Developmental Biology and Seasonal Damage of the Grape Borer Xylotrechus pyrrhoderus in Grapevines
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Investigation of Damaged Canes
2.3. Micro-CT of Damaged and Healthy Canes
2.4. Tracking and Photographing the Development Status of X. pyrrhoderus in Canes Using X-Ray Imaging
2.5. Data Analysis
3. Results
3.1. External Characteristics of Damaged Canes
3.2. Internal Characteristics of Damaged Canes
3.3. Developmental Stages and Morphological Characteristics of X. pyrrhoderus Within Grapevine Canes as Revealed by X-Ray Image Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakai, T.; Nakagawa, Y.; Takahashi, J.; Iwabuchi, K.; Ishii, K. Isolation and identification of the male sex pheromone of the grape borer Xylotrechus pyrrhoderus Bates (Coleoptera: Cerambyci Dae). Chem. Lett. 1984, 13, 263–264. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Takahashi, J.; Nakagawa, Y.; Sakai, T. Electroantennogram responses of grape borer Xylotrechus pyrrhoderus bates (Coleoptera: Cerambycidae) to its male sex pheromone components. J. Chem. Ecol. 1985, 11, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Liang, M. Investigation on occurrence regularity and prevention and controlsuggestions for hairy grape Xylotrechus in Luocheng county. South China Agric. 2020, 14, 28–30. [Google Scholar] [CrossRef]
- Escriche, B. Effect of Cry Toxins on Xylotrechus arvicola (Coleoptera: Cerambycidae) Larvae. Insects 2021, 13, 27. [Google Scholar] [CrossRef]
- Han, Y.-E.; Lyu, D.-P. Taxonomic review of the genus Xylotrechus (Coleoptera: Cerambycidae: Cerambycinae) in Korea with a newly recorded species. Korean J. Appl. Entomol. 2010, 49, 69–82. [Google Scholar] [CrossRef][Green Version]
- Feng, J.; Qiang, C.; Hu, C.; Tao, P. Grape pest species and main pests in Xuzhou area. Jiangsu Agric. Sci. 2013, 41, 110–111. [Google Scholar] [CrossRef]
- Cao, T.; Wang, R. Coleoptera, Cerambycidae in Shanxi Province. J. Shanxi Agric. Univ. Nat. Sci. Ed. 2007, 27, 344–347. [Google Scholar] [CrossRef]
- Dong, G.; Guo, W. Preliminary Report on Species in Cerambycidae in Anhui Province. Anhui For. Sci. Technol. 2018, 44, 23–27. [Google Scholar]
- Zhang, J. Faunal Analysis and Phylogenetic Study of Clytini in China. Master’s Thesis, Southwest Agricultural University, Chongqing, China, 2005. [Google Scholar]
- Qu, S. Different hazard characteristics and control of Paranthrene regalis Butler and Xylotrechus pyrrhoderus Bates. Mod. Hortic. 2013, 2, 115–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, G.; Gao, Z. The analyses of the species diversityand faunal distribution of Coleoptera in Beijing-Tianjin-Hebei of China. J. Environ. Entomol. 2014, 36, 9. [Google Scholar]
- Huang, G.; Yang, B. The occurrence law and prevention of Xylotrechus pyrrhoderus Bates. Henan Agric. 2002, 05, 17. [Google Scholar]
- Ren, B.; Li, Y. Studies on the Diversity of Coleoptera Insects Damaging the Agriculture and Forestry in the Northeast Area of China (III). J. Jilin Agric. Univ. 2001, 02, 26–30. [Google Scholar] [CrossRef]
- Iwabuchi, K. Mating behavior of Xylotrechus pyrrhoderus Bates (Coleoptera: Cerambycidae) I. Behavioral sequences and existence of the male sex pheromone. Appl. Entomol. Zool. 1982, 17, 494–500. [Google Scholar] [CrossRef]
- Zhang, W.; Bai, C.; Ma, G.; Zhang, B.; Ma, C. Research Progress on Borer Pest in Grape. J. Anhui Agric. Sci. 2018, 46, 25–28+55. [Google Scholar] [CrossRef]
- Fukaya, M.; Kiriyama, S.; Yagami, S.; Iwata, R.; Yasui, H.; Tokoro, M.; Zou, Y.; Millar, J.G. Identification of a Male-Produced Aggregation Sex Pheromone in Rosalia batesi, an Endemic Japanese Longhorn Beetle. Insects 2023, 14, 867. [Google Scholar] [CrossRef]
- Ehara, S. Comparative anatomy of male genitalia in some cerambycid beetles (with 199 text-figures). Minutes Fac. Sci. Hokkaido Univ. 1954, 12, 61–115. [Google Scholar]
- Iwabuchi, K. Mating behavior of Xylotrechus pyrrhoderus Bates (Coleoptera: Cerambycidae) II. Female recognition by male and the existence of a female sex pheromone. Appl. Entomol. Zool. 1985, 20, 416–423. [Google Scholar] [CrossRef]
- Ashihara, W. Effects of temperature and photoperiod on the development of the grape borer, Xylotrechus pyrrhoderus Bates (Coleoptera: Cerambycidae). Jpn. J. Appl. Entomol. Zool. 1982, 26, 15–22. [Google Scholar] [CrossRef]
- Ashihara, W. Seasonal life history of the grape borer, Xylotrechus pyrrhoderus Bates. Bull. Fruit Tree Res. Stn. Ser. E Akitsu 1982, E4, 91–112. [Google Scholar]
- Ogawa, Y.; Kondo, N.; Shibusawa, S. Inside quality evaluation of fruit by X-ray image. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; IEEE: Piscataway, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Herremans, E.; Melado-Herreros, A.; Defraeye, T.; Verlinden, B.; Hertog, M.; Verboven, P.; Val, J.; Fernández-Valle, M.E.; Bongaers, E.; Estrade, P.; et al. Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars. Postharvest Biol. Technol. 2014, 87, 42–50. [Google Scholar] [CrossRef]
- Herremans, E.; Verboven, P.; Defraeye, T.; Rogge, S.; Ho, Q.T.; Hertog, M.L.; Verlinden, B.E.; Bongaers, E.; Wevers, M.; Nicolai, B.M. X-ray CT for quantitative food microstructure engineering: The apple case. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 324, 88–94. [Google Scholar] [CrossRef]
- Narvankar, D.; Singh, C.; Jayas, D.; White, N. Assessment of soft X-ray imaging for detection of fungal infection in wheat. Biosyst. Eng. 2009, 103, 49–56. [Google Scholar] [CrossRef]
- Haff, R.; Slaughter, D. Real-time X-ray inspection of wheat for infestation by the granary weevil, Sitophilus granarius (L.). Trans. ASAE 2004, 47, 531–537. [Google Scholar] [CrossRef]
- Karunakaran, C.; Jayas, D.; White, N. Identification of wheat kernels damaged by the red flour beetle using X-ray images. Biosyst. Eng. 2004, 87, 267–274. [Google Scholar] [CrossRef]
- Karunakaran, C.; Jayas, D.; White, N. Detection of internal wheat seed infestation by Rhyzopertha dominica using X-ray imaging. J. Stored Prod. Res. 2004, 40, 507–516. [Google Scholar] [CrossRef]
- Karunakaran, C.; Jayas, D.; White, N. Detection of infestations by Cryptolestes ferrugineus inside wheat kernels using a soft X-ray method. Can. Biosyst. Eng. 2004, 46, 7.1–7.9. [Google Scholar]
- Karunakaran, C.; Jayas, D.; White, N. X-ray image analysis to detect infestations caused by insects in grain. Cereal Chem. 2003, 80, 553–557. [Google Scholar] [CrossRef]
- Karunakaran, C.; Jayas, D.; White, N. Soft X-ray Inspection of Wheat Kernels Infested by Sitophilus oryzae. ASABE 2003, 46, 739–745. [Google Scholar] [CrossRef]
- Karunakaran, C.; Paliwal, J.; Jayas, D.S.; White, N.D.G. Comparison of soft X-rays and NIR spectroscopy to detect insect infestations in grain. In Proceedings of the ASAE Annual International Meeting, Tampa, FL, USA, 17–20 July 2005. ASAE Paper Number: 053139. [Google Scholar] [CrossRef]
- Hörnschemeyer, T.; Beutel, R.G.; Pasop, F. Head structures of Priacma serrata leconte (coleptera, archostemata) inferred from X-ray tomography. J. Morphol. 2002, 252, 298–314. [Google Scholar] [CrossRef]
- Huenefeld, F.; Kristensen, N.P. The female postabdomen and internal genitalia of the basal moth genus Agathiphaga (Insecta: Lepidoptera: Agathiphagidae): Morphology and phylogenetic implications. Zool. J. Linn. Soc. 2010, 159, 905–920. [Google Scholar] [CrossRef]
- Ribi, W.; Senden, T.J.; Sakellariou, A.; Limaye, A.; Zhang, S. Imaging honey bee brain anatomy with micro-X-ray-computed tomography. J. Neurosci. Methods 2008, 171, 93–97. [Google Scholar] [CrossRef]
- Lowe, T.; Garwood, R.J.; Simonsen, T.J.; Bradley, R.S.; Withers, P.J. Metamorphosis revealed: Time-lapse three-dimensional imaging inside a living chrysalis. J. R. Soc. Interface 2013, 10, 20130304. [Google Scholar] [CrossRef] [PubMed]
- Vommaro, M.L.; Donato, S.; Giglio, A. Virtual sections and 3D reconstructions of female reproductive system in a carabid beetle using synchrotron X-ray phase-contrast microtomography. Zool. Anz. 2022, 298, 123–130. [Google Scholar] [CrossRef]
- Gao, Z.; Zhai, H.; Lulong, S.; Ma, Y.; Du, Y. Evaluation of cold hardiness of grape varieties based on temperature-injury relation and Its Affecting Factors. Chin. J. Appl. Ecol. 2014, 25, 983–990. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, Y.; Zhang, W.; Yan, J. Occurrence, epidemical regularity and control strategies for grape trunk diseases. J. Fruit Sci. 2022, 39, 280–294. [Google Scholar] [CrossRef]
- Fuchs, A.; Schreyer, A.; Feuerbach, S.; Korb, J. A new technique for termite monitoring using computer tomography and endoscopy. Int. J. Pest Manag. 2004, 50, 63–66. [Google Scholar] [CrossRef]
- Himmi, S.K.; Yoshimura, T.; Yanase, Y.; Oya, M.; Torigoe, T.; Imazu, S. X-ray tomographic analysis of the initial structure of the royal chamber and the nest-founding behavior of the drywood termite Incisitermes minor. J. Wood Sci. 2014, 60, 453–460. [Google Scholar] [CrossRef]
- Soné, K.; Mori, T.; Ide, M. Application of computer tomography to surveys of the galleries of the oak borer, Platypus quercivorus (Maruyama) (Coleoptera: Platypodidae). Jpn. J. Appl. Entomol. Zool. 1995, 39, 341–344. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, R.; Li, H.; Wen, J. Morphologic characters of the rostrum in two weevils, Eucryptorrhynchus scrobiculatus Motschulsky and E. brandti Harold (Coleoptera: Curculionidae: Cryptorrhychinae). Insects 2023, 14, 71. [Google Scholar] [CrossRef]
- Zhao, C.; Ang, Y.; Wang, M.; Gao, C.; Zhang, K.; Tang, C.; Liu, X.; Li, M.; Yang, D.; Meier, R. Transformation of internal head structures during the metamorphosis of Chrysopa pallens (Neuroptera: Chrysopidae). Res. Sq. 2019. [Google Scholar] [CrossRef]
- Johnson, J.; Marcotte, M. Irradiation control of insect pests of dried fruits and walnuts. Food Technol. 1999, 53, 1. [Google Scholar]
- Follett, P.A. Irradiation to control insects in fruits and vegetables for export from Hawaii. Radiat. Phys. Chem. 2004, 71, 163–166. [Google Scholar] [CrossRef]
- Ren, J. Study on the Indoor Artifcal Breeding, the Larvae InstarDetermination and the Ovipositing Characters of Monochamus alternatus. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2014. [Google Scholar]
- Dong, Z. Study on the Mechanism of Oviposition Selection Behavior of Glenea cantor Fabricius. Ph.D. Thesis, Guangxi University, Nanning, China, 2021. [Google Scholar] [CrossRef]
- Song, G. Occurrence and control methods of Anoplophora glabripennis. Anhui Agric. Bull. 2023, 29, 75–77+81. [Google Scholar] [CrossRef]
- Zheng, G. Development in Pre-Copulation Duration and Its Effects on Reproductive Behavior of Monochamus alternatus Hope (Coleoptera: Cerambycidae). Master’s Thesis, Guangxi University, Nanning, China, 2022. [Google Scholar] [CrossRef]
- Zheng, W.; Luo, D.; Wu, F.; Wang, J.; Zhang, H. RNA sequencing to characterize transcriptional changes of sexual maturation and mating in the female oriental fruit fly Bactrocera dorsalis. BMC Genom. 2016, 17, 194. [Google Scholar] [CrossRef]
- Miao, W. Biological characteristics of Xylotrechus pyrrhoderus and its control. For. Sci. Technol. Dev. 1994, 01, 33. [Google Scholar] [CrossRef]
- Guo, W. Nutritional Requirements of Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralididae) Larvae for Nitrogen and Sugar in Artificial Diets. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2012. [Google Scholar] [CrossRef]
- Song, Y.; Li, D.; Fan, Y.; Wu, L.; Zhang, Z.; Liu, X.; Liu, T. Application and comparison of insects feeding facilities in entomology laboratory. J. Environ. Entomol. 2020, 42, 770–774. [Google Scholar] [CrossRef]
Developmental Stage | Body Length (mm) | Body Width (mm) | Time Spent Within Canes (Days) | Activity Signs |
---|---|---|---|---|
prepupa | 12.44 ± 0.26 a | 2.88 ± 0.11 a | 8.07 ± 0.25 c | immobile |
pupa | 12.14 ± 0.33 a | 2.81 ± 0.09 a | 9.87 ± 0.29 b | the abdominal end exhibits some movement |
adult | 10.36 ± 0.29 b | 2.43 ± 0.06 b | 14.00 ± 0.34 a | strong mobility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Jia, Y.; Wu, H.; Zhang, Y.; Ghanim, M.; Ma, Y.; Sun, R. Developmental Biology and Seasonal Damage of the Grape Borer Xylotrechus pyrrhoderus in Grapevines. Insects 2025, 16, 979. https://doi.org/10.3390/insects16090979
Zhang G, Jia Y, Wu H, Zhang Y, Ghanim M, Ma Y, Sun R. Developmental Biology and Seasonal Damage of the Grape Borer Xylotrechus pyrrhoderus in Grapevines. Insects. 2025; 16(9):979. https://doi.org/10.3390/insects16090979
Chicago/Turabian StyleZhang, Ganyu, Yuying Jia, Haibin Wu, Yong Zhang, Murad Ghanim, Yanan Ma, and Ruihong Sun. 2025. "Developmental Biology and Seasonal Damage of the Grape Borer Xylotrechus pyrrhoderus in Grapevines" Insects 16, no. 9: 979. https://doi.org/10.3390/insects16090979
APA StyleZhang, G., Jia, Y., Wu, H., Zhang, Y., Ghanim, M., Ma, Y., & Sun, R. (2025). Developmental Biology and Seasonal Damage of the Grape Borer Xylotrechus pyrrhoderus in Grapevines. Insects, 16(9), 979. https://doi.org/10.3390/insects16090979