Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.4. Muscle Strength Assessment
2.5. Body Composition Assessment
2.6. Statistical Analyses
3. Results
3.1. Body Composition
3.2. 1-RM Strength in Different Resistance Exercises
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A.; French, D.N. Resistance training for health and performance. Curr. Sports Med. Rep. 2002, 1, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Bullock, N.; Pearson, S. A comparison of maximal squat strength and 5-,10-, and 20-meter sprint times, in athletes and recreationally trained men. J. Strength Cond. Res. 2012, 26, 937–940. [Google Scholar] [CrossRef]
- Pardos-Mainer, E.; Lozano, D.; Torrontegui-Duarte, M.; Cartón-Llorente, A.; Roso-Moliner, A. Effects of strength vs plyometric training programs on vertical jumping, linear sprint and change of direction speed performance in female soccer players: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 401. [Google Scholar] [CrossRef]
- Berton, R.; Lixandrão, M.E.; Pinto e Silva, C.M.; Tricoli, V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: A meta-analysis. J. Sports Sci. 2018, 36, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Prieske, O.; Moran, J.; Negra, Y.; Attia, A.; Granacher, U. Effects of resistance training on change-of-direction speed in youth and young physically active and athletic adults: A systematic review with meta-analysis. Sports Med. 2020, 50, 1483–1499. [Google Scholar] [CrossRef]
- Eklund, D.; Häkkinen, A.; Laukkanen, J.A.; Balandzic, M.; Nyman, K.; Häkkinen, K. Fitness, body composition and blood lipids following 3 concurrent strength and endurance training modes. Appl. Physiol. Nutr. Metab. 2016, 41, 767–774. [Google Scholar] [CrossRef]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Gledhill, N.; Quinney, A. The effects of changes in musculoskeletal fitness on health. Can. J. Appl. Physiol. 2001, 26, 161–216. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.A.; Benson, A.C.; Bird, S.R.; Fraser, S.F. Resistance training improves metabolic health in type 2 diabetes: A systematic review. Diabetes Res. Clin. Pract. 2009, 83, 157–175. [Google Scholar] [CrossRef]
- Consitt, L.A.; Dudley, C.; Saxena, G. Impact of endurance and resistance training on skeletal muscle glucose metabolism in older adults. Nutrients 2019, 11, 2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.F.; Bradwell, S.N.; Gibala, M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.d.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit Overview: Systematic review and meta-analysis. Sports Med.-Open 2018, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, K.M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C.A. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care (Engl.) 2015, 24, 812–817. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.; Butcher, S.; Poston, W. High-Intensity Functional Training (HIFT): Definition and research Implications for improved fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Carlos Poston, W.S. Mission essential fitness: Comparison of functional circuit training to traditional Army Physical Training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [Green Version]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar] [PubMed]
- Serafini, P.; Hoffstetter, W.; Mimms, H.; Smith, M.; Kliszczewicz, B.; Feito, Y. Body composition and strength changes following 16-weeks of high-intensity functional training. Med. Sci. Sports Exerc. 2016, 48, 1001. [Google Scholar] [CrossRef]
- Feito, Y.; Patel, P.; Sal Redondo, A.; Heinrich, K. Effects of eight weeks of high intensity functional training on glucose control and body composition among overweight and obese adults. Sports 2019, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Bickel, C.S.; Slade, J.; Mahoney, E.; Haddad, F.; Dudley, G.A.; Adams, G.R. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J. Appl. Physiol. 2005, 98, 482–488. [Google Scholar] [CrossRef]
- Schott, J.; McCully, K.; Rutherford, O.M. The role of metabolites in strength training. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Van Every, D.W.; Plotkin, D.L. Loading recommendations for muscle strength, hypertrophy, and local endurance: A re-examination of the repetition continuum. Sports 2021, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, L.P.; Read, P.; Waldron, M. Muscle hypertrophy: A narrative review on training principles for increasing muscle mass. Strength Cond. J. 2017, 39, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Haff, G.G.G.; Triplett, N.T.; Baechle, T.R.; Earle, R.W.; Haff, G.G.G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; ISBN 0736058036. [Google Scholar]
- Schoenfeld, B.J.; Contreras, B.; Vigotsky, A.D.; Ogborn, D.; Fontana, F.; Tiryaki-Sonmez, G. Upper body muscle activation during low-versus high-load resistance exercise in the bench press. Isokinet. Exerc. Sci. 2016, 24, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of low- vs. High-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Coburn, J.; Malek, M. NSCA Essentials of Personal Training, 2nd ed.; Human Kinetics Publishers: Champaign, IL, USA, 2012; ISBN 9780736084154. [Google Scholar]
- Tsoukos, A.; Brown, L.E.; Terzis, G.; Veligekas, P.; Bogdanis, G.C. Potentiation of bench press throw performance using a heavy load and velocity-based repetition control. J. Strength Cond. Res. 2021, 35, S72–S79. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Veligekas, P.; Tsolakis, C.; Terzis, G. Effects of muscle action type with equal impulse of conditioning activity on postactivation potentiation. J. Strength Cond. Res. 2014, 28, 2521–2528. [Google Scholar] [CrossRef]
- Tsoukos, A.; Brown, L.E.; Veligekas, P.; Terzis, G.; Bogdanis, G.C. Postactivation potentiation of bench press throw performance using velocity-based conditioning protocols with low and moderate loads. J. Hum. Kinet. 2019, 68, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Heyward, H.V.; Wagner, R.D. Applied Body Composition Assessment; English; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Cavedon, V.; Milanese, C.; Marchi, A.; Zancanaro, C. Different amount of training affects body composition and performance in high-intensity functional training participants. PLoS ONE 2020, 15, e0237887. [Google Scholar] [CrossRef]
- Posnakidis, G.; Aphamis, G.; Giannaki, C.D.; Mougios, V.; Aristotelous, P.; Samoutis, G.; Bogdanis, G.C. High-intensity functional training improves cardiorespiratory fitness and neuromuscular performance without inflammation or muscle damage. J. Strength Cond. Res. 2020. Online ahead of print. [Google Scholar] [CrossRef]
- Fealy, C.E.; Nieuwoudt, S.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Cruz, L.A.; Li, M.; Rocco, M.; Burguera, B.; et al. Functional high-intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Exp. Physiol. 2018, 103, 985–994. [Google Scholar] [CrossRef]
- Wood, P.S.; Krüger, P.E.; Grant, C.C. DEXA-assessed regional body composition changes in young female military soldiers following 12-weeks of periodised training. Ergonomics 2010, 53, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Andrade, D.C.; Campos-Jara, C.; Henríquez-Olguín, C.; Alvarez-Lepín, C.; Izquierdo, M. Regional fat changes induced by localized muscle endurance resistance training. J. Strength Cond. Res. 2013, 27, 2219–2224. [Google Scholar] [CrossRef] [Green Version]
- DeFreitas, J.M.; Beck, T.W.; Stock, M.S.; Dillon, M.A.; Kasishke, P.R. An examination of the time course of training-induced skeletal muscle hypertrophy. Eur. J. Appl. Physiol. 2011, 111, 2785–2790. [Google Scholar] [CrossRef]
- Rasmussen, B.B.; Phillips, S.M. Contractile and nutritional regulation of human muscle growth. Exerc. Sport Sci. Rev. 2003, 31, 127–131. [Google Scholar] [CrossRef]
- Bompa, T.; Buzzichelli, C. Periodization of Strength Training for Sports, 4th ed.; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Damas, F.; Phillips, S.M.; Lixandrão, M.E.; Vechin, F.C.; Libardi, C.A.; Roschel, H.; Tricoli, V.; Ugrinowitsch, C. Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Eur. J. Appl. Physiol. 2016, 116, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Goreham, C.; Ouyang, J.; Ball-Burnett, M.; Ranney, D. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1999, 276, R591–R596. [Google Scholar] [CrossRef] [PubMed]
- Netreba, A.I.; Popov, D.V.; Liubaeva, E.V.; Bravyǐ, I.R.; Prostova, A.B.; Lemesheva, I.S.; Vinogradova, O.L. Physiological effects of using the low intensity strength training without relaxation in single-joint and multi-joint movements. Ross. Fiziol. Zh. Im. I. M. Sechenova 2007, 93, 27–38. [Google Scholar] [PubMed]
- Tsoukos, A.; Brown, L.E.; Terzis, G.; Wilk, M.; Zajac, A.; Bogdanis, G.C. Changes in EMG and movement velocity during a set to failure against different loads in the bench press exercise. Scand. J. Med. Sci. Sports 2021, 31, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Disselhorst-Klug, C.; Schmitz-Rode, T.; Rau, G. Surface electromyography and muscle force: Limits in sEMG-force relationship and new approaches for applications. Clin. Biomech. 2009, 24, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Otto, W.H.; Coburn, J.W.; Brown, L.E.; Spiering, B.A. Effects of weightlifting vs. kettlebell training on vertical jump, strength, and body composition. J. Strength Cond. Res. 2012, 26, 1199–1202. [Google Scholar] [CrossRef] [Green Version]
- Dinyer, T.K.; Byrd, M.T.; Garver, M.J.; Rickard, A.J.; Miller, W.M.; Burns, S.; Clasey, J.L.; Bergstrom, H.C. Low-Load vs. High-Load Resistance Training to Failure on One Repetition Maximum Strength and Body Composition in Untrained Women. J. Strength Cond. Res. 2019, 33, 1737–1744. [Google Scholar] [CrossRef]
- Santanielo, N.; Nóbrega, S.R.; Scarpelli, M.C.; Alvarez, I.F.; Otoboni, G.B.; Pintanel, L.; Libardi, C.A. Effect of resistance training to muscle failure vs non-failure on strength, hypertrophy and muscle architecture in trained individuals. Biol. Sport 2020, 37, 333–341. [Google Scholar] [CrossRef]
LL | ML | CON | p Value | |
---|---|---|---|---|
Age (years) | 31.4 ± 7.1 | 27.5 ± 5.1 | 30.3 ± 7.5 | 0.333 |
Weight (kg) | 71.1 ± 12.4 | 70.0 ± 14.7 | 74.7 ± 14.7 | 0.788 |
Height (m) | 1.72 ± 0.1 | 1.68 ± 0.1 | 1.71 ± 0.1 | 0.890 |
BMI (kg/m2) | 24.3 ± 1.4 | 24.2 ± 3.2 | 25.6 ± 2.8 | 0.965 |
Body Fat (%) | 23.3 ± 6.8 | 21.1 ± 7.0 | 27.5 ± 4.1 | 0.624 |
Fat Mass (kg) | 16.3 ± 4.4 | 14.8 ± 6.5 | 20.4 ± 4.0 | 0.528 |
Lean Body Mass (g) | 52.0 ± 11.4 | 52.4 ± 11.5 | 51.1 ± 11.4 | 0.972 |
Bone Mass (kg) | 2.76 ± 0.5 | 2.77 ± 0.5 | 2.76 ± 0.5 | 0.763 |
LL | ML | CON | ||||
---|---|---|---|---|---|---|
Baseline | Week 12 | Baseline | Week 12 | Baseline | Week 12 | |
Bench Press (kg) | 51.0 ± 26.1 | 58.0 ± 30.6 **† | 47.3 ± 25.3 | 55.0 ± 28.3 **† | 44.4 ± 12.7 | 45.0 ± 14.5 |
Back Squat (kg) | 77.5 ± 33.9 | 85.5 ± 36.3 **† | 71.5 ± 34.2 | 80.8 ± 38.8 **† | 56.8 ± 12.9 | 59.8 ± 15.3 |
Dead Lift (kg) | 86.0 ± 36.3 | 95.5 ± 40.7 **† | 79.2 ± 36.4 | 88.1 ± 40.2 **† | 68.1 ± 19.4 | 70.1 ± 20.6 |
Bent-Over Row (kg) | 50.5 ± 21.9 | 55.0 ± 23.1 **†† | 53.8 ± 24.5 | 58.5 ± 24.9 **†† | 45.6 ± 14.0 | 45.6 ± 15.3 |
Shoulder Press (kg) | 36.5 ± 15.1 | 41.5 ± 19.0 | 36.5 ± 15.2 | 41.2 ± 19.1 | 27.8 ± 9.2 | 28.8 ± 9.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapsis, D.P.; Tsoukos, A.; Psarraki, M.P.; Douda, H.T.; Smilios, I.; Bogdanis, G.C. Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports 2022, 10, 7. https://doi.org/10.3390/sports10010007
Kapsis DP, Tsoukos A, Psarraki MP, Douda HT, Smilios I, Bogdanis GC. Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports. 2022; 10(1):7. https://doi.org/10.3390/sports10010007
Chicago/Turabian StyleKapsis, Daniel P., Athanasios Tsoukos, Maria P. Psarraki, Helen T. Douda, Ilias Smilios, and Gregory C. Bogdanis. 2022. "Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study" Sports 10, no. 1: 7. https://doi.org/10.3390/sports10010007
APA StyleKapsis, D. P., Tsoukos, A., Psarraki, M. P., Douda, H. T., Smilios, I., & Bogdanis, G. C. (2022). Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports, 10(1), 7. https://doi.org/10.3390/sports10010007