; Thorpe, S.R.; Baynes, J.W.; Gans, R.O.B.; Smit, A.J. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 2004, 47, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Yamagishi, S.; Fukami, K.; Matsui, T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int. J. Cardiol. 2015, 185, 263–268. [Google Scholar] [CrossRef]
- Saz-Lara, A.; Álvarez-Bueno, C.; Martínez-Vizcaíno, V.; Notario-Pacheco, B.; Sequí-Dominguez, I.; Cavero-Redondo, I. Are Advanced Glycation End Products in Skin Associated with Vascular Dysfunction Markers? A Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6936. [Google Scholar] [CrossRef] [PubMed]
- de Vos, L.C.; Lefrandt, J.D.; Dullaart, R.P.; Zeebregts, C.J.; Smit, A.J. Advanced glycation end products: An emerging biomarker for adverse outcome in patients with peripheral artery disease. Atherosclerosis 2016, 254, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Huang, Q.; Liu, W.; Zhou, X. Advanced glycation end products via skin autofluorescence as a new biomarker for major adverse cardiovascular events: A meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I.; Soriano-Cano, A.; Álvarez-Bueno, C.; Cunha, P.G.; Martínez-Hortelano, J.A.; Garrido-Miguel, M.; Berlanga-Macías, C.; Martínez-Vizcaíno, V. Skin Autofluorescence-Indicated Advanced Glycation End Products as Predictors of Cardiovascular and All-Cause Mortality in High-Risk Subjects: A Systematic Review and Meta-analysis. J. Am. Heart Assoc. 2018, 7, e009833. [Google Scholar] [CrossRef] [Green Version]
- Pol, H.W.; Sibma, E.; Zeebregts, C.J.; Pierik, E.G.; Meerwaldt, R. Increased skin autofluorescence after colorectal operation reflects surgical stress and postoperative outcome. Am. J. Surg. 2011, 202, 583–589. [Google Scholar] [CrossRef]
- Mulder, D.J.; Water, T.V.; Lutgers, H.L.; Graaff, R.; Gans, R.O.; Zijlstra, F.; Smit, A.J. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: An overview of current clinical studies, evidence, and limitations. Diabetes Technol. Ther. 2006, 8, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Nicholl, I.D.; Stitt, A.W.; Moore, J.E.; Ritchie, A.J.; Archer, D.B.; Bucala, R. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol. Med. 1998, 4, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Nomoto, K.; Yagi, M.; Arita, S.; Hamada, U.; Yonei, Y.A. Survey of Fluorescence Derived from Advanced Glycation End Products in the Skin of Japanese: Differences with Age and Measurement Location. Anti Aging Med. 2012, 9, 119–124. [Google Scholar]
- Ahmad, M.S.; Damanhouri, Z.A.; Kimhofer, T.; Mosli, H.H.; Holmes, E. A new gender-specific model for skin autofluorescence risk stratification. Sci. Rep. 2015, 5, 10198. [Google Scholar] [CrossRef] [Green Version]
- Sanaka, T.; Funaki, T.; Tanaka, T.; Hoshi, S.; Niwayama, J.; Taitoh, T.; Nishimura, H.; Higuchi, C. Plasma pentosidine levels measured by a newly developed method using ELISA in patients with chronic renal failure. Nephron 2002, 91, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Yano, T.; Morodomi, Y.; Yoshida, T.; Kohno, M.; Haro, A.; Shikada, Y.; Okamoto, T.; Maruyama, R.; Maehara, Y. Serum antioxidant capacity and oxidative injury to pulmonary DNA in never-smokers with primary lung cancer. Anticancer Res. 2012, 32, 1063–1067. [Google Scholar] [PubMed]
- Dohi, K.; Satoh, K.; Ohtaki, H.; Shioda, S.; Miyake, Y.; Shindo, M.; Aruga, T. Elevated plasma levels of bilirubin in patients with neurotrauma reflect its pathophysiological role in free radical scavenging. In Vivo 2005, 19, 855–860. [Google Scholar] [PubMed]
- Alberti, A.; Bolognini, L.; Macciantelli, D.; Caratelli, M. The radical cation of N,N-diethyl-para-phenylendiamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 2000, 26, 253–267. [Google Scholar] [CrossRef]
- Fukui, T.; Yamauchi, K.; Maruyama, M.; Yasuda, T.; Kohno, M.; Abe, Y. Significance of measuring oxidative stress in lifestyle-related diseases from the viewpoint of correlation between d-ROMs and BAP in Japanese subjects. Hypertens Res. 2011, 34, 1041–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health and Nutrition Survey|Ministry of Health, Labor and Welfare 2019. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 20 August 2022). (In Japanese).
- FUSHIMI Pharmaceutical Co., Ltd. in Japan. Available online: http://www.fushimi.co.jp/center/index.html (accessed on 20 August 2022). (In Japanese).
- Yoshikawa, T.; Miyazaki, A.; Fujimoto, S. Decrease in serum levels of advanced glycation end-products by short-term lifestyle modification in non-diabetic middle-aged females. Med. Sci. Monit. 2009, 15, Ph65–Ph73. [Google Scholar] [PubMed]
- Ahmed, M.U.; Brinkmann Frye, E.; Degenhardt, T.P.; Thorpe, S.R.; Baynes, J.W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 1997, 324 Pt 2, 565–570. [Google Scholar] [CrossRef]
- Zhang, M.; Kho, A.L.; Anilkumar, N.; Chibber, R.; Pagano, P.J.; Shah, A.M.; Cave, A.C. Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: Involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation 2006, 113, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Bierhaus, A.; Schiekofer, S.; Schwaninger, M.; Andrassy, M.; Humpert, P.M.; Chen, J.; Hong, M.; Luther, T.; Henle, T.; Klöting, I.; et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001, 50, 2792–2808. [Google Scholar] [CrossRef] [Green Version]
- Atzeni, I.M.; van de Zande, S.C.; Westra, J.; Zwerver, J.; Smit, A.J.; Mulder, D.J. The AGE Reader: A non-invasive method to assess long-term tissue damage. Methods 2022, 203, 533–541. [Google Scholar] [CrossRef]
- Meertens, J.H.; Nienhuis, H.L.; Lefrandt, J.D.; Schalkwijk, C.G.; Nyyssönen, K.; Ligtenberg, J.J.; Smit, A.J.; Zijlstra, J.G.; Mulder, D.J. The course of skin and serum biomarkers of advanced glycation endproducts and its association with oxidative stress, inflammation, disease severity, and mortality during ICU admission in critically ill patients: Results from a prospective pilot study. PLoS ONE 2016, 11, e0160893. [Google Scholar] [CrossRef] [PubMed]
- Hoonhorst, S.J.; Lo Tam Loi, A.T.; Pouwels, S.D.; Faiz, A.; Telenga, E.D.; van den Berge, M.; Koenderman, L.; Lammers, J.W.; Boezen, H.M.; van Oosterhout, A.J.; et al. Advanced glycation endproducts and their receptor in different body compartments in COPD. Respir. Res. 2016, 17, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mook-Kanamori, M.J.; Selim, M.M.; Takiddin, A.H.; Al-Homsi, H.; Al-Mahmoud, K.A.; Al-Obaidli, A.; Zirie, M.A.; Rowe, J.; Gherbi, W.S.; Chidiac, O.M.; et al. Ethnic and gender differences in advanced glycation end products measured by skin auto-fluorescence. Dermatoendocrinology 2013, 5, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koetsier, M.; Nur, E.; Chunmao, H.; Lutgers, H.L.; Links, T.P.; Smit, A.J.; Rakhorst, G.; Graaff, R. Skin color independent assessment of aging using skin autofluorescence. Opt. Express 2010, 18, 14416–14429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, L.; Zezell, D.M.; Ribeiro, A.d.C.; Gomes, L.; Ito, A.S. Fluorescence spectroscopy of biological tissues—A review. Appl. Spectrosc. Rev. 2006, 41, 575–590. [Google Scholar] [CrossRef]
- Snyder, A.; Valdebran, M.; Terrero, D.; Amber, K.T.; Kelly, K.M. Solar ultraviolet exposure in individuals who perform outdoor sport activities. Sport. Med. Open 2020, 6, 42. [Google Scholar] [CrossRef]
- World Health Organization; World Meteorological Organization. Repot of the WMO-WHO Meeting of Experts on Standardization of UV Indices and Their Dissemination to the Public (Les Diablerets, Switzerland, 21–24 July 1997). No. 129. Available online: https://library.wmo.int/index.php?lvl=notice_display&id=11059#.YysazXbP23A (accessed on 20 August 2022).
- Monthly Average of Daily Maximum UV Index (Observed Values)|Japan Meteorological Agency. Available online: https://www.data.jma.go.jp/gmd/env/uvhp/uvimax_monthave_tsu.html (accessed on 20 August 2022). (In Japanese).
- World Health Organization. Guidelines for Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 20 August 2022).
- Couppé, C.; Svensson, R.B.; Grosset, J.F.; Kovanen, V.; Nielsen, R.H.; Olsen, M.R.; Larsen, J.O.; Praet, S.F.; Skovgaard, D.; Hansen, M.; et al. Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. Age 2014, 36, 9665. [Google Scholar] [CrossRef] [Green Version]
- Hjerrild, J.N.; Wobbe, A.; Stausholm, M.B.; Larsen, A.E.; Josefsen, C.O.; Malmgaard-Clausen, N.M.; Dela, F.; Kjaer, M.; Magnusson, S.P.; Hansen, M.; et al. Effects of Long-Term Physical Activity and Diet on Skin Glycation and Achilles Tendon Structure. Nutrients 2019, 11, 1409. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.; Betriu, À.; Salas-Salvadó, J.; Pamplona, R.; Barbé, F.; Purroy, F.; Farràs, C.; Fernández, E.; López-Cano, C.; Mizab, C. Mediterranean diet, physical activity and subcutaneous advanced glycation end-products’ accumulation: A cross-sectional analysis in the ILERVAS project. Eur. J. Nutr. 2020, 59, 1233–1242. [Google Scholar] [CrossRef]
- Dorrian, C.A.; Cathcart, S.; Clausen, J.; Shapiro, D.; Dominiczak, M.H. Factors in human serum interfere with the measurement of advanced glycation endproducts. Cell. Mol. Biol. 1998, 44, 1069–1079. [Google Scholar]
Characteristics | Runners (n = 50) | Controls (n = 35) | p-Value |
---|---|---|---|
Age, year (SD) | 20.2 ± 1.2 | 19.8 ± 1.1 | 0.061 |
Height, cm (SD) | 169.8 ± 5.0 | 170.3 ± 6.4 | 0.510 |
Weight, kg (SD) | 55.3 ± 4.0 | 65.4 ± 3.1 | <0.001 |
Body mass index, kg/m2 (SD) | 19.1 ± 1.1 | 22.6 ± 1.0 | <0.001 |
Skin autofluorescence, AU (IQR) | 1.20 (1.0–1.3) | 1.30 (1.2–1.4) | 0.011 |
Pentosidine, ng/mL (SD) | 47.3 ± 10.3 | _ | _ |
d-ROMs, U.CARR (SD) | 274 ± 42 | _ | _ |
BAP, µmol/L (IQR) | 2143 (2034–2291) | _ | _ |
BAP/d-ROMs ratio (IQR) | 8.2 (7.4–9.9) | _ | |
CK, U/L (SD) | 406.3 ± 310.5 | _ | _ |
LDH, U/L (SD) | 213.5 ± 39.6 | _ | _ |
Mileage, km/week (SD) | 102.4 ± 52.0 | _ | _ |
Frequency of Exercise, times/week (IQR) | _ | 0.0 (0.0–1.0) | _ |
Exercise time, min/week (IQR) | _ | 0.0 (0.0–60) | _ |
Skin Autofluorescence (AU) | ||||
---|---|---|---|---|
Runners (n = 50) | Controls (n = 35) | |||
r | p | r | p | |
Age, year | 0.008 | 0.955 | 0.195 | 0.229 |
Height, cm | −0.128 | 0.387 | −0.252 | 0.062 |
Weight, kg | −0.126 | 0.394 | 0.008 | 0.962 |
Body mass index, kg/m2 | −0.025 | 0.868 | 0.121 | 0.471 |
Skin Autofluorescence (AU) | Pentosidine (ng/mL) | |||
---|---|---|---|---|
r | p | r | p | |
d-ROMs, U.CARR | 0.124 | 0.391 | 0.299 | 0.035 * |
BAP, μmol/L | −0.108 | 0.457 | −0.134 | 0.352 |
BAP/d-ROMs ratio | −0.187 | 0.192 | −0.321 | 0.023 * |
CK, U/L | 0.179 | 0.215 | 0.037 | 0.799 |
LDH, U/L | 0.190 | 0.187 | −0.084 | 0.562 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujiwara, R.; Anzai, N.; Ishikawa, M.; Takahashi, A. Usefulness of Skin Autofluorescence as a Biomarker of Acute Oxidative Stress in Young Male Japanese Long-Distance Runners: A Cross-Sectional Study. Sports 2022, 10, 180. https://doi.org/10.3390/sports10110180
Fujiwara R, Anzai N, Ishikawa M, Takahashi A. Usefulness of Skin Autofluorescence as a Biomarker of Acute Oxidative Stress in Young Male Japanese Long-Distance Runners: A Cross-Sectional Study. Sports. 2022; 10(11):180. https://doi.org/10.3390/sports10110180
Chicago/Turabian StyleFujiwara, Rei, Natsume Anzai, Motoyasu Ishikawa, and Atsuhiko Takahashi. 2022. "Usefulness of Skin Autofluorescence as a Biomarker of Acute Oxidative Stress in Young Male Japanese Long-Distance Runners: A Cross-Sectional Study" Sports 10, no. 11: 180. https://doi.org/10.3390/sports10110180
APA StyleFujiwara, R., Anzai, N., Ishikawa, M., & Takahashi, A. (2022). Usefulness of Skin Autofluorescence as a Biomarker of Acute Oxidative Stress in Young Male Japanese Long-Distance Runners: A Cross-Sectional Study. Sports, 10(11), 180. https://doi.org/10.3390/sports10110180