Eco-Friendly Management of Acanthoscelides obtectus Through Individual and Combined Applications of 1,8-Cineole and Diatomaceous Earth
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Diatomaceous Earth and 1,8-cineole
2.3. Bioassays
2.3.1. Individual Application of Diatomaceous Earth
2.3.2. Individual Application of 1,8-cineole
2.3.3. Combined Applications of DE + 1,8-cineole
- 25 ppm DE + 0.600 ppm 1,8-cineole
- 25 ppm DE + 2.5 ppm 1,8-cineole
- 200 ppm DE + 0.600 ppm 1,8-cineole
- 200 ppm DE + 2.5 ppm 1,8-cineole
2.4. Effect on F1 Progeny
2.5. Data Analysis
3. Results
3.1. Mortality and Toxicity of Acanthoscelides obtectus
3.2. Individual and Combined Applications
3.3. Weigth Loss
3.4. F1 Progeny
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Şen, K.; Koca, A.S.; Kaçar, G. Importance, biology, damage and management of bean weevil Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae). Iğdır Univ. J. Inst. Sci. Technol. 2020, 10, 1518–1527. [Google Scholar]
- Odagiu, A.; Porca, M. The influence of the chemical composition of different origin beans (Phaseolus vulgaris L.) on tolerance to the bean weevil (Acanthoscelides obtectus Say) stroke. J. Cent. Eur. Agric. 2003, 4, 13–22. [Google Scholar]
- Porca, M. The actual stage of knowledge about the damages of bruchids. J. Eur. Agric. 2003, 4, 199–208. [Google Scholar]
- Porca, M.; Ghizdavu, I.; Oltean, I.; Bunescu, H. Control of coleopterans in stored agricultural products by non-chemical methods. J. Eur. Agric. 2003, 4, 218–220. [Google Scholar]
- Porca, M.; Oltean, I.; Dobrin, I. Chemical control of bean weevil, Acanthoscelides obtectus Say in storage condition. J. Eur. Agric. 2003, 4, 209–216. [Google Scholar]
- Porca, M.; Ghizdavu, I.; Oltean, I.; Bunescu, H. Research in artificial infestation and storage condition of some bean cultivars at bean weevil damage, Acanthoscelides obtectus Say. J. Eur. Agric. 2003, 4, 31–38. [Google Scholar]
- Johnson, C.D.; Kistler, R.A. Nutritional ecology of bruchid beetles. In Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates; Slansky, F., Rodriguez, J.G., Eds.; John Wiley and Sons Inc.: New York, NY, USA, 1987; pp. 259–282. [Google Scholar]
- Yılmaz, A.; Elmalı, M. Fecundity and development of the bean weevil [Acanthoscelides obtectus (Say) (Col.: Bruchidae)] on different bean seeds (Phaseolus vulgaris L.). Plant Prot. 2002, 42, 35–52. [Google Scholar]
- Karakas, M. The effect of temperature and relative humidity on the development of the bean weevil, Acanthoscelides obtectus (Coleoptera: Chrysomelidae). Int. J. Entomol. Res. 2021, 6, 16–20. [Google Scholar]
- Silva, L.A.; Maimoni-Rodella, R.C.S.; Rossi, M.N. A preliminary investigation of pre-dispersal seed predation by Acanthoscelides obtectus Horn (Coleoptera: Bruchidae) in Mimosa bimucronata (DC) Kuntze trees. Neotrop. Entomol. 2007, 36, 197–202. [Google Scholar] [CrossRef]
- Arshad, Z.; Hanif, M.A.; Qadri, R.W.K.; Khan, M.M. Role of essential oils in plant diseases protection: A review. Int. J. Chem. Biochem. Sci. 2014, 6, 11–17. [Google Scholar]
- Yaman, C.; Şimşek, Ş. The effects of rosemary extracts on wheat germination and grain storage pests. Kahramanmaraş Sütçü İmam Univ. J. Agric. Nat. 2019, 22, 243–250. [Google Scholar] [CrossRef]
- Babayiğit, M.A.; Tekbaş, Ö.F.; Çetin, H. Public health effects of pesticides used in pest management and precautions. TAF Prev. Med. Bull. 2014, 13, 405–412. [Google Scholar] [CrossRef]
- Arthur, F.H. Grain protectants: Current status and prospects for the future. J. Stored Prod. Res. 1996, 32, 293–302. [Google Scholar] [CrossRef]
- Alvarez, N.; Hossaert-McKey, M.; Rasplus, J.Y.; McKey, D.; Mercier, L.; Soldati, L.; Aebi, A.; Shani, T.; Benrey, B. Sibling species of bean bruchids: A morphological and phylogenetic study of Acanthoscelides obtectus Say and Acanthoscelides obvelatus Bridwell. J. Zool. Syst. Evol. Res. 2005, 43, 29–37. [Google Scholar] [CrossRef]
- El-Aziz, A.S.E. Control strategies of stored product pests. J. Entomol. 2011, 8, 101–122. [Google Scholar] [CrossRef]
- Kayhan, F.E. The cycle of insecticides on nature and its effects on the aquatic environment. Selçuk Univ. J. Sci. 2020, 46, 29–40. [Google Scholar]
- Regnault-Roger, C.; Hamraoui, A.; Holeman, M.; Theron, E.; Pinel, R. Insecticidal effect of essential oils from Mediterranean plants upon Acanthoscelides obtectus Say (Coleoptera: Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J. Chem. Ecol. 1993, 19, 1233–1244. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Hamraoui, A. Comparison of the insecticidal effects of water-extracted and intact aromatic plants on Acanthoscelides obtectus, a bruchid beetle pest of kidney beans. Chemoecology 1994, 5, 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Zhang, Y.; Song, X.; Huang, W.; Zhang, R. Identification of terpenoid compounds and toxicity assays of essential oil microcapsules from Artemisia stechmanniana. Insects 2023, 14, 470. [Google Scholar] [CrossRef]
- Yu, J. Chemical composition of essential oils and their potential applications in postharvest storage of cereal grains. Molecules 2025, 30, 683. [Google Scholar] [CrossRef]
- Papachristos, D.P.; Stamopoulos, D.C. Toxicity of vapours of three essential oils to the immature stages of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2002, 38, 365–373. [Google Scholar] [CrossRef]
- Papachristos, D.P.; Stamopoulos, D.C. Fumigant toxicity of three essential oils on the eggs of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2004, 40, 517–525. [Google Scholar] [CrossRef]
- Bittner, M.L.; Casanueva, M.E.; Arbert, C.C.; Aguilera, M.A.; Hernández, V.J.; Becerra, J.V. Effects of essential oils from five plant species against the granary weevils Sitophilus zeamais and Acanthoscelides obtectus (Coleoptera). J. Chil. Chem. Soc. 2008, 53, 1455–1459. [Google Scholar] [CrossRef]
- Adarkwah, C.; Obeng-Ofori, D.; Hörmann, V.; Ulrichs, C.; Schöller, M. Bioefficacy of enhanced diatomaceous earth and botanical powders on the mortality and progeny production of Acanthoscelides obtectus (Coleoptera: Chrysomelidae), Sitophilus granarius (Coleoptera: Dryophthoridae) and Tribolium castaneum (Coleoptera: Tenebrionidae) in stored grain cereals. Int. J. Trop. Insect Sci. 2017, 37, 243–258. [Google Scholar] [CrossRef]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Combinations of plant essential oil-based terpene compounds as larvicidal and adulticidal agents against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 2019, 9, 9471. [Google Scholar] [CrossRef]
- Baliota, G.V.; Athanassiou, C.G. Evaluation of a Greek diatomaceous earth for stored product insect control and techniques that maximize its insecticidal efficacy. Appl. Sci. 2020, 10, 6441. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Civelek, H.S.; Kaban, Ö. The effects of some natural substances on Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Agric. Food 2016, 4, 537–543. [Google Scholar]
- Moura, E.D.S.; Faroni, L.R.D.A.; Zanuncio, J.C.; Heleno, F.F.; Prates, L.H.F. Insecticidal activity of Vanillosmopsis arborea essential oil and of its major constituent α-bisabolol against Callosobruchus maculatus (Coleoptera: Chrysomelidae). Sci. Rep. 2019, 9, 3723. [Google Scholar] [CrossRef]
- Delgarm, N.; Ziaee, M.; McLaughlin, A. Enhanced-efficacy Iranian diatomaceous earth for controlling two stored-product insect pests. J. Econ. Entomol. 2020, 113, 504–510. [Google Scholar] [CrossRef]
- Baghouz, A.; Bouchelta, Y.; Es-safi, I.; Bourhia, M.; Abdelfattah, E.M.; Alarfaj, A.A.; Hirad, A.H.; Nafidi, H.; Guemmouh, R. Identification of volatile compounds and insecticidal activity of essential oils from Origanum compactum Benth. and Rosmarinus officinalis L. against Callosobruchus maculatus (Fab.). J. Chem. 2022, 2022, 7840409. [Google Scholar] [CrossRef]
- Allen, F. A natural earth that controls insects. Org. Gard. Farm. 1972, 19, 50–56. [Google Scholar]
- Agrafioti, P.; Vrontaki, M.; Rigopoulou, M.; Lampiri, E.; Grigoriadou, K.; Ioannidis, P.M.; Rumbos, C.I.; Athanassiou, C.G. Insecticidal effect of diatomaceous earth formulations for the control of wide range of stored-product beetle species. Insects 2023, 14, 656. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Huang, Q.Y.; Lei, C.L. Advances in insect phototaxis and application to pest management: A review. Pest Manag. Sci. 2019, 75, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Ogreten, A.; Eren, S.; Mutlu, C.; Ayaz, T.; Saeed, A.; Bingham, G.V.; Morrison, W.R. Insecticidal effects of native raw and commercial diatomaceous earth against lesser grain borer and granary weevil under different environmental conditions. Insects 2025, 16, 549. [Google Scholar] [CrossRef]
- Yoon, J.; Tak, J.H. Cuticular property affects the insecticidal synergy of major constituents in thyme oil against houseflies, Musca domestica. Sci. Rep. 2023, 13, 12654. [Google Scholar] [CrossRef]
- Jacobs, E.; Chrissian, C.; Rankin-Turner, S.; Wear, M.; Camacho, E.; Broderick, N.A.; McMeniman, C.J.; Stark, R.E.; Casadevall, A. Cuticular profiling of insecticide resistant Aedes aegypti. Sci. Rep. 2023, 13, 10154. [Google Scholar] [CrossRef]
- Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Gidari, D.L.S.; Skourti, A.; Riasat, T. Advances in stored-product pest management: Combined effects of diatomaceous earths with botanicals, insecticides, entomopathogenic/plant pathogenic fungi, and silica gel. Sustainability 2025, 17, 3316. [Google Scholar] [CrossRef]
- Losic, D.; Korunić, Z. Diatomaceous earth, a natural insecticide for stored grain protection: Recent progress and perspectives. In Diatom Nanotechnology: Progress and Emerging Applications; Losic, D., Ed.; RSC Publishing: Cambridge, UK, 2018; pp. 219–247. [Google Scholar]
- Korunić, Z.; Liška, A.; Lucić, P.; Hamel, D.; Rozman, V. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 2020, 86, 101565. [Google Scholar] [CrossRef]
- Islam, M.S.; Hasan, M.H.; Lei, C.; Mucha-Pelzer, T.; Mewis, I.; Ulrichs, C. Direct and admixture toxicity of diatomaceous earth and monoterpenoids against the storage pests Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). J. Pest Sci. 2010, 83, 105–112. [Google Scholar] [CrossRef]
- Kaya, K.; Sertkaya, E.; Üremiş, I.; Soylu, S. Determination of chemical composition and fumigant insecticidal activities of essential oils of some medicinal plants against the adults of cowpea weevil, Callosobruchus maculatus. Kahramanmaraş Sütçü İmam Univ. J. Agric. Nat. 2018, 21, 708–714. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Pastorinho, M.R.; Palmeira-de-Oliveira, A.; Sousa, A.C. Ecotoxicity of plant extracts and essential oils: A review. Environ. Pollut. 2022, 292, 118319. [Google Scholar] [CrossRef] [PubMed]
- Nemati, A.; Sendi, J.J.; Fathipour, Y. Combined effects of gibberellin and vermiwash on the life history and antioxidant system of Phthorimaea absoluta (Meyrick) in tomato plants. Sci. Rep. 2025, 15, 4435. [Google Scholar] [CrossRef] [PubMed]
- Gajger, I.T.; Dar, S.A. Plant allelochemicals as sources of insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Eleftheriadou, N.; Filintas, C.S.; Boukouvala, M.C.; Gidari, D.L.S.; Skourti, A.; Ntinokas, D.; Ferrati, M.; Spinozzi, E.; Petrelli, R.; et al. The potency of essential oils in combating stored-product pests: From nature to nemesis. Plants 2025, 14, 192. [Google Scholar] [CrossRef]
- Manzanares-Sierra, A.; Monsonís-Güell, E.; Gómez, C.; Abril, S.; Moreno-Gómez, M. Essential oils as bioinsecticides against Blattella germanica (Linnaeus, 1767): Evaluating its efficacy under a practical framework. Insects 2025, 16, 98. [Google Scholar] [CrossRef]
- Vaglica, A.; Peri, E.; Badalamenti, N.; Ilardi, V.; Bruno, M.; Guarino, S. Chemical composition and evaluation of insecticidal activity of Seseli bocconei essential oils against stored products pests. Plants 2022, 11, 3047. [Google Scholar] [CrossRef]
- Andy, E.O.; Edema, A.J. Antifeedant potential of some aromatic plants against Cowpea Weevil, Callosobruchus maculatus. World J. Agric. Soil Sci. 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Sönmez, E. The effects of four plant extracts on longevity, the number of eggs laid and reproductive physiology of Acanthoscelides obtectus (Coleoptera: Bruchidae) and Callosobruchus maculatus (Coleoptera: Bruchidae). Biol. Bull. 2022, 48, 82–91. [Google Scholar] [CrossRef]
- Selimoğlu, T.; Gökçe, A.; Yanar, D. Fumigant toxicity of some plant essential oils to Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Turk. J. Entomol. 2015, 39, 109–118. [Google Scholar] [CrossRef]
- Obeng-Ofori, D.; Reichmuth, C.H.; Bekele, J.; Hasanali, A. Biological activity of 1,8-cineole, a major component of essential oil of Ocimum kenyense (Ayobangira) against stored product beetles. J. Appl. Entomol. 1997, 121, 237–243. [Google Scholar] [CrossRef]
- Adibmoradi, G.; Sendi, J.J.; Tirgari, S.; Imani, S.; Razavi-Nematolahi, A. Effect of 1,8-cineol on the biology and physiology of elm leaf beetle, Xanthogaleruca luteola (Col.: Chrysomelidae). J. Plant Prot. Res. 2018, 58, 420–430. [Google Scholar] [CrossRef]
- Aggarwal, K.K.; Tripathi, A.K.; Prajapati, V.; Kumar, S. Toxicity of 1,8-Cineole towards three species of stored product Coleopterans. Insect Sci. Applic. 2001, 21, 155–160. [Google Scholar] [CrossRef]
- Liška, A.; Rozman, V.; Kalinović, I.; Eđed, A.; Mustač, S.; Perhoč, B. Bioactivity of 1,8-cineole against red flour beetle, Tribolium castaneum (Herbst), pupae. Poljoprivreda 2011, 17, 58–63. [Google Scholar]
- Ayllón-Gutiérrez, R.; López-Maldonado, E.A.; Macías-Alonso, M.; González Marrero, J.; Díaz-Rubio, L.; Córdova-Guerrero, I.R. Evaluation of the stability of a 1,8-cineole nanoemulsion and its fumigant toxicity effect against the pests Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. Insects 2023, 14, 663. [Google Scholar] [CrossRef]
- Korunić, Z.; Rozman, V.; Liška, A.; Lucić, P. Laboratory tests on insecticidal effectiveness of disodium octaborate tetrahydrate, diatomaceous earth and amorphous silica gel against Sitophilus oryzae (L.) and their effect on wheat bulk density. Poljoprivreda 2017, 23, 3–10. [Google Scholar] [CrossRef][Green Version]
- Dassanayake, M.K.; Chong, C.H.; Khoo, T.J.; Figiel, A.; Szumny, A.; Choo, C.M. Synergistic field crop pest management properties of plant-derived essential oils in combination with synthetic pesticides and bioactive molecules: A review. Foods 2021, 10, 2016. [Google Scholar] [CrossRef]
- Bayram, A.; Işıkber, A.A.; Sağlam, O.; Şen, R. Evaluation of repellency effect of diatomaceous earth formulation (Detech®) on three coleopteran stored grain insects. In Proceedings of the 12th Conference of the Working Group IPSP, Pisa, Italy, 3–6 September 2019. [Google Scholar]
- Sağlam, O.; Şen, R.; Bozkurt, H.; Işıkber, A.A. Insecticidal efficacy of three commercial diatomaceous earths, Detech®, Demite® and Silicosec® against cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae). In Proceedings of the 12th Conference of the Working Group IPSP, Pisa, Italy, 3–6 September 2019. [Google Scholar]
- Ertürk, S. Combined and individual effects of diatomaceous earth and methyl eugenol against stored products insect pests. Turk. J. Entomol. 2021, 45, 163–174. [Google Scholar] [CrossRef]
- Tegegne, B. Combination effect of different insecticide plants against Acanthoscelides obtectus (Coleoptera: Bruchidae): Storage pests of common bean (Phaseolus vulgaris). J. Agric. Sci. Food Res. 2017, 8, 192. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Statistical Method in Biological Assay, 2nd ed.; Charles Griffin Company Limited: London, UK, 1964. [Google Scholar]
- Mekapogu, A.R. Finney’s Probit Analysis Spreadsheet Calculator (Version 2021). Available online: https://probitanalysis.wordpress.com/ (accessed on 15 May 2025).
- Scariot, M.A.; Reichert Júnior, F.W.; Radünz, L.L.; Barro, J.P.; Mossi, A.J. Salvia officinalis essential oil in bean weevil control. Pesqui. Agropecuária Trop. 2016, 46, 177–182. [Google Scholar] [CrossRef]
- Jovanovic, Z.; Kostic, M.; Popovic, Z. Grain-protective properties of herbal extracts against the bean weevil Acanthoscelides obtectus Say. Ind. Crops Prod. 2007, 26, 100–104. [Google Scholar] [CrossRef]
- Panhwar, Z.A.A.; Rajput, L.B.; Hajano, J.U.; Memon, S.A.; Koondhar, N.; Kubar, M.I. Pesticidal potential of essential oils against Callosobruchus maculatus Fab. (Coleoptera: Bruchidae) under laboratory conditions. Punjab Univ. J. Zool. 2023, 38, 201–210. [Google Scholar] [CrossRef]
- Duque, J.E.; Urbina, D.L.; Vesga, L.C.; Ortiz-Rodríguez, L.A.; Vanegas, T.S.; Stashenko, E.E.; Mendez-Sanchez, S.C. Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): An introduction to their possible mechanism of action. Sci. Rep. 2023, 13, 2989. [Google Scholar] [CrossRef]
- Jevremović, S.; Lazarević, J.; Kostić, M.; Krnjajić, S.; Ugrenović, V.; Radonjić, A.; Kostić, I. Contact application of Lamiaceae botanicals reduces bean weevil infestation in stored beans. Arch. Biol. Sci. 2019, 71, 665–676. [Google Scholar] [CrossRef]
- Subramanyam, B.; Roesli, R. Inert dusts. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Roesli, R., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2000; pp. 321–380. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Vayias, B.C. Laboratory evaluation of diatomaceous earth deposits mined from several locations in Central and Southeastern Europe as potential protectants against coleopteran grain pests. Crop Prot. 2011, 30, 329–339. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Arthur, F.H.; Campbell, J.F.; Donaldson, J.E. Particle size matters: Efficacy of aerosols for the control of stored product psocids. J. Stored Prod. Res. 2019, 83, 148–152. [Google Scholar] [CrossRef]
- Atay, T.; Alkan, M.; Ertürk, S.; Toprak, U. Individual and combined effects of α-Pinene and a native diatomaceous earth product on control of stored product beetle pests. J. Asia Pacific Entomol. 2023, 26, 102149. [Google Scholar] [CrossRef]
- Et-tazy, L.; Lamiri, A.; Bencheqroun, S.K.; Errati, H.; Hashem, A.; Avila-Quezada, G.D.; Abd-Allah, E.F.; Satrani, B.; Essahli, M.; Satia, L. Exploring synergistic insecticidal effects of binary mixtures of major compounds from six essential oils against Callosobruchus maculatus. Sci. Rep. 2025, 15, 15180. [Google Scholar] [CrossRef]
- Alkan, M.; Erturk, S.; Fırat, T.A.; Ciftci, E. Study of insecticidal and behavioral effects and some characteristic of native diatomaceous earth against the bean weevil, Acanthoscelides obtectus (Coleoptera: Chrysomelidae). Fresenius Environ. Bull. 2019, 28, 2916–2922. [Google Scholar]
- Jumbo, L.; Pimentel, M.; Oliveira, E.; Toledo, P.; Faroni, L.R. Potential of diatomaceous earth as a management tool against Acanthoscelides obtectus infestations. Rev. Cienc. Agric. 2019, 36, 42–51. [Google Scholar] [CrossRef]
- Susurluk, H.; Bütüner, A.K. Effects of a native diatomaceous earth on Oryzaephilus surinamensis (L., 1758) (Coleoptera: Silvanidae) and Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae). Harran Tarım Ve Gıda Bilim. Derg. 2024, 28, 49–59. [Google Scholar]
- Souto, P.M.; Antunes, A.F.; Nunes, V.C.S. Insect sensory system. In Encyclopedia of Animal Cognition and Behavior; Springer International Publishing: Cham, Switzerland, 2022; pp. 3510–3532. [Google Scholar] [CrossRef]
- Amiri, A.; Bandani, A.R. Callosobruchus embryo struggle to guarantee progeny production. Sci. Rep. 2020, 10, 13269. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappala, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- Yang, X.; Jin, C.; Wu, Z.; Han, H.; Zhang, Z.; Xie, Y.; Zhang, D. Toxicity and physiological effects of nine Lamiaceae essential oils and their major compounds on Reticulitermes dabieshanensis. Molecules 2023, 28, 2007. [Google Scholar] [CrossRef]
- Erol, A.B.; Birgücü, A.K. Effects of different plant essential oils on Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae: Bruchidae) adults. Turk. J. Agric. For. 2020, 7, 143–149. [Google Scholar] [CrossRef]
- Langsi, J.D.; Nukenine, E.N.; Oumarou, K.M.; Moktar, H.; Fokunang, C.N.; Mbata, G.N. Evaluation of the insecticidal activities of α-pinene and 3-carene on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Insects 2020, 11, 540. [Google Scholar] [CrossRef]
- Laftouhi, A.; Eloutassi, N.; Ech-Chihbi, E.; Rais, Z.; Abdellaoui, A.; Taleb, A.; Beniken, M.; Nafidi, H.A.; Salamatullah, A.M.; Bourhia, M.; et al. The impact of environmental stress on the secondary metabolites and the chemical compositions of the essential oils from some medicinal plants used as food supplements. Sustainability 2023, 15, 7842. [Google Scholar] [CrossRef]
- Enan, E.E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- El Baghazaoui, R.; Belmalha, S.; Boutagayout, A.; Nassiri, L.; El Alami, S.; Savoie, J.M.; Bouiamrine, E.H. Insecticidal properties and chemical characterization of Laurus nobilis L. essential oils from two regions of Morocco against Callosobruchus maculatus (Coleoptera: Bruchinae). Agriculture 2024, 14, 1150. [Google Scholar] [CrossRef]
- Wagner, L.S.; Sequín, C.J.; Perusset, S.A.; Fernández, E.N.; Pretti, J.; Campos-Soldini, M.P. Eucalyptol (1,8-cineole), a monoterpene oxide with potential for protecting soybean crops against insect pests and phytopathogenic fungi. Res. Sq. 2024, 1–13. [Google Scholar] [CrossRef]
- Krzyżowski, M.; Baran, B.; Łozowski, B.; Francikowski, J. The effect of Rosmarinus officinalis essential oil fumigation on biochemical, behavioral, and physiological parameters of Callosobruchus maculatus. Insects 2020, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Elma, F.N.; Alaoğlu, Ö. Ovicidal and anti-ovipositional activities of some plant extracts on the Eurygaster maura L. (Heteroptera: Scutellaridae). Int. J. Ecosyst. Ecol. Sci. 2014, 4, 67–72. [Google Scholar]
- Lazarević, J.; Jevremović, S.; Kostić, I.; Kostić, M.; Vuleta, A.; Jovanović, S.M.; Jovanović, D.S. Toxic, oviposition deterrent and oxidative stress effects of Thymus vulgaris essential oil against Acanthoscelides obtectus. Insects 2020, 11, 563. [Google Scholar] [CrossRef]
- Eltalawy, H.M.; El-Fayoumi, H.; Aboelhadid, S.M.; Al-Quraishy, S.; El-Mallah, A.M.; Tunali, F.; Sokmen, A.; Daferera, D.; Abdel-Baki, A.A.S. Repellency, fumigant toxicity, antifeedent and residual activities of Coridothymus capitatus and its main component carvacrol against red flour beetle. Molecules 2024, 29, 4255. [Google Scholar] [CrossRef]
- Erdemir, T.; Erler, F. Repellent, oviposition-deterrent and egg-hatching inhibitory effects of some plant essential oils against citrus mealybug, Planococcus citri Risso (Hemiptera: Pseudococcidae). J. Plant Dis. Prot. 2017, 124, 473–479. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.T.; Feng, Y.X.; Zhang, D.; Guo, S.S.; Pang, X.; Geng, Z.F.; Xi, C.; Du, S.S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod. 2019, 140, 111640. [Google Scholar] [CrossRef]
- Ramadan, G.R.M.; Shawir, M.S.; Abdelgaleil, S.A.M. Efficacy of pulegone and eugenol alone and in combination with synthetic insecticides for the management of three stored product beetle pests. J. Stored Prod. Res. 2024, 105, 102214. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Prajapati, V.; Aggarwal, K.K.; Kumar, S. Toxicity, feeding deterrence, and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2001, 94, 979–983. [Google Scholar] [CrossRef]
- Sittichok, S.; Passara, H.; Moungthipmalai, T.; Sinthusiri, J.; Murata, K.; Soonwera, M. Synergistic larvicidal and pupicidal effects of monoterpene mixtures against Aedes aegypti with low toxicity to guppies and honeybees. Insects 2025, 16, 738. [Google Scholar] [CrossRef]
- Yang, F.L.; Liang, G.W.; Xu, Y.J.; Lu, Y.Y.; Zeng, L. Diatomaceous earth enhances the toxicity of garlic, Allium sativum, essential oil against stored-product pests. J. Stored Prod. Res. 2010, 46, 118–123. [Google Scholar] [CrossRef]
- Paponja, I.; Rozman, V.; Liška, A. Natural formulation based on diatomaceous earth and botanicals against stored product insects. Insects 2020, 11, 613. [Google Scholar] [CrossRef]
- Gad, H.A.; Mohamed, S.; Al-Anany, W.M.; Sameer, F.S.; Al-Anany, F.S. Control of Acanthoscelides obtectus with Trichoderma harzianum applied alone or in combination with diatomaceous earth on a stored common bean. Plant Prot. Sci. 2020, 56, 107–115. [Google Scholar] [CrossRef]
- Mortazavi, H.; Toprak, U.; Emekci, M.; Bagci, F.; Ferizli, A.G. Persistence of diatomaceous earth, SilicoSec® against three stored grain beetles. J. Stored Prod. Res. 2020, 89, 101724. [Google Scholar] [CrossRef]
- Pierattini, E.C.; Bedini, S.; Venturi, F.; Ascrizzi, R.; Flamini, G.; Bocchino, R.; Girardi, J.; Giannotti, P.; Ferroni, G.; Conti, B. Sensory quality of essential oils and their synergistic effect with diatomaceous earth, for the control of stored grain insects. Insects 2019, 10, 114. [Google Scholar] [CrossRef]
- Rodríguez-González, A.; Álvarez-García, S.; González-López, Ó.; Da Silva, F.; Casquero, P.A. Insecticidal properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, insect pest of the common bean (Phaseolus vulgaris, L.). Insects 2019, 10, 151. [Google Scholar] [CrossRef]






| Source | Degree of Freedom | F-Value | p-Value |
|---|---|---|---|
| Dose | 16 | 36.886 | <0.001 |
| Time | 5 | 233.583 | <0.001 |
| Dose × Time | 80 | 49.287 | <0.001 |
| Total | 612 |
| Treatment | Days | LC50 (ppm) (95% Fiducial Limit) | Slope ± S.E. | p Value | Intercept |
|---|---|---|---|---|---|
| DE | 1st | 209.75 (127.31–343.94) | 1.645 ± 0.110 | 0.025 | 1.182 |
| 2nd | 109.81 (73.77–163.46) | 2.277 ± 0.088 | 0.114 | 0.354 | |
| 3rd | 83.85 (50.90–138.13) | −1.610 ± 0.111 | <0.001 | 8.097 | |
| 4th | 24.95 (5.15–120.92) | −0.474 ± 0.350 | <0.001 | 5.662 | |
| 7th | -- | -- | -- | -- | |
| 14th | -- | -- | -- | -- | |
| 1,8-cineole | 1st | 2.76 (1.46–5.22) | 1.320 ± 0.141 | <0.001 | 4.416 |
| 2nd | 1.44 (0.94–2.21) | 2.113 ± 0.094 | 0.017 | 4.661 | |
| 3rd | 1.42 (0.84–2.41) | 1.516 ± 0.117 | 0.010 | 4.767 | |
| 4th | 0.00009 (0.0000–0.01128) | −0.161 ± 1.072 | <0.001 | 4.347 | |
| 7th | 6.30 (1.83–21.60) | 0.632 ± 0.273 | <0.001 | 4.495 | |
| 14th | 0.0091 (0.00061–0.13495) | −0.283 ± 0.597 | 0.001 | 4.423 |
| Treatments | Doses (ppm) | Number of Eggs | Number of Unhatced Holes | Number of Hatched Holes | F1 Progeny | Inhibition Rate (IR%) |
|---|---|---|---|---|---|---|
| Mean ± S. E. | ||||||
| DE | Control | 5.35 ± 0.65 A | 2.54 ± 0.21 A | 1.70 ± 0.24 A | 1.40 ± 0.23 A | - |
| 25 | - | - | - | - | 100.00 | |
| 50 | - | - | - | - | 100.00 | |
| 100 | - | - | - | - | 100.00 | |
| 200 | - | - | - | - | 100.00 | |
| 400 | - | - | - | - | 100.00 | |
| 800 | - | - | - | - | 100.00 | |
| 1,8-cineole | 0.150 | 0.92 ± 0,15 B | 1.35 ± 0.11 B | 0.67 ± 0.06 B | 0.09 ± 0.02 B | 93.50 |
| 0.300 | 0.75 ± 0.26 B | 0.53 ± 0.09 C | 0.31 ± 0.05 B | 0.06 ± 0.01 B | 95.27 | |
| 0.600 | 0.64 ± 0.50 B | 0.15 ± 0.02 C | 0.15 ± 0.05 B | 0.03 ± 0.01 B | 97.65 | |
| 1.2 | - | - | - | - | 100.00 | |
| 2.5 | - | - | - | - | 100.00 | |
| 5 | - | - | - | - | 100.00 | |
| DE + 1,8-cineole | 25 + 0.600 | - | - | - | - | 100.00 |
| 25 + 2.5 | - | - | - | - | 100.00 | |
| 200 + 0.600 | - | - | - | - | 100.00 | |
| 200 + 2.5 | - | - | - | - | 100.00 | |
| F3,20 = | 42.716 | 65.013 | 24.901 | 31.460 | ||
| p | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sönmez, E. Eco-Friendly Management of Acanthoscelides obtectus Through Individual and Combined Applications of 1,8-Cineole and Diatomaceous Earth. Insects 2026, 17, 132. https://doi.org/10.3390/insects17020132
Sönmez E. Eco-Friendly Management of Acanthoscelides obtectus Through Individual and Combined Applications of 1,8-Cineole and Diatomaceous Earth. Insects. 2026; 17(2):132. https://doi.org/10.3390/insects17020132
Chicago/Turabian StyleSönmez, Evrim. 2026. "Eco-Friendly Management of Acanthoscelides obtectus Through Individual and Combined Applications of 1,8-Cineole and Diatomaceous Earth" Insects 17, no. 2: 132. https://doi.org/10.3390/insects17020132
APA StyleSönmez, E. (2026). Eco-Friendly Management of Acanthoscelides obtectus Through Individual and Combined Applications of 1,8-Cineole and Diatomaceous Earth. Insects, 17(2), 132. https://doi.org/10.3390/insects17020132

