A Tandem Metabarcoding and Taxonomic Forensics Approach to Surveillance of Mosquito–Plant Interactions for Culex quinquefasciatus in Florida
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquitoes and Sampling Sites
2.2. External Plant Contaminant Rinse Protocol
2.3. Mosquito Homogenization and DNA Extraction
2.4. Amplification of Chloroplast Gene rbcL
2.5. Nanopore Sequencing and Bioinformatics
2.6. Statistical Analyses
3. Results
3.1. Summary of Sample Processing and Amplicon Length Filtering
3.2. Plant Families and Genera Identified in Adult Female Culex Quinquefasciatus from Six Counties in Florida
3.3. Plant Species Identified in Adult Female Culex Quinquefasciatus from Six Counties in Florida with Associated Vouchers
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Cx | Culex |
| ATSB | Attractive toxic sugar bait |
| CDC | Center of Disease Control, United States |
| rbcL | ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene |
| matK | megakaryocyte-associated tyrosine kinase gene |
| trnH-psbA | interspacer region of the transfer RNA (ribonucleic acid) for histidine gene and the D1 protein in photosystem II gene. |
| atpB | beta-subunit of ATP (adenosine triphosphate) synthase gene |
| U.S. | United States of America |
| DNA | deoxyribonucleic acid |
| PCR | polymerase chain reaction |
| CTAB | cetrimonium bromide |
| NCBI | National Center for Biotechnology Information |
| BLAST | Basic Local Alignment Search Tool |
References
- Burkett, D.A. Analysis of composition of sugar meals of wild mosquitoes by gas chromatography. J. Am. Mosq. Control Assoc. 1998, 14, 373–379. [Google Scholar] [PubMed]
- Peach, D.A.H.; Gries, G. Mosquito phytophagy—Sources exploited, ecological function, and evolutionary transition to haematophagy. Entomol. Exp. Appl. 2020, 168, 120–136. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- Kinya, F.; Milugo, T.K.; Mutero, C.M.; Wondji, C.S.; Torto, B.; Tchouassi, D.P. Insights into malaria vectors–plant interaction in a dryland ecosystem. Sci. Rep. 2024, 14, 20625. [Google Scholar] [CrossRef]
- Yang, L.; Turo, K.J.; Riley, C.B.; Inocente, E.A.; Tian, J.; Hoekstra, N.C.; Piermarini, P.M.; Gardiner, M.M. Can urban greening increase vector abundance in cities? The impact of mowing, local vegetation, and landscape composition on adult mosquito populations. Urban Ecosyst. 2019, 22, 827–839. [Google Scholar] [CrossRef]
- Agha, S.B.; Alvarez, M.; Becker, M.; Fèvre, E.M.; Junglen, S.; Borgemeister, C. Invasive alien plants in Africa and the potential emergence of mosquito-borne arboviral diseases—A review and research outlook. Viruses 2021, 13, 32. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Xie, Y.; Hunter, M.; Sorensen, A.; Nogeire-McRae, T.; Murphy, R.; Suraci, J.P.; Lischka, S.; Lark, T.J. U.S. farmland under threat of urbanization: Future development scenarios to 2040. Land 2023, 12, 574. [Google Scholar] [CrossRef]
- Duval, P.; Antonelli, P.; Aschan-Leygonie, C.; Valiente Moro, C. Impact of human activities on disease-spreading mosquitoes in urban areas. J. Urban Health 2023, 100, 591–611. [Google Scholar] [CrossRef] [PubMed]
- Laginhas, B.B.; Fertakos, M.E.; Bradley, B.A. We don’t know what we’re missing: Evidence of a vastly undersampled invasive plant pool. Ecol. Appl. 2023, 33, e2776. [Google Scholar] [CrossRef]
- Fiorenzano, J.M.; Koehler, P.G.; Xue, R.-D. Attractive toxic sugar bait (ATSB) for control of mosquitoes and its impact on non-target organisms: A review. Int. J. Environ. Res. Public Health 2017, 14, 398. [Google Scholar] [CrossRef] [PubMed]
- Herreros-Moya, E.; Sinka, M.; Harris, A.F.; Entwistle, J.; Martin, A.C.; Willis, K.J. The food of life: Which nectar do mosquitoes feed on? -an evidence-based meta-analysis. Environ. Entomol. 2025, 54, 352–366. [Google Scholar] [CrossRef]
- Upshur, I.F.; Fehlman, M.; Parikh, V.; Vinauger, C.; Lahondère, C. Sugar feeding by invasive mosquito species on ornamental and wild plants. Sci. Rep. 2023, 13, 22121. [Google Scholar] [CrossRef] [PubMed]
- Nyasembe, V.O.; Tchouassi, D.P.; Pirk, C.W.W.; Sole, C.L.; Torto, B. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl. Trop. Dis. 2018, 12, e0006185. [Google Scholar] [CrossRef]
- Schlein, Y.; Müller, G.C. An approach to mosquito control: Using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J. Med. Entomol. 2008, 45, 384–390. [Google Scholar] [CrossRef]
- Chen, Z.; Kearney, C.M. Nectar protein content and attractiveness to Aedes aegypti and Culex pipiens in plants with nectar/insect associations. Acta Trop. 2015, 146, 81–88. [Google Scholar] [CrossRef]
- Van Handel, E. Rapid determination of total lipids in mosquitoes. J. Am. Mosq. Control Assoc. 1985, 1, 302–304. [Google Scholar]
- Van Handel, E.; Haeger, J.S.; Hansen, C.W. The sugars of some Florida nectars. Am. J. Bot. 1972, 59, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, C.H.; Miura, T. Sources of energy utilized by natural populations of the mosquito, Culex tarsalis, for overwintering. J. Insect Physiol. 1972, 18, 797–805. [Google Scholar] [CrossRef]
- Cooper, A.N.; Malmgren, L.; Hawkes, F.M.; Farrell, I.W.; Hien, D.F.d.S.; Hopkins, R.J.; Lefèvre, T.; Stevenson, P.C. Identifying mosquito plant hosts from ingested nectar secondary metabolites. Sci. Rep. 2025, 15, 6488. [Google Scholar] [CrossRef]
- Downes, J.A. The feeding habits of biting flies and their significance in classification. Annu. Rev. Entomol. 1958, 3, 249–266. [Google Scholar] [CrossRef]
- Nyasembe, V.O.; Cheseto, X.; Kaplan, F.; Foster, W.A.; Teal, P.E.A.; Tumlinson, J.H.; Borgemeister, C.; Torto, B. The invasive American weed Parthenium hysterophorus can negatively impact malaria control in Africa. PLoS ONE 2015, 10, e0137836. [Google Scholar] [CrossRef]
- Cassone, B.J.; Pilling, B.G.; Borrego-Benjumea, A.; LeMoine, C.M.R. Identification of nectar sources foraged by female mosquitoes in Canada. J. Insect Sci. 2024, 24, 11. [Google Scholar] [CrossRef]
- Wanjiku, C.; Tchouassi, D.P.; Sole, C.L.; Pirk, C.; Torto, B. Plant sugar feeding patterns of wild-caught Aedes aegypti from dengue endemic and non-endemic areas of Kenya. Med. Vet. Entomol. 2021, 35, 417–425. [Google Scholar] [CrossRef]
- Abbasi, I.; Akad, F.; Studentsky, L.; Avi, I.B.; Orshan, L.; Warburg, A. A next-generation (DNA) sequencing (NGS)–based method for identifying the sources of sugar meals in mosquito vectors of West Nile virus in Israel. J. Vector Ecol. 2022, 47, 109–116. [Google Scholar] [CrossRef]
- Li, Y.; Tong, Y.; Xing, F. DNA barcoding evaluation and its taxonomic implications in the recently evolved genus Oberonia Lindl. (Orchidaceae) in China. Front. Plant Sci. 2016, 7, 1791. [Google Scholar] [CrossRef]
- Travadi, T.; Shah, A.P.; Pandit, R.; Sharma, S.; Joshi, C.; Joshi, M. A combined approach of DNA metabarcoding collectively enhances the detection efficiency of medicinal plants in single and polyherbal formulations. Front. Plant Sci. 2023, 14, 1169984. [Google Scholar] [CrossRef]
- Corvalán, L.C.J.; de Melo-Ximenes, A.A.; Carvalho, L.R.; e Silva-Neto, C.d.M.; Diniz-Filho, J.A.F.; Telles, M.P.d.C.; Nunes, R. Is there a key primer for amplification of core land plant DNA barcode regions (RbcL and MatK)? Ecol. Evol. 2025, 15, e70961. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, T.G. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J. Am. Mosq. Control Assoc. 2012, 28, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Rochlin, I.; Faraji, A.; Healy, K.; Andreadis, T.G. West Nile virus mosquito vectors in North America. J. Med. Entomol. 2019, 56, 1475–1490. [Google Scholar] [CrossRef] [PubMed]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Kress, W.J.; Erickson, D.L. A two-locus global DNA barcode for land plants: The coding RbcL gene complements the non-coding TrnH-PsbA spacer region. PLoS ONE 2007, 2, e508. [Google Scholar] [CrossRef]
- Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W.; Cowan, R.S.; Erickson, D.L.; Fazekas, A.J.; et al. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef]
- GitHub. GitHub—lh3/Seqtk: Toolkit for Processing Sequences in FASTA/Q Formats. Available online: https://github.com/lh3/seqtk (accessed on 6 February 2025).
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Wickham, H.; Francois, R.; Henry, L.; Muller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4, 2023. Available online: https://cran.r-project.org/web/packages/dplyr/index.html (accessed on 18 December 2025).
- Valentini, A.; Pompanon, F.; Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009, 24, 110–117. [Google Scholar] [CrossRef]
- Wunderlin, R.P.; Hansen, B.F.; Franck, A.F.; Essig, F.B. Atlas of Florida Plants. [SM Landry and KN Campbell (Application Development)]; Institute of Systematic Botany, University of South Florida: Tampa, FL, USA, 2025; Available online: https://florida.plantatlas.usf.edu (accessed on 18 December 2025).
- Grimstad, P.R.; DeFoliart, G.R. Nectar sources of Wisconsin mosquitoes. J. Med. Entomol. 1974, 11, 331–341. [Google Scholar] [CrossRef]
- Andersson, I.H.; Jaenson, T.G.T. Nectar feeding by mosquitoes in Sweden, with special reference to Culex pipiens and Cx Torrentium. Med. Vet. Entomol. 1987, 1, 59–64. [Google Scholar] [CrossRef]
- Peach, D.A.H.; Gries, G. Nectar thieves or invited pollinators? A case study of tansy flowers and common house mosquitoes. Arthropod Plant Interact. 2016, 10, 497–506. [Google Scholar] [CrossRef]
- Muller, G.C.; Junnila, A.; Traore, M.M.; Traore, S.F.; Doumbia, S.; Sissoko, F.; Dembele, S.M.; Schlein, Y.; Arheart, K.L.; Revay, E.E.; et al. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: A habitat manipulation experiment. Malar. J. 2017, 16, 237. [Google Scholar] [CrossRef]
- Stone, C.M.; Witt, A.B.R.; Walsh, G.C.; Foster, W.A.; Murphy, S.T. Would the control of invasive alien plants reduce malaria transmission? A review. Parasites Vectors 2018, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Guttation: Mechanism, momentum and modulation. Bot. Rev. 2016, 82, 149–182. [Google Scholar] [CrossRef]
- Urbaneja-Bernat, P.; Tena, A.; González-Cabrera, J.; Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects: Guttation: A reliable insect food source. Proc. Biol. Sci. 2020, 287, 20201080. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.W.; Powell, A.J.; Dougherty, C.T.; Vincelli, P. Separation and quantitation of the sources of dew on creeping bentgrass. Crop Sci. 1998, 38, 1613–1617. [Google Scholar] [CrossRef]
- Moore, M.R.; Halbert, S.E.; McVay, J.D.; Miller, G.L. Thelaxes suberi, an oak aphid (Hemiptera: Aphididae: Thelaxinae) new to the Western Hemisphere. Proc. Entomol. Soc. Wash. 2022, 123, 808–819. [Google Scholar] [CrossRef]
- Ammar, E.-D.; Alessandro, R.; Hall, D. Ultrastructural and chemical studies on waxy secretions and wax-producing structures on the integument of the woolly oak aphid Stegophylla brevirostris Quednau (Hemiptera: Aphididae). J. Microsc. Ultrastruct. 2013, 1, 43. [Google Scholar] [CrossRef]
- Haeger, J. The non-blood feeding habits of Aedes taeniorhynchus (Diptera, Culicidae) on Sanibel Island, Florida. Mosq. News 1955, 15, 21–26. [Google Scholar] [CrossRef]
- Clouse, R.M.; Deyrup, M.A. Observations of insects associated with an infestation of sand pine (Pinus clausa) by the aphid Cinara pinivora. Fla. Sci. 1997, 60, 89–93. [Google Scholar]
- Savage, H.M.; Anderson, M.; Gordon, E.; Mcmillen, L.; Colton, L.; Delorey, M.; Sutherland, G.; Aspen, S.; Charnetzky, D.; Burkhalter, K.; et al. Host-seeking heights, host-seeking activity patterns, and West Nile virus infection rates for members of the Culex pipiens complex at different habitat types within the hybrid zone, Shelby County, TN, 2002 (Diptera: Culicidae). J. Med. Entomol. 2008, 45, 276–288. [Google Scholar] [CrossRef]
- Dötterl, S.; JahreIb, K.; Salma Jhumur, U.; Jürgens, A. Temporal variation of flower scent in Silene otites (Caryophyllaceae): A species with a mixed pollination system. Bot. J. Linn. Soc. 2012, 169, 447–460. [Google Scholar] [CrossRef]
- Utzeri, V.J.; Schiavo, G.; Ribani, A.; Tinarelli, S.; Bertolini, F.; Bovo, S.; Fontanesi, L. Entomological signatures in honey: An environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes. Sci. Rep. 2018, 8, 9996. [Google Scholar] [CrossRef]
- Pacini, E.; Hesse, M. Pollenkitt—Its composition, forms and functions. Flora—Morphol. Distrib. Funct. Ecol. Plants 2005, 200, 399–415. [Google Scholar] [CrossRef]
- Dobson, H.E.M. Survey of pollen and pollenkitt lipids–chemical cues to flowers visitors? Am. J. Bot. 1988, 75, 170–182. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, H.K.; Lee, S.J. Experimental analysis of the blood-sucking mechanism of female mosquitoes. J. Exp. Biol. 2011, 214, 1163–1169. [Google Scholar] [CrossRef]
- Kong, X.Q.; Wu, C.W. Measurement and prediction of insertion force for the mosquito fascicle penetrating into human skin. J. Bionic Eng. 2009, 6, 143–152. [Google Scholar] [CrossRef]
- Hao, K.; Tian, Z.X.; Wang, Z.C.; Huang, S.Q. Pollen grain size associated with pollinator feeding strategy. Proc. Biol. Sci. 2020, 287, 20201191. [Google Scholar] [CrossRef] [PubMed]
- Meudt, H.M. Pollen morphology and its taxonomic utility in the Southern Hemisphere bracteate-prostrate forget-me-nots (Myosotis, Boraginaceae). N. Z. J. Bot. 2016, 54, 475–497. [Google Scholar] [CrossRef]
- Cholleton, D.; Bialic, E.; Dumas, A.; Kaluzny, P.; Rairoux, P.; Miffre, A. Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollen towards pollen classification. Atmos. Meas. Tech. 2022, 15, 1021–1032. [Google Scholar] [CrossRef]
- Barredo, E.; DeGennaro, M. Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends Parasitol. 2020, 36, 473–484. [Google Scholar] [CrossRef]
- Gardner, A.M.; Muturi, E.J.; Overmier, L.D.; Allan, B.F. Large-scale removal of invasive honeysuckle decreases mosquito and avian host abundance. EcoHealth 2017, 14, 750–761. [Google Scholar] [CrossRef]



| County | Total Pools | Total Positive | Percent Positive |
|---|---|---|---|
| Collier | 155 | 87 | 56.1% |
| Escambia | 55 | 10 | 18.2% |
| Miami-Dade | 204 | 35 | 17.2% |
| Pasco | 29 | 29 | 100% |
| St. Johns | 100 | 17 | 17.0% |
| Volusia | 105 | 45 | 42.9% |
| County | ||||||
|---|---|---|---|---|---|---|
| Collier | Escambia | Miami-Dade | Pasco | St. Johns | Volusia | |
| Family Genus | Mean Reads per Pooled Mosquito Samples (Number of Pools) a | |||||
| Acanthaceae | - | - | - | - | 330.0 (2) | - |
| Avicennia | - | - | - | - | 330.0 (2) | - |
| Altingiaceae | - | - | 14.0 (1) | - | - | - |
| Liquidambar | - | - | 14.0 (1) | - | - | - |
| Apiaceae | 10.5 (2) | - | - | - | - | - |
| Daucus | 10.5 (2) | - | - | - | - | - |
| Apocynaceae | 119.3 (12) | - | - | 28.0 (1) | 51.0 (1) | 6.5 (2) |
| Tabernaemontana | 119.3 (12) | - | - | 28.0 (1) | - | 6.5 (2) |
| Orthosia | - | - | - | - | 51.0 (1) | - |
| Arecaceae | 23.0 (1) | - | - | - | - | - |
| Sabal | 23.0 (1) | - | - | - | - | - |
| Betulaceae | 201.0 (1) | - | - | - | - | - |
| Carpinus | 201.0 (1) | - | - | - | - | - |
| Brassicaceae | 26.0 (2) | - | - | - | - | - |
| Brassica | 26.0 (2) | - | - | - | - | - |
| Cannabaceae | 96.0 (2) | - | - | 82.0 (1) | - | - |
| Celtis | 96.0 (2) | - | - | 82.0 (1) | - | - |
| Caprifoliaceae | - | 224.0 (4) | - | 209.1 (11) | 965.0 (1) | 13.8 (5) |
| Lonicera | - | 224.0 (4) | - | 209.1 (11) | 965.0 (1) | 13.8 (5) |
| Cucurbitaceae | 9.0 (1) | - | - | 9.0 (3) | - | - |
| Cucumis | 9.0 (1) | - | - | 9.0 (3) | - | - |
| Cupressaceae | 12.4 (15) | - | - | - | - | 21.2 (5) |
| Hesperocyparis | 6.7 (3) | - | - | - | - | 13.7 (3) |
| Juniperus | 2.8 (4) | - | - | - | - | 7.5 (2) |
| Taxodium | 3.0 (8) | - | - | - | - | - |
| Dioscoreaceae | 3.7 (3) | - | 18.0 (1) | - | 13.0 (2) | - |
| Dioscorea | 3.7 (3) | - | 18.0 (1) | - | 13.0 (2) | - |
| Fabaceae | 121.8 (9) | 5.0 (2) | 2492.0 (3) | 58.5 (2) | - | 56.6 (10) |
| Acacia | 18.0 (1) | - | - | - | - | - |
| Arachis | 5.3 (4) | - | - | - | - | 56.6 (10) |
| Desmodium | 75.5 (2) | - | - | - | - | - |
| Medicago | 11.0 (1) | - | 58.0 (1) | - | - | - |
| Trigonella | 12.0 (1) | - | - | - | - | - |
| Glycine | - | 5.0 (2) | - | 58.5 (2) | - | - |
| Cassia | - | - | 2420.0 (1) | - | - | - |
| Cenostigma | - | - | 14.0 (1) | - | - | - |
| Fagaceae | 888.0 (250) | 446.8 (5) | 525.5 (48) | 141.8 (30) | 306.2 (12) | 683.0 (116) |
| Lithocarpus | 3.2 (45) | - | - | - | - | 6.6 (32) |
| Quercus | 884.8 (205) | 446.8 (5) | 525.5 (48) | 141.8 (30) | 306.2 (12) | 676.4 (84) |
| Juglandaceae | - | - | 23.0 (2) | 77.5 (2) | - | - |
| Juglans | - | - | 23.0 (2) | 77.5 (2) | - | - |
| Lauraceae | 9.6 (10) | - | - | - | - | - |
| Laurus | 6.4 (5) | - | - | - | - | - |
| Lindera | 3.2 (5) | - | - | - | - | - |
| Moraceae | - | - | - | - | - | 23.0 (1) |
| Broussonetia | - | - | - | - | - | 23.0 (1) |
| Musaceae | - | 18.0 (1) | 272.0 (1) | 27.0 (3) | 38.0 (1) | 41.0 (2) |
| Musa | - | 18.0 (1) | 272.0 (1) | 27.0 (3) | 38.0 (1) | 41.0 (2) |
| Nyssaceae | 100.6 (16) | - | 33.5 (2) | 31.0 (1) | - | 8.5 (2) |
| Nyssa | 100.6 (16) | - | 33.5 (2) | 31.0 (1) | - | 8.5 (2) |
| Oleaceae | - | - | - | - | - | 13.0 (1) |
| Fraxinus | - | - | - | - | - | 13.0 (1) |
| Pinaceae | 1256.4 (159) | 62.5 (4) | 296.9 (48) | 203.0 (38) | 19.5 (8) | 206.3 (51) |
| Pinus | 1256.4 (159) | 62.5 (4) | 296.9 (48) | 203.0 (38) | 19.5 (8) | 206.3 (51) |
| Plantaginaceae | 26.0 (1) | - | 35.3 (3) | - | - | 8.3 (3) |
| Russelia | 26.0 (1) | - | 35.3 (3) | - | - | 8.3 (3) |
| Platanaceae | 54.0 (1) | - | 53.0 (1) | - | - | - |
| Platanus | 54.0 (1) | - | 53.0 (1) | - | - | - |
| Poaceae | 49.0 (1) | 176.7 (4) | - | 193.0 (6) | - | 57.9 (18) |
| Zea | 49.0 (1) | 20.7 (3) | - | 43.0 (2) | - | - |
| Triticum | - | 156.0 (1) | - | 70.0 (1) | - | - |
| Aegilops | - | - | - | 12.0 (1) | - | - |
| Paspalidium | - | - | - | 11.0 (1) | - | 6.8 (9) |
| Stenotaphrum | - | - | - | 57.0 (1) | - | 51.1 (9) |
| Rhizophoraceae | 13.0 (1) | - | - | - | - | - |
| Rhizophora | 13.0 (1) | - | - | - | - | - |
| Rosaceae | 32.0 (2) | - | - | 13.0 (2) | - | - |
| Malus | 32.0 (2) | - | - | - | - | - |
| Fragaria | - | - | - | 13.0 (2) | - | - |
| Solanaceae | 724.8 (5) | - | - | - | - | 7.0 (2) |
| Solanum | 724.8 (5) | - | - | - | - | 7.0 (2) |
| Ulmaceae | - | - | - | - | 27.0 (1) | 24.0 (1) |
| Ulmus | - | - | - | - | 27.0 (1) | 24.0 (1) |
| Verbenaceae | 16.0 (1) | - | - | - | - | - |
| Phyla | 16.0 (1) | - | - | - | - | - |
| Vitaceae | - | - | - | 63.0 (1) | - | - |
| Vitis | - | - | - | 63.0 (1) | - | - |
| Positive pools | 87 | 10 | 35 | 29 | 17 | 45 |
| County | Family | Scientific Name | Common Name | Flowering at Time of Collection (Season) |
|---|---|---|---|---|
| Collier | Plantaginaceae | Russelia equisetiformis | Firecracker plant | Yes (fall) |
| Escambia | Poaceae | Triticum aestivum | Wheat | NA a (fall) |
| Escambia | Poaceae | Zea mays | Corn | NA a (fall) |
| Miami-Dade | Fabaceae | Cassia fistula | Golden shower tree | Yes (spring) |
| Miami-Dade | Plantaginaceae | Russelia equisetiformis | Firecracker plant | Yes (spring) |
| Pasco | Poaceae | Stenotaphrum secundatum | St. Augustine grass | NA a (summer) |
| St. Johns | Apocynaceae | Orthosia scoparia | Leafless swallowwort | Yes (summer) |
| Volusia | Moraceae | Broussonetia papyrifera | Paper mulberry | No b (summer) |
| Volusia | Poaceae | Stenotaphrum secundatum | St. Augustine grass | NA a (summer) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mosore, M.-T.; Mishra, S.; Villa, M.; Agbodzi, B.; Estep, A.S.; Prasauskas, A.; Qualls, W.A.; Killingsworth, D.; Unlu, I.; Tressler, M.; et al. A Tandem Metabarcoding and Taxonomic Forensics Approach to Surveillance of Mosquito–Plant Interactions for Culex quinquefasciatus in Florida. Insects 2026, 17, 13. https://doi.org/10.3390/insects17010013
Mosore M-T, Mishra S, Villa M, Agbodzi B, Estep AS, Prasauskas A, Qualls WA, Killingsworth D, Unlu I, Tressler M, et al. A Tandem Metabarcoding and Taxonomic Forensics Approach to Surveillance of Mosquito–Plant Interactions for Culex quinquefasciatus in Florida. Insects. 2026; 17(1):13. https://doi.org/10.3390/insects17010013
Chicago/Turabian StyleMosore, Mba-Tihssommah, Shova Mishra, Milani Villa, Bright Agbodzi, Alden S. Estep, Agne Prasauskas, Whitney A. Qualls, Daniel Killingsworth, Isik Unlu, Miranda Tressler, and et al. 2026. "A Tandem Metabarcoding and Taxonomic Forensics Approach to Surveillance of Mosquito–Plant Interactions for Culex quinquefasciatus in Florida" Insects 17, no. 1: 13. https://doi.org/10.3390/insects17010013
APA StyleMosore, M.-T., Mishra, S., Villa, M., Agbodzi, B., Estep, A. S., Prasauskas, A., Qualls, W. A., Killingsworth, D., Unlu, I., Tressler, M., Dinglasan, R. R., & Burgess, E. R., IV. (2026). A Tandem Metabarcoding and Taxonomic Forensics Approach to Surveillance of Mosquito–Plant Interactions for Culex quinquefasciatus in Florida. Insects, 17(1), 13. https://doi.org/10.3390/insects17010013

